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Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature 
myeloid cells originally described to hamper immune responses in chronic infections. 
Meanwhile, they are known to be a major obstacle in cancer immunotherapy. On the 
other hand, MDSC can interfere with allogeneic transplant rejection and may dampen 
autoreactive T cell activity. Whether MDSC-Exosomes (Exo) can cope with the dangerous 
and potentially therapeutic activities of MDSC is not yet fully explored. After introducing 
MDSC and Exo, it will be discussed, whether a blockade of MDSC-Exo could foster the 
efficacy of immunotherapy in cancer and mitigate tumor progression supporting activities 
of MDSC. It also will be outlined, whether application of native or tailored MDSC-Exo might 
prohibit autoimmune disease progression. These considerations are based on the steadily 
increasing knowledge on Exo composition, their capacity to distribute throughout the 
organism combined with selectivity of targeting, and the ease to tailor Exo and includes 
open questions that answers will facilitate optimizing protocols for a MDSC-Exo blockade 
in cancer as well as for strengthening their therapeutic efficacy in autoimmune disease.
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iNTRODUCTiON

Myeloid-Derived Suppressor Cells 
(MDSCs) and Cancer
Cancer is one of the most frequent causes of death (1), which in 
part is due to the resistance of tumor cells to chemo-, radio-, and 
immunotherapy (2–4). This implies that after tumor spread, which 
might prohibit surgical excision, the likeliness of curative therapy 
steeply declines. Disappointing efficacy of adjuvant cancer therapies 
accounts particularly for immunotherapy, where frequently no or 
only weak responses are noted despite the presence of immunogenic 
tumor-associated antigens (5). In several tumor entities, MDSCs 
were found to account for resistance toward cancer immunotherapy 
(6) and additionally for poor responses to chemotherapy. Therefore, 
drugs were designed that, besides directly attacking the tumor cells, 
should hamper MDSC development or activation or drive MDSC 
into apoptosis (7). So far therapeutic trials with a focus on MDSC 
elimination to improve chemotherapy or immunotherapy are rare, 
which also accounts for combinations of adjuvant therapeutics  
(8, 9). The current options and possible modes of improvement 
attacking MDSC/MDSC-exosomes (MDSC-Exo) to support can-
cer chemo- and/or immunotherapy will be discussed.

MDSC in Autoimmune Disease and 
Allograft Transplantation
Autoimmune disease incidence is steadily increasing (10). Autoim-
mune diseases frequently exacerbate in young adults and progress 
in waves, which get more severe during time and become life 
threatening (11). Corticosteroid therapy, frequently used in 
progressed disease stages (12), is burdened by severe side effects, 
including dampening immune responses against bacteria and 
viruses (13). The option to booster autoimmune disease therapy 
with MDSC (14) gained in weight, when it was realized that MDSC 
are a strong stimulus for regulatory T cell (Treg) activation, a deficit 
in Treg contributing to autoreactive T cell expansion (15). There are 
several trials to integrate MDSC in autoimmune disease therapy, 
such as myasthenia gravis, arthritis, inflammatory bowel disease, 
and others, where good response rates were reported (14, 16–21).

Myeloid-derived suppressor cell-promoted downregulation of 
immune reactivity also is advantageous in allograft transplanta-
tion. This accounts for organ as well as hematopoietic stem cell 
(HSC) transplantation (22–26). Accordingly, drugs promoting 
MDSC expansion and/or activation and the transfer of MDSC 
were reported to support long-term allograft survival (27–30).

Having introduced the two faces of MDSC, this review will 
focus on MDSC and MDSC-Exo in cancer and autoimmune 
disease. After introducing MDSC and Exo, their mode of action 
in disease will be outlined. Knowledge on the crosstalk between 
MDSC/MDSC-Exo and their targets provides the fundament for 
established and forthcoming therapeutic interference.

MDSC: PHeNOTYPiC AND FUNCTiONAL 
CHARACTeRiZATiON

Myeloid-derived suppressor cells are a heterogeneous group 
of cells, characterized by myeloid origin, immature state, and 

mostly functional activity. In humans, MDSC are still difficult to 
isolate due to an inconclusive surface marker expression profile. 
However, there is consent on the differentiation between two 
subgroups defined as monocytic (M) and granulocytic MDSC 
(G-MDSC), which are differentiated on the basis of Ly6C high 
[monocytic MDSC (M-MDSC)] or Ly6G high (G-MDSC), 
M-MDSC exerting stronger suppressive activity (31–33). MDSC 
account for T cell exhaustion in chronic infections (34, 35), play 
a crucial role in cancer progression (31, 36), and are a major hin-
drance in cancer immunotherapy, hampering T cell recruitment 
and activation, while promoting M1 and Treg expansion (14, 37). 
On the other hand, MDSC are beneficial in overshooting immune 
reactions such as autoimmune diseases (24, 33) and allogeneic 
transplantation (18, 33, 38). Finally, though the activity of MDSC 
may vary with the pathophysiological conditions promoting their 
expansion, there is consent that T cells are major targets and that 
the response of the adaptive immune system is most severely 
affected (39).

Myeloid-derived suppressor cell expansion is promoted by  
lipopolysaccharide, macrophage colony stimulating factor, GM- 
CSF, SCF, IL6, interferon (IFN)γ, IL1β, vascular endothelial 
growth factor (VEGF), heat shock protein (HSP)72, IL13, C5a, 
PGE2, and S100A8/A9 (32, 40). Downstream activation of the 
JAK– signal transducer and activator of transcription (STAT)3/
STAT5 pathway with stimulation of cyclinD1, Bcl2-like (BclXl), 
survivin, c-myc, and S100A8/A9 contribute to inhibition of 
differentiation into mature myeloid cells. MDSC recruitment 
is supported by provision of CCL2, C-X-C motif chemokine 
ligand (CXCL)12, and CXCL15, the corresponding ligands being 
expressed by MDSC. Intracellular molecules involved in MDSC 
function are STAT3, COX2, HIF1α, C/EBPβ, inducible nitric 
oxide synthase (iNOS), arginase (Arg), HO-1, and indoleam-
ine 2,3-dioxygenase (IDO) (32, 40, 41). Downstream effector 
molecules are Arg-1 and iNOS. Arg-1 and iNOS account for 
depletion of l-arginine in T cells, which contributes to ζ-chain 
downregulation. iNOS induces NO, NO and ROS inhibiting 
T cell proliferation and inducing apoptosis. HO-1 inhibits T cell 
proliferation via CO production. Membrane-bound TGFβ1 
promotes natural killer cell (NK  cell) anergy. IL10 and TGFβ 
foster Treg expansion (40), which become recruited by CXCL10. 
TGFβ, and IL10 also account for downregulation of IFNγ (40). 
IL10 promotes TH2 deviation and type 2 macrophage (Mϕ) 
polarization. Finally, ADAM17 leads to CD62L cleavage, which 
prohibits T cell homing (42, 43).

