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Cancer immunosurveillance is critical for the elimination of neoplastic cells. In addition, 
recent advances in immunological checkpoint blockade drugs have revealed the 
importance of the immune system in cancer treatment. As a component of the immune 
system, CD8+ T  cells have important roles in suppressing tumors. CD8+ T  cells can 
kill tumor cells with cytotoxic molecules, such as granzymes and perforin. IFNγ, which 
is produced by CD8+ T  cells, can increase the expression of MHC class I antigens 
by tumor cells, thereby rendering them better targets for CD8+ T cells. IFNγ also has 
crucial functions in enhancing the antitumor abilities of other immune cells. Therefore, it 
has been hypothesized that antitumor immunity could be improved by modulating the 
activity of CD8+ T cells. The Notch pathway regulates CD8+ T cells in multiple ways. It 
directly upregulates mRNA expression of granzyme B and perforin, enhances differenti-
ation toward short-lived effector cells, and maintains memory T cells. Intriguingly, CD8+ 
T cell-specific Notch2 deletion impairs antitumor immunity, whereas the stimulation of 
the Notch pathway can increase tumor suppression. In this review, we will summarize 
the roles of the Notch pathway in CD8+ T cells and discuss issues and implications for 
its use in antitumor immunity.

Keywords: Notch, T cells differentiation, tumor immunity, CD8+ T cells, granzyme B

iNTRODUCTiON

To suppress tumor cell growth, animals use their cell-intrinsic antitumor system, which is regulated 
by tumor suppressor genes. A second line of defense against tumors includes the immune system 
itself (1, 2). Acquired immune cells, especially CD8+ T cells, can detect and kill tumors through 
the latter’s expression of abnormal antigens derived from mutated, overexpressed or ectopically 
expressed molecules. Innate immune cells also have important roles in the antitumor system. For 
example, NK cells can target tumors by recognizing the expression of MHC class Ib proteins induced 
by cellular transformation or the lack of MHC class I molecules. Many efforts have been devoted to 
treating cancer by enhancing immunosurveillance.

Many efforts have been made to enhance antitumor immunity. For example, administration of 
cytokines, such as type I interferon, IL-2, and IL12, or TLR agonists such as BCG and imiquimod is 
employed to non-specifically stimulate immune system (3). Vaccine against tumors is also examined 
to treat them; irradiated tumor cells or selected antigens specifically expressed in tumors are used to 
increase tumor-specific T cell response (4). In addition, in vitro activated and expanded T cells, which 
can recognize tumors, are adoptively transferred to patients to increase tumor-specific immunity 
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(5). Notably, recent advances in the development of checkpoint 
blockade drugs, such as antibodies to PD-1 and CTLA-4, indicate 
that this field of research is indeed promising (6, 7). To further 
improve immunotherapy, we need a better understanding of the 
antitumor immune system.

The Notch pathway is an evolutionarily conserved signaling 
pathway that regulates various biological systems, including a 
wide variety of functions of peripheral T cells (8–10). In mam-
mals, the Notch system consists of four receptors (Notch1 to 4) 
and five ligands (Dll1, 3, 4, and Jagged1, 2). When the receptor 
is stimulated by the ligand, it is cleaved by an ADAM-family 
metalloprotease and subsequently the γ-secretase complex, and 
its cytoplasmic domain is translocated into the nucleus. The 
cytoplasmic domain then binds to DNA binding protein RBPJκ 
(encoded by Rbpj) and co-activator MAML, leading to transcrip-
tional regulation of specific target genes.

Research into the physiological roles of the Notch pathway 
in peripheral T cells has mainly focused on CD4+ T cells. The 
Notch pathway regulates CD4+ T cell differentiation, cytokine 
production, proliferation, and/or survival, although some of the 
data among the papers are in disagreement (8, 9). For example, 
Tanigaki et al. reported that Rbpj-deficient CD4 T cells showed 
decreased Th2 and increased Th1 in in vivo and in vitro experi-
ments (11). Similarly, Amsen et al. reported Th2 differentiation 
was dependent on the Notch pathway by using Notch1/2-double 
deficient mice in addition to Rbpj (12). On the other hand, 
Auderset et  al. reported that Notch1 and 2 were required for 
Th1 differentiation in anti-Leishmania major immunity, while 
Rbpj-deficiency did not show any significant effects (13). The 
causes of these apparent differences have not been resolved. 
It is possible that the functions of Notch pathway are highly 
context-dependent in T cells. In this review, we will summarize 
research into the physiological roles of the Notch pathway in 
CD8+ T cells and discuss its potentials for antitumor immunity 
(Figure 1).