In cancer, drugs have been developed and are further imp-
roved to selectively attack MDSC maturation and/or activation. 
These include, besides others, all-transretinoic acid (ATRA) 
driving progenitors into differentiation, the tyrosine kinase 
inhibitor sunitinib, gemcitabine, COX-2 inhibitors, and the 
phosphodiesterase-5 inhibitor sildanefil (44–48). In autoim-
mune diseases and allogeneic bone marrow (BM) transplanta-
tion, the transfer of MDCS was demonstrated as a therapeutic 
option (18, 33, 38, 42, 49).

Taken together, MDSC are immature myeloid cells that ham-
per mostly T cell, but also B cell and NK activity, at least in part 
by supporting Treg expansion and activation. They are a severe 
hindrance in cancer immunotherapy and in chronic infections. 
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Mostly in cancer immunotherapy drugs and drug combinations 
to prevent MDSC induction, activation and targeting as well 
as drugs to drive MDSC into apoptosis are experimentally and 
clinically explored to improve the efficacy of immunotherapy. 
Based on the same principle MDSC activity is suited to control 
undesired immunoreactivity in transplantation and autoimmune 
disease, the transfer of MDSC being a therapeutic option.

eXOSOMeS (exo)

Exosomes are small 40–100 nm vesicles delivered by most cells 
of an organism (50). They distribute throughout the body and 
are recovered in all body fluids (51). Exo express donor cell-
derived components. This finding stimulated Exo research as a 
non-invasive/minimally invasive tool for diagnosis, prognosis 
and therapy control (51, 52). Of particular importance was the 
notion that Exo components are function competent and deliver 
their messages into target cells (53, 54) such that Exo binding 
and uptake can severely modulate target structures and suffices 
for reprogramming target cells (54–57). Furthermore, Exo easily 
can be modulated in vitro (58). Thus, Exo are a most powerful 
intercellular communication system and are supposed to become 
a highly effective therapeutic tool in the near future (59, 60).

exo Biogenesis
Exosome biogenesis starts with the formation of early endosomes 
(EE), which can derive from the trans-Golgi network or from 
different internalized membrane microdomains, such as clathrin-
coated pits, tetraspanin and glycolipid-enriched membrane 
domains (GEM), or proteolipids in cholesterol- and ceramide-
rich compartments (61). EE move toward multivesicular bodies 
(MVB), the transport machinery varying for the different types 
of EE (62). During inward budding of EE into MVB, called intra-
luminal vesicles (ILV), vesicles receive their cargo. Loading of the 
small plasma that could contain ~100 proteins and 10,000 nucleo-
tides (63) with proteins, coding and non-coding RNA and DNA 
are non-random processes (61). Sorting of proteins is facilitated 
by mono-ubiquitination, acylation or myristoylation (64, 65). 
For GEM-derived Exo, higher order oligomerization is impor-
tant (66), where protein complexes and attached cytoplasmic 
components are retained (67). In raft-derived ILV, sphingolipids 
forming ceramide also contribute to vesicle loading (68). miRNA 
recruitment is guided by a zip code in the 3′-UTR and by coupling 
of RNA-induced silencing complex to components of the sorting 
complex. A specific EXOmotif (GGAG) controls miRNAs load-
ing by binding to the heterogeneous ribonucleoprotein A2B1 
(hnRNPA2B1), which binds to an RNA transport signal (A2RE) 
(69). Annexin-II plays a role in RNA sorting into ILV by binding 
specific RNAs (70). lncRNA also are selectively recruited by so far 
unknown mechanisms (71). Ras-related proteins regulate MVB 
movement toward the cell membrane (72). MVB fuse with the 
plasma membrane, ILV are released and are then called Exo (61).

Though there remain open questions on the precise biogenesis 
pathways, it is important to remember that due to differences in 
biogenesis, single cells can deliver different Exo (73, 74). For judg-
ing on potential diagnostic and therapeutic validity, information 
on the Exo composition is a prerequisite.

exo Composition
Exosomes are composed of a lipid bilayer, which contains trans-
membrane proteins. The intravesicular content is composed of 
proteins, coding and non-coding RNA and DNA.

The lipid envelop of Exo contains phosphatidylcholine, phos-
phatidylethanolamine, phosphatidylinositol, prostaglandins, and 
lysobisphosphatidic acid and is enriched in sphingomyelin, cho-
lesterol, GM3, and phosphatidylserine (75). The high phosphati-
dylserine content allows differentiating Exo from microvesicles 
(76) and tumor-derived Exo (TEX) lipid composition may be 
suited for diagnosis (77, 78). Progress in lipidomics will provide 
further informations.

Improvement in mass spectrometry (79) has greatly facilitated 
the characterization of Exo proteins, where >7,000 were identi-
fied so far (80). Constitutive Exo proteins are structural vesicle 
component or are involved in vesicle biogenesis and vesicle 
trafficking. Most abundant are tetraspanins (81), enriched 7- to 
124-fold in Exo compared to the parental cells (82). Adhesion 
molecules, proteases, MHC molecules, HSPs, TSG101, Alix, 
annexins, cytoskeleton proteins, metabolic enzymes, cytosolic 
signal transduction molecules, and ribosomal proteins, some of 
which are recruited via their association with proteins engaged 
in biogenesis, are also abundantly recovered (83, 84). Cell type-
specific Exo proteins are so far most comprehensively explored for 
cancer and cancer stem cells (CSC), such as MART1, EGFRVIII, 
multidrug resistance gene 1, EpCAM, MET, mutant KRAS, 
and tissue factor (73, 85–88). Notably, due to their location in 
internalization prone microdomains, all known CSC markers are 
recovered in TEX (89, 90), which implies recovery of CSC marker 
expressing Exo in body fluids as most reliable for diagnosis.