THe PHYSiOLOGiCAL ROLeS OF THe 
NOTCH PATHwAY iN CD8+ T CeLLS

To elucidate the roles of Notch in CD8+ T  cells, studies have 
analyzed mice in which the Notch pathway has been knocked 
out. Maekawa et al. reported that CD8+ T cell-specific (E8I-cre) 
Notch2 deletion led to decreased expression of Gzmb (encoding 
granzyme B) and increased sensitivity to Trypanosoma cruzi 
infection (14). This mouse also showed a significant loss of CTL 
activity against antigen-pulsed cells in vivo. They further showed 
that Notch2 and RBPJκ directly bound to Gzmb and Prf1 (encod-
ing perforin) promoters in combination with the transcription 
factor CREB and activated their transcription.

Backer et  al. described an influenza virus infection model 
in which T  cell-specific (CD4-cre) Notch1/2-double KO mice 
showed almost complete loss of short-lived effector CD8+ T cells 
(SLECs) that possess the KLRG1+CD127− phenotype. On the 
other hand, the overall ratio of antigen-specific CD8+ T  cells 
to that of KLRG1−CD127+ memory precursor effector cells 
(MPECs) was moderately increased (15). They also confirmed this 

phenotype was present in Rbpj KO mice. Then, they analyzed the 
transcriptome of activated CD8+ T cells, and showed that more 
than 40% of SLEC-specific genes were decreased in Notch1/2 KO 
cells, indicating that the Notch pathway was a critical regulator of 
SLEC differentiation. In addition, they also found that the Notch 
pathway was required for the upregulation of CD25 (IL-2Rα 
chain) and T-bet proteins, both of which are critical regulators 
of SLEC differentiation. Furthermore, they showed that T-bet 
overexpression enhanced SLEC differentiation in Notch1/2 KO 
CD8+ T cells, while the active form of Notch1 could not do so 
in Tbx21 (encoding T-bet) KO cells, suggesting that T-bet is a 
critical regulator downstream in the Notch pathway.

Similar results were reported by another laboratory. Mathieu 
et  al. used CD8 T  cell-specific Notch1/2 KO mice and showed 
a reduction of the ratio of SLECs after Listeria monocytogenes 
infection (16). However, they found that the absolute cell number 
of SLECs was not reduced, and the reduction of the ratio was 
instead due to an increased number of MPECs and early effector 
cells (EECs; KLRG1−CD127− cells). On the other hand, when 
they immunized mice with peptide-pulsed dendritic cells (DCs), 
they found a severe reduction of SLEC cell number, while MPEC 
cell numbers were not affected. The reason for this difference 
was not clear, but it might indicate that the roles of the Notch 
pathway in CD8+ T cells are context-dependent as seen in CD4+ 
T cells (8). As reported in the paper by Backer et al. above, they 
found that CD25 protein expression was diminished in Notch1/2 
KO cells. However, the expression of T-bet was not affected. 
Instead, they found that Eomes, which is a paralog of T-bet, was 
moderately decreased in Notch1/2 KO cells. Eomes is reportedly 
required for MPEC differentiation but not for SLEC (17). Thus, 
the importance of the Eomes reduction in Notch1/2 KO cells for 
SLEC differentiation remains to be investigated.

Instead of KO mice, Maillard and colleagues used the dominant 
negative form of MAML (DN-MAML)-expressing mice and ana-
lyzed its effects on CD4+ and CD8+ T cells in a graft-versus-host 
disease (GVHD) model (18, 19). They reported that DN-MAML 
profoundly suppressed GVHD, with reduced production of IFNγ 
in CD4+ and CD8+ T cells. In contrast to KO mouse experiments, 
DN-MAML-expressing CD8+ T cells preserved their T-bet and 
Eomes protein expression. In addition, those cells showed a defect 
in the activation of Ras/MAPK and NF-κB pathways. Those cells 
also expressed higher amounts of negative regulators of T  cell 
activation, such as Dgka, Cblb, and Pdcd1, suggesting that these 
factors might suppress GVHD.

In addition to the genetic approaches described above, 
γ-secretase inhibitors, blocking antibodies and soluble Notch 
ligands have been used to investigate the roles of the Notch path-
way in CD8+ T cells (20–26). The consensus of these experiments 
is that the Notch pathway is required for IFNγ production during 
CD8+ T cell activation. On the other hand, the effect on the cell 
number after the activation of CD8+ T cells was controversial. 
Several papers indicated that γ-secretase inhibitors or soluble 
Notch ligand (Dll4) suppressed proliferation of CD8+ T  cells, 
while their viability was not affected (22–24). Other papers 
showed that the inhibitors or membrane-bound Notch ligands 
(Jagged1) did not affect the CD8 T cell number or proliferation 
after activation (25, 27, 28). In addition, Notch1/2-double KO 
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FiGURe 1 | Schematic overview of the roles of the Notch pathway in CD8+ T cells and its application to immunotherapy. (A) The Notch pathway is stimulated during 
CD8+ T cell activation and is required for the production of effector molecules, such as IFNγ and granzyme B. Therefore, the modulation of the Notch pathway could 
be used to treat various diseases in which CD8+ T cells are involved. In addition, studies indicate that the Notch pathway is active in resting naïve and memory 
T cells in which the pathway is reportedly needed for the maintenance of these cells. (B) Coculture with Dll1-expressing OP9 stromal cells can generate CD8+ T cells 
from hematopoietic stem cells or iPSCs in vitro. In addition, the coculture system can generate memory stem cell-like T cells from activated CD8+ T cells. These 
in vitro generated CD8+ T cells could be superior reagents for antitumor immunity. GVHD, graft-versus-host disease; CAR, chimeric antigen receptor; iPSCs, 
induced pluripotent stem cells; HSCs, hematopoietic stem cells.
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mice showed that the CD8+ T cell number was not affected or 
even increased when activated in vivo, although their differentia-
tion was altered (15, 16). What caused these differences remains 

elusive. Further examination of the experiment-conditions and 
the methods of the Notch inhibition should be required in future 
researches.
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Other studies showed that the cell surface expression of Notch1 
and 2 was upregulated soon after T cell activation (14, 15, 22, 23, 
29, 30). In addition, expression of its ligands (Dll1, Dll4, and/or 
Jagged1) was also upregulated in activated DCs (15, 21–23, 31). 
Based on these observations, many researchers have concluded 
that the Notch pathway is activated early in the process of T cell 
activation by the ligands on DCs. In fact, it was reported that Hes1 
and/or Dtx1 (encoding Deltex1), which are well-known targets 
of the Notch pathway, were upregulated after T  cell activation 
(23, 32). Other papers reported that TCR stimulation caused the 
cleavage of Notch receptors, indicating that the Notch pathway 
was activated after T cell activation (20, 33). However, transcrip-
tome analyses clearly show that Dtx1 is upregulated during the 
differentiation of CD4+CD8+ thymocytes to peripheral naïve 
CD4+ and CD8+ T cells (Immunological genome project1; RCAI 
RefDIC2). We confirmed that this upregulation was dependent 
on Notch1/2 and Rbpj (unpublished data). Unexpectedly, Dtx1 
is moderately downregulated after TCR activation, according to 
transcriptome data. Subsequently, its expression returns to a high 
level during the differentiation to memory cells. On the other 
hand, Hes1 expression remains low during activation of naïve and 
activated cells. These results suggest that the Notch pathway is 
active in resting T cells. The reason why Hes1 and Dtx1 were not 
upregulated during T cell activation remains unclear. The Notch 
pathway might not be activated under the conditions of T  cell 
activation used in these studies. Alternatively, the epigenetic 
status of these gene loci or unknown inhibitor(s) might affect 
their expression during T cell activation.

Interestingly, recent papers support the hypothesis that the 
Notch pathway is operational in resting CD4+ and CD8+ T cells. 
Maekawa et  al. reported that Rbpj-deficient CD4+ T  cells nor-
mally expanded after antigen stimulation, but could not survive 
during the contraction phase. They also found that the injection 
of γ-secretase inhibitor to mice decreased the number of resting 
memory T cells (34). Hombrink et al. also reported that Notch1/2-
deficiency or the treatment with γ-secretase inhibitor decreased 
CD103+ lung-resident memory CD8+ T cells in mice (35). These 
results suggest that the Notch pathway has important roles not 
only in activating T cells but also in resting cells.