Next generation sequencing allowed for rapid progress in Exo 
DNA, coding and non-coding RNA identification (91). Previous 
studies were mostly concerned about miRNA, which constitutes 
only 1–3% of the human genome, but due to multiple targets, 
controls about 30% of the coding genes. miRNA cleaves mRNA 
via argonaute (AGO) (perfect base pairing) or represses transla-
tion (imperfect binding) (92). Knowledge on miRNA greatly 
fostered progress in oncology, where miRNA could be linked to 
prognosis, disease progression, local recurrence, and metastasis 
(93), particularly the miR-200 family playing an important role 
in epithelial–mesenchymal transition (EMT) (94). miRNA also 
accounts for CSC maintenance (95), angiogenesis (96), and 
chemoresistance (97). Other miRNA, such as miR-34, -34a, -340, 
act as tumor and metastasis suppressors (98, 99).

miRNA also regulates tolerance induction and inflammation 
(100–102). A knockout of Dicer and Ago2 in HSC results in 
increased apoptosis and loss of hematopoietic cell reconstitu-
tion; Ago2 deletion is accompanied by deficient B and erythroid 
cell differentiation (103). A knockdown of Dicer results in T cell 
reduction (104, 105) and a shortened survival rate and reduced 
antibody repertoire in B cells (106). Dicer and Drosha also are 
required for Treg regulation (107, 108), a ko promoting a lethal 
inflammatory disease. MiR-155 regulates NK maturation and 
activation by suppressing suppressor of cytokine signaling 1 
and phorbol-12-myristate-13-acetate-induced protein 1 (109). 
In MDSC, upregulated miR-494 and -21 target phosphatase and 
tensin homolog (Pten), miR-155 targets Ship-1 and miR-210 
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Arg1, whereas downregulated miR-17-5p and -20a target STAT3 
(110). In asthma, miR-20b promotes G-MDSC accumulation 
associated with a decrease in IL-3 and IL-13 (111) and miR-223 
suppresses Arg1 and STAT3 in multiple sclerosis and autoim-
mune encephalitis (112). Thus, miRNA, besides being important 
in oncogenesis and tumor progression, regulates T cells, B cells, 
and components of the innate immune system including MDSC, 
which has severe bearing on inflammation and autoimmune 
diseases.

Long non-coding (lnc)RNA makes up ~3% of total exosomal 
RNA and is transferred into host cells (113). Several exosomal 
lncRNAs, such as MALAT-1, linc-POU3F3, ZFAS1, promote 
tumor growth and migration, prevent tumor cell apoptosis, or 
induce angiogenesis (114–117). A most comprehensive study on 
colorectal cancer revealed 1,028 lncRNAs selectively enriched 
in Exo, where the co-existence of U1 and U2 rib nucleoproteins 
and their cognate shrines in the Exo suggests a possible link to 
recipient cell splicing events (118). Exosomal lncRNA (GAS5) 
also regulates apoptosis of Mϕ (119), hematopoietic, innate, and 
adaptive immune responses (120, 121). The recovery of exosomal 
lncRNA and novel splicing/fusion genes will be important in 
developing Exo-based therapeutics.

Taken together the ongoing analysis of Exo composition pro-
vided a plethora of informations, which strongly sustain the ini-
tial hypothesis of Exo as important intercellular communicators 
allowing sessile cells a systemic communication, which is equally 
important in physiology and pathology. For optimal therapeutic 
translation, further analyses with a focus on donor-dependent 
differences in Exo profiles are desirable.

exo Targeting and Uptake
Answering the questions how Exo find their targets and are there 
options to guide targeting is urgent for therapeutic considera-
tions (122). Exo can bind to the extracellular matrix (ECM) or 
cells via specific receptor–ligand pairs, where binding accounts 
for matrix and cell modulation (123, 124). Exo uptake also 
depending on target cell ligands, may require different target 
structures then binding and can have distinct consequences for 
the target cell (125, 126).

Exosomes bind to and are taken up by selected target cells. Exo 
binding frequently involves (tetraspanin-associated) integrants 
(124, 127), where ICAM1 will be one potential partner (128, 129). 
Notably, different integrants bind distinct target cells. Thus, the 
α6β4 integrant binds cells in the premetastatic niche of the lung, 
whereas integrin αvβ5 binds cells in the premetastatic niche of 
the liver (127). A Tspan8–α4β1 complex binds to endothelial cells 
(EC) and EC progenitors, but a Tspan8–α6β4 complex hampers 
Exo uptake by EC (130). Other known binding partners are pro-
teoglycans prevalently binding to galectins, selectins, and sialic 
acid binding lectins (131–134). According to our experience, Exo 
binding is greatly facilitated by clusters of adhesion molecules in 
both Exo and target cells (84).

Exosome binding mostly is followed by uptake. There are two 
modalities for Exo uptake, fusion with the cell membrane (135, 136)  
and, dominating, endocytosis, an active process that requires 
modulation of the actin cytoskeleton (135, 137–139). There are 
at least four modes of uptake, phagocytosis, macropinocytosis, 

clathrin-dependent endocytosis, and uptake by lipid rafts and 
caveolae. Phagocytosis proceeds via the formation of cup-like  
extensions, where the tips fuse and become internalized. Phago-
cytic markers like lysosomal-associated membrane protein 1 
on Exo (140) and T-cell immunoglobulin and mucin domain 
containing (TIM)4 that recognizes phosphatidylserine on Exo 
facilitate the process (136, 137, 141). Exo uptake by macropino-
cytosis occurs, when lamellipodia fold back and fuse with the 
plasma membrane (142, 143). Most frequently, Exo endocytosis 
proceeds via clathrin-coated pits, where dynamin contributes to 
the scission of clathrin-coated endocytosed pits (84, 139, 140).  
Finally, Exo can be internalized by rafts, cholesterol-, and  
glycolipid-enriched membrane microdomains, such as tetraspanin 
webs (84, 139, 144) or caveolae (145).

In brief, Exo uptake is an active process with a contribution 
of the cytoskeleton as well as fission and scission machineries 
to detach from the plasma membrane. Intracellular processing 
of the uptaken Exo varies between cells and requires further 
exploration (146). Though Exo may itinerate (147), they mostly 
are digested, their content modulating the target cell both directly 
or by stimulating signaling cascades, transcription, and silencing 
processes via the target cell’s equipment (148–151).

exo and Target Cell Reprogramming
Whether Exo-induced changes in target cells are due to the 
transferred content of Exo or to transfer-induced target cell 
reactions is still disputed. When Exo bind to the ECM, the Exo 
membrane-coat accounts for changes observed in matrix proteins 
and matrix structure. Instead, when Exo bind to, but are not 
taken up by the target cell, target cell modulation is promoted by 
Exo-initiated signal transduction and/or cleavage of proteins on 
the target cell membrane. When Exo are taken up by the target 
cell, an unequivocal answer is more critical. There are examples, 
demonstrating that changes in the target cell are directly due to 
the transferred Exo content. Thus, in prostate cancer cells, αvβ6 is 
transferred via Exo into an αvβ6-negative recipient cell and local-
izes to the cell surface, de novo αvβ6 expression by the recipient 
cell being excluded (152). Also, after dendritic cell (DC) loading 
with TEX, tumor antigens are processed and loaded into newly 
synthesized MHC molecules (137, 153). The same principle 
will be valid for therapeutically tailored Exo loaded with large 
amounts of therapeutics drugs or miRNA or signaling checkpoint 
inhibitors (154–156). However, whether the naturally available 
amount of one type of Exo contains sufficient load to directly 
modulate targets is questionable. First, the small Exo plasma 
homes a limited amount of proteins and nucleotides; second, 
a TEX preparation from a cloned tumor line distinctly affects 
tumor cells, fibroblasts, EC, and hematopoietic cells. Thus, an 
impact on signal transduction and/or transcription/translation 
likely represents the dominating mode of uptaken Exo activity. 
The strong impact of DC-Exo uptake by the immune synapse 
also supports an initiator role of the transferred Exo content 
(157, 158). The hypothesis is backed by activation or inhibition 
of B cells, NK, and neutrophils initiated by DC-, Mϕ-, stem cell 
(SC)-, or tumor cell-derived Exo (159–163). The important role 
of Exo for anterograde and retrograde information transfer via 
neurological synapses also argues for Exo-initiated activation of 
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signal transduction, where Exo-promoted activation of signaling 
cascades was described to maintain plasticity under physiological 
conditions as well as to account for the spread of pathological 
proteins (164–167).

Thus, without excluding target modulation by uptaken Exo 
content, in most instances an incentive push by Exo superiorly 
covers the wide range of Exo activities.

exo Transfer and the Life Span of exo
Information on the natural life span and that of transferred Exo 
is an additional prerequisite for therapeutic trials.

“Therapeutic” Exo recovery in serum after intravenous appli-
cation declines toward ~50% within 2 min–1 h (168, 169). Instead, 
uptaken Exo are recovered for several days (170–172). Thus, 
gold-labeled Exo could be tracked for over 24 h after intranasal 
or i.v. application (173) and were recovered in liver, lung, BM, 
peripheral blood leukocytes, and spleen cells for up to 48 h, with 
particularly high recovery in monocytic cells, including MDSC 
(168, 169).

Where required, therapeutic rescuing can be further improved 
by tailoring with docking molecules (174, 175). Tetraspanins and 
RGD peptides were described to target tumor cells or EC (176, 177).  
Targeting oncogenic receptors or SC receptors offers an alternative 
strategy (178). Bacterial-derived extracellular mimetics addition-
ally could facilitate generating large quantities of homogeneous 
Exo for vaccination and drug delivery (179).

Taken together, available data strongly support the feasibility 
of therapeutic Exo application to interfere with cancer progres-
sion, to balance angiogenesis, blood coagulation, and to regulate 
native or adaptive immune system responses. MDSC-Exo are 
engaged in all these processes.

MDSC-exo Characterization
Myeloid-derived suppressor cells are well characterized and 
there is a wealth of information on the impact of TEX on MDSC. 
Information on MDSC-Exo is limited and was mostly collected 
using MDSC-Exo derived from tumor-induced, immunosup-
pressive MDSC, which resemble the inflammatory MDSC in 
chronic infections. Thus, these data are valid for the differentia-
tion between resting versus inflammatory MDSC-Exo in general.

Myeloid-derived suppressor cell-exosomes contain common 
Exo components such as annexins, tetraspanins, glycosylphos-
phatidylinositol-anchored CD177, cytoskeletal proteins, proteins 
engaged in vesicle biogenesis, and HSP. There is an abundance 
of proteasome subunits, histone variants and elongation factors, 
and metabolic enzymes that recovery in MDSC-Exo mostly cor-
responds to the recovery in MDSC. Comparing inflammatory 
with conventional MDSC-Exo showed a decrease of 33 proteins, 
some of which being involved in innate immune responses, 
such as complement components and chemotactic proteins. In 
addition, some cytoskeletal proteins like spectrin, ankyrin, and 
tubulin were reduced in inflammatory MDSC-Exo. Thirty pro-
teins increased in inflammatory MDSC-Exo included GTP and 
ATP-binding proteins and proteins engaged in Exo-biogenesis 
facilitating budding or sorting (180).

The same group also reported on the abundance of ubiquit-
inated proteins in MDSC-Exo, a posttranslational modification 

that contributes to internalization of membrane proteins and 
the sorting of endosomal proteins (181), which also accounts 
for five newly recovered ubiquitinated proteins [sortin nexin 
13, two keratins (krts), leucine zipper, and EF-hand contain-
ing transmembrane protein 1  <  LETM1  >  and endoplasmin] 
(182). Furthermore, MDSC-Exo abundantly carry ubiquitinated 
histones, the non-histone nuclear protein high mobility group 
box (HMBG)1 as well as all the enzymes required to catalyze 
ubiquitination (183). A proteome analysis of low mass proteins 
in MDSC-Exo confirmed, besides the abundance of proinflam-
matory S100 proteins the abundance of histones, which made up 
56% of the MDSC-Exo protein cargo (184). Of special interest 
also is the analysis of MDSC-Exo surface glycoproteins, which 
include fibronectin (FN), olfactomedin4, galectin-3-binding 
protein, myeloperoxidase, thrombospondin1 (Tsp1), a cytoskel-
etal krt (Krt77), fibrinogen (Fbg), mast cell expressed protein 1, 
transmembrane 9 superfamily member 3, endothelial lipase, and 
the CD molecules CD44, CD157, CD11b, CD97, CD39, CD18, 
CD321, CD41 (185). Searching for potential ligands revealed 
several shared ligand receptor pairs, like CD41: Tsp, FN, Fbg; 
CD11b: haptoglobin (Hp), FN, Fbg; CD18: Hp, Fbg; CD47: 
Tsp, CD172a (SIRPa); CD44: Tsp, CD29, CD47, indicating that 
MDSC-Exo are well equipped for binding. However, there were 
no hints toward a pronounced selectivity of binding. Instead, 
several of these MDSC-Exo membrane proteins could be of 
functional interest. The do not-eat me CD47, whose dominating 
ligand is Tsp1, promotes MDSC migration (186). Furthermore, 
MDSC express the advanced glycosylation end-product specific 
receptor ligand S100A8/9, which could contribute to the activa-
tion of inflammatory/immunosuppressive genes (185–187).