Although some data disagree, an increasing number of 
reports have demonstrated that the Notch pathway was required 
for CD8+ T cell activation and homeostasis. When and how the 
Notch pathway works remains to be further investigated, but it 
is very probable that the manipulation of this pathway could be 
useful in the treatment of diseases in which the immune system 
is involved.

THe NOTCH PATHwAY iN ANTiTUMOR 
iMMUNe ReSPONSeS

CD8+ T  cells have important roles in antitumor immunity 
(1, 7), some of which are dependent upon the Notch pathway. 

1 http://www.immgen.org/index_content.html.
2 http://refdic.rcai.riken.jp/welcome.cgi.

Sugimoto et al. reported that CD8-specific deletion of Notch2, but 
not Notch1, led to increased tumor size and decreased survival 
after tumor-inoculation into mice (36). Zhao et al. reported that 
ovarian cancer imposed glucose restriction on T  cells, leading 
to high expression of microRNAs miR-101 and miR26a, leading 
to constrained expression Ezh2. Ezh2 is a suppressor of Notch 
pathway inhibitors Numb and Fbxw7. As a consequence, the 
cancer-induced glucose restriction led to the suppression of the 
Notch pathway. They also showed that downregulation of Ezh2 
elicited poor antitumor immunity, implying that the Notch path-
way was important for antitumor immunity (37). Dai et al. found 
that 1810011o10Rik (Tcim) was upregulated in intratumoral 
activated CD8+ T cells. They also showed that overexpression of 
Tcim blocked nuclear translocation of the intracellular domain 
of Notch2 and inhibited the cytotoxic efficacy of CD8+ T cells on 
hepatocellular carcinoma (38). All of these papers confirm that 
the Notch pathway in CD8+ T cells has a critical role in antitumor 
immunity.

Considering these reports, the manipulation of the Notch 
pathway in T cells could be a good approach to suppress tumors. 
Several papers pursued the idea in mouse models. Sugimoto 
et  al. showed that injection of agonistic antibody to Notch2 or 
Dll1-overexpression in DC augmented antitumor immunity (36). 
Sierra et al. used intracellular Notch1-expressing mice driven by a 
granzyme B promoter-cre and flox system. They found that such 
activation of the Notch pathway in CD8+ T  cells increased the 
cytotoxic effects and antitumor response with higher production 
of IFNγ and granzyme B (39). Thounaojam et  al. showed that 
treatment with the proteasome inhibitor bortezomib caused 
higher expression of IFNγ in CD8+ T  cells in tumor-bearing 
mice, probably through the upregulation of Notch receptors (40). 
Biktasova et  al. reported that administration of clustered Dll1 
enhanced IFNγ-producing CD8+ T cells and suppressed tumor 
growth (41). These reports reveal that Notch-targeted immune 
modulation could be promising. However, Notch receptors are 
broadly expressed in various types of cells, and the modula-
tion of Notch might be highly context-dependent. In addition, 
Notch receptors are known as proto-oncogenes themselves (42). 
Therefore, it is possible that the activation of the pathway could 
exacerbate some types of tumors. Detailed investigations will be 
needed to examine the possibility of antitumor treatment target-
ing this pathway.

The therapy by immune checkpoint blockade is recent advance 
in antitumor immunotherapy (43). The blocking antibodies to 
PD-1/PD-L1 and CTLA-4 are broadly used to treat melanoma 
and other types of tumors. Mathieu et  al. reported that Notch 
directly bound to the promoter region of Pdcd1 (encoding PD-1) 
gene and upregulated its mRNA expression in activated CD8+ 
T cells (23). In addition, Yu et al. indicated that γ-secretase inhibi-
tor activated tumor-infiltrating CD8+ T  cell probably through 
the downregulation of PD-1 expression (44). These results 
indicated that the Notch pathway might also have negative effect 
during CD8+ T cell activation. Therefore, it is expected that the 
antitumor therapy by Notch activation would be more efficient 
in combination with the blocking antibodies to PD-1 and other 
inhibitory receptors.
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GeNeRATiNG ANTiTUMOR CD8+ T CeLLS 
IN VITRO USiNG THe NOTCH PATHwAY