Information on the RNA and DNA load of MDSC-Exo is 
largely missing, but is well explored in MDSC (188, 189). To give 
a few examples, TGFβ promotes G- and M-MDSC induction 
and expansion via upregulation of miR-155 and miR-21, which 
target inositol phosphate-5-phosphatase D and Pten, leading 
to activation of STAT3 (190). During sepsis, miR-21 and miR-
18b become strikingly upregulated, which is accompanied by 
pronounced immunosuppressive activity of MDSC prohibiting 
bacterial clearance (191). Mir-9 overexpression enhances MDSC 
functional activity. This is due to miR-9 targeting Runx1, an 
essential transcription factor in promoting MDSC differentiation 
(192). Doxorubicin treatment promotes miR-126a induction 
in MDSC. miR-126a + MDSC-Exo induce IL13+Th2 cells and 
rescue MDSC death in a S100A8/A9-dependent manner (193).

Taken together, the inflammatory MDSC-Exo membrane 
protein profile provides hints toward receptor–ligand pairs. 
Unfortunately, so far no selective ligands, e.g., for binding Treg 
or activated T cells were recovered. The reduced recovery of some 
inflammatory proteins in inflammatory MDSC-Exo suggests 
a possible contribution to the inefficacy of immune-response 
induction in cancer and chronic infections. The abundance of 
proteasome subunits as well as of histones and HMBG1, which 
is inflammation independent, is of great interest and should be 
further elaborated, some functional consequences being already 
defined. The finding that Doxorubicin treatment affects the 
MDSC-Exo miRNA profile with severe functional consequences 
also should spur research on this topic.
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COPiNG wiTH MDSC-exo iN CANCeR

MDSC-exo Activities in Cancer
As Exo are supposed to be most important intercellular commu-
nicators, can be easily modulated in vitro and are simple to store 
for therapeutic application, a detailed knowledge on MDSC-Exo 
activities will open a wide range of new and promising thera-
peutic applications. However, gaining insight is a demanding 
task. This relates to the heterogeneity of MDSC, the delivery of 
distinct Exo subpopulations by individual cells, the differences 
in Exo delivered by MDSC during maturation in the BM versus 
“inflammatory” MDSC. In addition, Exo have more than one 
target, which becomes aggravated by the distribution of Exo 
throughout the body and the cooperativity of different cells/
subpopulations particularly in the immune system. This implies 
that a whole range of potential targets needs to be analyzed for 
MDSC-Exo promoted alterations.

Though not directly approaching MDSC-Exo, there is compel-
ling evidence that TEX induce and affect MDSC. TEX are taken 
up by myeloid cells in the BM and switch their differentiation 
toward MDSC. Also, tumor growth-promoting activity of MDSC 
depends on PGE2 and TEX-provided TGFβ that induce upregula-
tion of Cox2, IL6, VEGF, and Arg1 in MDSC (194). Furthermore, 
TEX-associated Hsp72 triggers toll-like receptor (TLR)2/myeloid 
differentiation primary response gene 88 (MyD88)-dependent 
Stat3 activation in MDSC, which exert pronounced immuno-
suppressive activity (195). The finding was confirmed using 
MyD88-ko mice, which additionally revealed a reduction in CCL2 
(196). TEX also promotes MDSC expansion in the BM through 
activation of STAT3, upregulated iNOS, which strengthens the 
immunosuppressive capacity of MDSC (197). Breast cancer-TEX 
distribute to the lung are taken up bone-marrow-derived cells and 
promote accumulation of MDSC in lung and liver. In addition, 
TEX inhibit through activation of M-MDSC T  cell activation 
and TH1 cytokine production (198). BM stroma cell Exo, which 
are crucial in multiple myeloma development, are taken up by 
MDSC, induce their expansion, and survival through STAT3 and 
STAT1 pathway activation and induction of anti-apoptotic BclXl 
and Bcl2 family apoptosis regulator and promote NO release by 
MDSC increasing their suppressive activity on T cells (199).

Functional analysis of freshly ex vivo harvested MDSC-
Exo was mostly restricted to the impact on myeloid cells. The 
authors report that the proinflammatory S100A8/9 heterodimer 
is chemotactic for MDSC (180). Furthermore, MDSC and, less 
prominently, MDSC-Exo convert tumoricidal M1–Mϕ to tumor 
growth-promoting M2-Mϕ by switching off IL12 production 
(180). Of special functional interest is the recovery of ubiquit-
inated histones and HMGB1 (182, 183), which exert proinflam-
matory activity, contribute to systemic inflammation and organ 
failure, and drive autoimmune diseases (200–202). HMBG1, 
a chaperone for many inflammatory molecules in MDSC, pro-
motes the development of MDSC from BM progenitors, increases 
IL10 production by MDSC and contributes to downregulation of 
the T cell homing receptor CD62L (203, 204). The conversion of 
monocytes into MDSC-like cells and the differentiation of bone 
marrow cell into M-MDSC proceeds via the p38/NFκB/Erk1/2 
pathway (205). In the context of chemoresistance, which in part 

relies on MDSC, MDSC-Exo miR-126a induces expansion of 
TH2, inhibits TH1 proliferation, and IFNγ secretion and supports 
angiogenesis. In a feedback loop, chemoresistance is transferred 
into the donor MDSC (193).

Therapeutic interference with MDSC-exo 
in Cancer
There are excellent reviews on the therapeutic use of Exo (206, 207)  
as well as on attacking MDSC in cancer (208, 209) including 
approaches with a focus on improving the efficacy of immuno-
therapy (6, 210). So far, only a limited number of reports was 
concerned about directly attacking MDSC-Exo in cancer as a 
therapeutic option.

In brief, attacking tumor-infiltrating MDSC can be achieved 
by cytotoxic drugs, where ATRA blocks MDSC maturation (211, 
212), which was explored in cancer immunotherapy (9, 20, 213) 
as well as in chronic infections (214). Gemcitabine particularly 
drives MDSC into apoptosis by a not yet fully explained mecha-
nism (44), its efficacy in improving immunotherapy in cancer 
being repeatedly described (9, 47, 215). Sunitinib, a checkpoint 
signaling inhibitor, preferentially attacks MDSC and was 
reported in several tumor models to support immunotherapy (9, 
216–218). Ongoing trials aim to increase vaccination efficacy by 
using combinations of drugs or radiotherapy (9, 219, 220).

Alternatively, an antibody blockade may be envisaged that 
prevents MDSC-Exo docking on target cells. According to the 
enrichment of tetraspanins, anti-CD9 was shown to prohibit 
breast cancer cell metastasis (221). We used anti-Tspan8 to block 
pancreatic cancer TEX, Tspan8 being abundantly expressed on 
pancreatic CSC-TEX (222). The antibody blockade sufficed to 
hamper angiogenesis and premetastatic niche establishment, 
but had a minor impact on MDSC (169). A MDSC-Exo selective 
antibody blockade remains to be explored.

An interesting approach is the use of proton pump inhibitors, 
toxic byproducts generated by the altered metabolism of cancer 
cells being expelled by proton transporters (223). Proton pump 
inhibitors concomitantly contributing to hamper the release of 
Exo by affecting the acid milieu in the tumor surrounding (224), 
the release of MDSC-Exo may be inhibited concomitantly, which 
could contribute to facilitate recruitment of effector immune 
cells. Similar considerations account for a blockade of the 
S100A8/9 marker on MDSC-Exo (180). Alternatively, a blockade 
of premetastatic niche formation was achieved by a blockade of 
CCL2 that prevented MDSC-Exo recruitment (225). A blockade 
of CD47 and its ligand Tsp and, less efficiently the signal regula-
tor protein α, highly expressed on MDSC-Exo, also hampered 
MDSC-Exo chemotaxis and migration (185).

As an alternative approach, extracorporal hemofiltration is 
used for Exo elimination. Originally established as an affinity 
plasmapheresis for the elimination of TEX, it is being adapted 
to remove hepatitis C virions and is being explored to remove 
immunosuppressive Exo (226, 227). Progress in MDSC-Exo prot-
eomics may provide means for a selective removal. There remains 
the problem of MDSC-Exo in cancer being mostly located within 
the tumor tissue or recruited to potential target, e.g., EC and 
premetastatic organ tissue rather than in the serum. Coping with 
Exo regeneration may also become demanding.
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Last not least, Exo or Exo surrogates can be loaded with drugs, 
toxins, non-coding RNA to be delivered toward MDSC or MDSC-
Exo to directly prohibit their immunosuppressive, angiogen-
esis and cancer-spread promoting activities (175, 178, 228, 229).  
The field is rapidly expanding, tailoring Exo, or surrogates also 
for repair, e.g., in artherosclerosis or thrombosis (230–232). 
There remains the demand for selective binding as, e.g., miRNA 
interfering with MDSC activities may promote tumor growth 
(189, 193, 233). Finally, great efforts are taken to replace Exo 
by nanoparticles that could allow for easier and homogeneous 
production (179). First trials attacking MDSC to improve cancer 
immunotherapy revealed encouraging results (234–237).

Thus, there are several promising options to interfere with 
the immunosuppressive and tumor growth-promoting activ-
ity of “inflammatory” MDSC and MDSC-Exo. There is need 
improving target selectivity. However, as the tumor milieu/TEX 
contribute to the recruitment and expansion of “inflammatory” 
MDSC/MDSC-Exo, targeting TEX may be considered under 
selected conditions as an alternative. Targeting TEX would be less 
demanding, as TEX mostly are equipped with oncogenes or CSC 
markers (222, 238, 239) that are not as widespread as inflamma-
tory MDSC-Exo markers.

ReCRUiTiNG MDSC AND MDSC-exo iN 
AUTOiMMUNe DiSeASe

MDSC and MDSC-exo in Autoimmune 
Disease
While the abundance of MDCS/MDSC-Exo in cancer creates a 
milieu of therapy resistance, autoimmune disease progression 
is favored by the inefficacy of immune response regulation by 
immunosuppressive cells and factors (240). This accounts for the 
paucity of MDSC and Treg (240, 241), where the latter may be 
linked or be due to the former (242) and frequently is accompa-
nied by an increase in TH17 (243). However, opposing findings 
were also reported.

Myeloid-derived suppressor cells only recently achieved atten-
tion in autoimmune diseases, initially in animal models such as 
experimental autoimmune encephalomyelitis (EAE), where a 
deficit in CCR2, which is required for MDSC recruitment, was 
accompanied by milder EAE (244). However, depending on 
the model and the readout system, opposing findings were also 
reported (245). This diversity of findings accounts for a wide 
range of studies on the recovery of MDSC and their suppressive 
activity in autoimmune diseases. There are, at least, two reasons 
for this confusion. First, the disease state is important. With 
progressive tissue destruction concomitantly to the dysregulated 
autoimmune effector cells, an inflammatory milieu is generated, 
which, in fact, supports MDSC activation. Second, a failure to 
detect a decrease in MDSC and/or Treg in the peripheral blood 
or peripheral lymphoid organs in autoimmune disease may be 
irrelevant (246), as the frequency in the autoimmune disease-
affected organ can differ significantly. To give an example, while 
Treg are rare in the peripheral blood, in non-lymphoid tissues, 
the frequency of Treg ranges from 30–60% of the total CD4+ 
population (247).

Besides being concerned about the numeric MDCS/MDSC-
Exo deficits, several studies elaborated a contribution of miRNA 
in their regulating. Thus, miR-181a is engaged in the maturation 
of myeloid progenitor cells, miR-17-5p, miR-20a, miR-106a, and 
miR-155 play a role in the differentiation of myeloid progenitor 
cells toward monocytes and miR-146a/b and miR-155 in the 
maturation toward Mϕ, where miR-155 and miR-181 addition-
ally contribute to T  cell differentiation (248). Monocytes in 
Sjoegren Syndrome show upregulated miR-34b-3p, -300, -609 
expression; in psoriasis miR-223 was high and miR-193b was low 
in Th17 (249). In the antiphospholipid syndrome, which pro-
motes trophoblast inflammation, changes in miR 146a-3p, -155, 
and -210 affected TLR signaling. These changes, also observed in 
MDSC-Exo, suggest a contribution to disease progression (250).

At the present state of knowledge, there is an urgent need 
for additional information on MDSC/MDSC-Exo presence and 
activity in autoimmune disease-affected organs. Instead, there is 
consent that chronic infections rely on an abundance of “inflam-
matory” MDSC/MDSC-Exo, which prevent appropriate activa-
tion of the adaptive and the innate immune system (251, 252). This 
knowledge, in fact, could provide a helpful guide toward MDSC/
MDSC-Exo as a therapeutic option in autoimmune disease.