In addition to efforts to modulate the Notch pathway in vivo to 
enhance antitumor immunity, there have been in vitro attempts to 
create cytotoxic T cells against tumors. CD8+ memory stem cells 
are reported to have naïve markers, but have self-renewal capac-
ity and can rapidly respond to antigens (45, 46). In addition, they 
have antitumor capacities exceeding those of central and effector 
memory T cells (47). Kondo et al. reported that activated CD4+ 
or CD8+ T cells could be converted to memory stem cell-like cells 
when cocultured with Dll1-expressing OP9 stromal cells (OP9-
Dll1) (48). They also showed that the resultant memory stem cell-
like CD4+ and CD8+ T cells had superior antitumor abilities relative 
to naïve, activated or memory T cells when injected into mice.

In addition to peripheral T  cells, the Notch pathway is well 
known for its role in defining the fate of T cells in early stages of 
differentiation. By coculturing with Dll1-expressing cells, some 
types of stem cells can be differentiated to T  cells in  vitro (49). 
There have been several attempts to create large number of tumor-
specific CD8+ T cells through use of this in vitro system. Zhao et al. 
introduced a tumor antigen-specific TCR into human umbilical 
cord blood-derived hematopoietic cells and generated T cells by 
coculture with OP9-Dll1 (50). They showed that those T  cells 
could recognize and kill antigen-pulsed antigen-presenting cells. 
Vizcardo et al. generated induced pluripotent stem cells (iPSCs) 
from melanoma antigen-specific human cytotoxic T  cells and 
cultured them on OP9-Dll1 cells. They subsequently stimulated 
the differentiated CD4+CD8+ T cells with anti-CD3 antibody to 
create CD8+ single positive T  cells (51). They found that those 
CD8+ T cells could respond to the specific melanoma antigen, and 
had antitumor ability. Themeli et al. introduced a chimeric antigen 
receptor into iPSCs and generated human T cells targeted against 
CD19 by using OP9-Dll1 (52). Although the generated T  cells 
showed an innate T  cell-like phenotype, those cells had potent 
antitumor capability specific for CD19-expressing lymphoma cells.

CONCLUSiON AND FUTURe DiReCTiONS

Emerging evidence indicates that the Notch pathway has impor-
tant physiological roles in CD8+ T  cell functions, especially 

in the production of effector molecules. In addition, recent 
research points out that the Notch pathway probably works in 
resting T cells to promote homeostasis. On the other hand, the 
presence of apparently conflicting data suggests that the roles of 
the Notch pathway might be highly stage and context dependent. 
Therefore, it is critical to clarify what determines the functions 
of the Notch pathway under each condition. Comprehensive 
analyses of Notch signaling by transcriptomic, proteomic, and 
ChIP-seq analyses would be helpful to elucidate the differences 
under each condition.

Given the physiological importance of the Notch pathway, 
it could prove useful in the optimization of antitumor immu-
notherapy. However, the manipulation of the pathway should 
be carefully examined because the roles of the pathway could 
be context-dependent even in peripheral T  cells. Furthermore, 
Notch receptors and ligands are broadly expressed in many 
tissues, and the manipulation of the pathway could cause unpre-
dicted outcomes.

As well as the administration of cytokines, TLR agonists 
and immune checkpoint inhibitors, the activation of the Notch 
pathway induces non-specific activation of immune system, 
which could lead to autoimmunity or unwanted inflamma-
tion. Tumor-specific activation of immune response has been 
tried by using vaccination against tumor antigens or adoptive 
transfer of tumor-specific T  cells generated or expanded 
in vitro. As described in this minireview, the Notch pathway is 
an excellent tool to create large amount of CD8+ T cells from 
iPSCs derived from tumor-specific T cells in vitro. In addition, 
the Notch pathway also can induce memory stem cell-like cells 
from peripheral T cells. Tuning the culture conditions as well 
as genetic modification of the cells could be used to create vari-
ous types of CD8+ T cells for cancer immunotherapy. The best 
combination of non-specific and specific activation of immune 
responses should be carefully investigated to fight against tumors 
in various conditions.
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