MDSC and MDSC-exo as a Therapeutic 
Option in Autoimmune Disease
There are excellent reviews on the link between chronic infec-
tions, immune regulation, and the associated hindrance of auto-
immune disease development and progression (14, 39). MDSC/
MDSC-Exo playing an important role, these inflammatory 
MDSC/MDSC-Exo may well provide a guide toward correcting 
overshooting reactions in autoimmune disease.

Thus, several reports demonstrating parasite infections being 
associated with a significant decrease in incidence or severity of 
immune diseases in animal models, the protective effect being due 
to Treg, alternatively activated Mϕ and changes in the cytokine 
profile (253–255). In chronic hepatitis C virus infection, a striking 
increase in M-MDSC was noted that expressed high level pSTAT3 
and IL-10 and induced Treg expansion, where depletion of MDSC 
increased IFNγ production by CD4+ effector T  cells (256). 
In human immunodeficiency virus-1 infections, too, MDSC-
promoted Treg expansion and inhibited T cell function, a hallmark 
of chronic infections (257). In tuberculosis, the accumulation of 
MDSC prevented immune effector cell-mediated bacteria evasion 
(258). The interference of inflammatory MDSC/MDSC-Exo in 
cancer with immunotherapy was already outlined in detail.

As bacteria, parasites and viruses that cause chronic inflam-
mation would rather provide a danger than a therapeutic option, 
chemical compounds that provoke delayed type hypersensitivity 
may be better suited to induce “inflammatory” MDSC. This option 
is well explored in alopecia areata (AA), most efficiently treated 
by the contact sensitizer squaric dibutylester (SADBE) (259, 260).  
SADBE treatment provokes a strong expansion of MDSC that 
inhibit autoreactive T  cell activation and support Treg expan-
sion. The effect is abolished by ATRA treatment (261). Notably, 
SADBE treatment can be replaced by the transfer of MDSC (262). 
In EAE, it was demonstrated that helminth products stimulate 
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the production of TH2 cytokines and suppress TH1 and TH17 
responses, the therapeutic efficacy exceeding that of corticosteroid 
treatment (263). Another option are statins, which are cholesterol 
lowering drugs, also described to induce immunosuppression. 
This was confirmed in acute and chronic dextran sodium sulfate 
(DSS)-induced colitis in mice, where statin-induced attenuation 
of colitis was due to expansion of MDSC (264).

Thus, the exploration of inflammatory MDSC has opened a 
path toward their therapeutic use in autoimmune disease. These 
studies clearly demonstrated therapeutic efficacy of MDSC in 
experimental autoimmune disease models (14, 265). In addition, 
good progress already was achieved replacing the infectious 
agents by synthetic compounds.

Autoimmune disease corrections by Exo, mostly by mesenchy-
mal stem cell (MSC)–Exo, but also by DC-Exo were repeatedly 
described. To give a few examples, in diabetes susceptible mice, 
islet MSC release Exo that express endogenous retroviral antigens, 
which induce potent T and B cell responses (266). Application 
of MSC–Exo in experimental autoimmune uveitis exerted a 
therapeutic effect that was due to inhibiting the chemoattractive 
effects of CCL2 and CCL21 on inflammatory cells (267). Exo from 
miR-146a overexpressing DC suppress experimental myasthenia 
gravis by inducing an antigen-specific shift from TH1/TH17 to 
TH2/Treg (268). However, Exo from different donor cells or at 
different stages of disease may exert opposing activities. Thus, at 
early stages in chronic HBV infection, hepatic NK produce IFNγ 
in response to hepatic Mϕ. Hepatic Mϕ are stimulated by infected 
hepatocyte-Exo, which contain viral nucleic acids, via MyD88, 
toll-like receptor adaptor molecule (TICAM) and mitochondrial 
antiviral signaling protein to express NKG2D ligand. On the 
other hand, immunoregulatory miR-21 becomes upregulated 
in infected hepatocytes and is transferred via Exo in Mϕ sup-
pressing IL12p35 expression, which counteracts the host innate 
immune response (269). For more comprehensive information, 
excellent reviews are recommended that outline the interplay 
between Exo from different donor cells and the activity of MDSC 
in autoimmune disease (270–272).

There is, to my knowledge, only one report explicitly describ-
ing the role of MDSC-Exo in autoimmune disease. Mice with 
DSS-induced colitis were treated with G-MDSC-Exo. G-MDSC-
Exo sufficed for a significant decrease in disease severity and a 
reduction in the inflammatory cell infiltrate. TH1 cells were 
reduced and Tregs were augmented in the draining lymph node; 
in the serum IFNγ and TNFα were reduced. Inhibition studies 
pointed toward the impact of G-MDSC-Exo largely depending 
on Arg-1 (273).

Having described that the therapeutic efficacy of a chronic 
contact eczema in AA largely depends on the expansion of 
MDSC and that SADBE treatment can be replaced by MDSC 
application (261, 274), we proceeded controlling for the activity 
of MDSC-Exo in AA-affected mice. MDSC-Exo preferentially 
target in vitro and in vivo activated T cells, NK and most avidly 
Treg. Furthermore, an mRNA analysis of spleen cells of MDSC-
Exo treated AA-affected mice showed a most striking increase 
in FoxP3 and Arg-1. These findings suggest MDSC-Exo strongly 
promoting Treg expansion and hampering innate immune reac-
tions as well as T cell activation directly and via Treg.

Taking the knowledge collected in cancer and chronic infec-
tions on the power of inflammatory MDSC-Exo opened a path 
for a new wave of autoimmune disease treatment. Modalities to 
circumvent the potential danger of naturally arising inflamma-
tory MDSC/MDSC-Exo have been suggested and are further 
explored in ongoing studies.

CONCLUSiON, OPeN QUeSTiONS,  
AND OUTLOOK

 I. The discovery of Exo and other extracellular vesicles has 
revolutionized cell biology offering sessile cells to commu-
nicate over long distance (275). Though difficult to catch due 
to their heterogeneity (Figure 1A), where even a single cell 
delivers distinct Exo, great efforts are taken to answer open 
questions

 – We still poorly understand the process of loading the Exo 
plasma during biogenesis, including the enrichment of 
nuclear proteins, proteasome subunits, and components 
of the splicing machinery (Figure 1B).

 – The question of target molecules/complexes of target 
molecules is not comprehensively answered.

 – The availability of free versus bound/uptaken Exo 
requires further exploration (Figure 1C).

 II. MDSC, a heterogeneous population of immature myeloid 
cells, are important immune response regulators targeting 
T cells, B cells, Treg, NK, DC, and other cells of the innate 
immune system. This also accounts for MDSC-Exo, where 
target cells may become distinctly affected by MDSC bind-
ing versus MDSC-Exo uptake. MDSC/MDSC-Exo induce 
depletion of essential amino acids through ARG1, iNOS and 
IDO, NO, and ROS generation through iNOS and NOX2, 
anti-inflammatory cytokine production and Treg induc-
tion and activation (276). However, it is not well defined, 
whether

 – the equipment of MDSC/MDSC-Exo or of the target cell 
directs the mode of reprogramming.

 – MDSC and MDSC-Exo act via alike or different 
mechanisms.

 III. MDSC/MDSC-Exo are a major hindrance in tumor immu-
notherapy and chronic infections (39, 277, 278). Instead, 
autoimmune diseases may progress due to insufficient 
MDSC/MDSC-Exo (14, 19, 245). The inefficacy of MDSC/
MDSC-Exo including the induction of Treg in autoimmune 
diseases is still debated. But, on site studies strongly support 
paucity of MDSC and Treg. Nonetheless,

 – the poor activation state of MDSC in the diseased tissue 
and

 – the mode whereby MDSC/MDSC-Exo provoke Treg 
expansion and activation requires further elaboration.

 IV. The therapeutic efficacy of eliminating MDSC in cancer and of 
providing MDSC in autoimmune disease is well documented 
(44, 209, 245, 279). So far, only few reports were concerned 
about replacement by MDSC-Exo. However, MDSC-Exo 
are not only easier to handle, but also can be expected to 
act systemically and via their uptake to more severely affect 
their targets. The lack of information on selective markers 
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FiGURe 1 | Continued

of “inflammatory” MDSC-Exo provides a handicap. In 
cancer, MDSC recruitment and expansion are driven by 
TEX, which express cancer-related markers. Therefore, 
depletion of TEX instead of MDSC-Exo could provide an 
alternative. In concern of therapeutic MDSC-Exo substitu-
tion, “inflammatory” MDSC-Exo preferentially should be 
generated from synthetic compound stimulated MDSC, 
which avoids unwanted support of immunosuppression in 
response to naturally inflammatory stimuli. Irrespective of 
these alternatives,

 – the high prevalence of MDSC-Exo uptake by Treg and 
activated T cells suggests selective targets, which should 
be defined.

 V. This review focuses on MDSC-Exo and their activities in 
cancer and autoimmune disease. Nonetheless, the wide-
spread activity particularly of SC-Exo (280) in physiology, 
including developmental patterning and the embryonic-
maternal crosstalk (281, 282), in rejuvenation, regen-
eration, and repair (283) should, at least, be mentioned. 
SC-Exo act via signal transduction and the transfer of 
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FiGURe 1 | Exosomes (Exo) and therapy: open questions. (A) Exo derive from different membrane raft compartments, which are plane or invaginated, but are all 
prone for internalization due to enrichment for cholesterol and sphingolipids. Distinct lipid rafts harbor selective membrane-attached and transmembrane proteins, 
which are retained during invagination. This implies Exo derived from a single cell to be equipped by a different membrane coat. This poses the question on how to 
select for the appropriate myeloid-derived suppressor cells (MDSC)-Exo subpopulation. (B) After fission and scission, EE use different transporters toward MV, 
where ILV are loaded with proteins, coding and non-coding RNA and DNA during invagination into MVB. This is a selective process and includes components of 
different intracellular compartments. The abundance of selected molecules recruitment is only partly understood. Information is urgently required to judge on 
potential Exo activities. The released Exo are composed of the lipid membrane, the membrane-integrated and membrane-attached molecules, the components 
transferred into ILV and the majority of molecules engaged in vesicle transport, loading and Exo delivery. An arbitrarily selection is shown. (Alix: ALG-2 interacting 
protein X, Doad4: deubiquitinase, EE: early endosome, ESCRT: endosomal sortin complex, ILV, intraluminal vesicle; MVB, multivesicular body; SNARE, soluble-N-
ethylmaleimide-sensitive fusion protein-attachment protein receptors; Vsp4, ATPase vacuolar protein sorting 4). (C) Exo distribute throughout the body and bind to 
matrix proteins and cells. Information on the availability of “free” Exo is limited. Yet, it is essential to judge on diagnostic and prognostic validity of Exo, including 
MSCD-Exo. (D) Exo binding to matrix proteins and cells are selective processes, where cells may use different ligands for binding and uptake. It is suggested that 
uptake depends on clustered ligands, possibly in invagination prone membrane domains. Binding, too, may be facilitated by clustered ligand. This is important for 
tailoring “therapeutic” Exo/Exo mimetics to facilitate binding/uptake or to prevent uptake. Selective examples are shown for ECM and T cell binding (ECM, 
extracellular matrix; HA, hyaluronic acid; HFG, hepatocyte growth factor; MHC, major histocompatibility complex; MMP, matrixmetallo proteinase; TCR, T cell 
receptor complex). (e) Exo binding and uptake modulates the target. Uptake initiated target cell modulation could proceed directly via incorporation of the Exo 
content, which recently was evaluated including miRNA (363) or by the target cell equipment after an initial hit by the Exo content. Both modalities were described. 
In view of the small Exo plasma and unpublished findings on changes in spleen cell mRNA after in vivo treatment of AA mice with MDSC-Exo, an initiating trigger 
may be more likely (AA, alopecia areata; Abca1, ATP-binding cassette sub-family A member 1; ARG1, Arginase-1; Atp6v0d2, V-type proton ATPase subunit d2; 
BCL, B cell leukemia; BTLA, B and T lymphocyte associated; CCL, chemokine ligand; C3ar1, C3a anaphylatoxin chemotactic receptor, Clec: C-type lectin domain 
family; MCSF1R, macrophage colony-stimulating factor 1 receptor; CTSL, Cathepsin L1; F7, coagulation factor VII; FCRL5, Fc receptor like 5; FOXP3, Forkhead 
box protein P3; FPR, fMet-Leu-Phe receptor; GPNMB, Transmembrane glycoprotein nMB; IL1R1, interleukin-1 receptor type 1; IL13RA1, IL13 receptor subunit 
alpha 1; IL6R, Interleukin6 receptor; IRAK, Interleukin-1 receptor-associated kinase, Ly, lymphocyte antigen; PID1, PTB-containing, cubilin and LRP1-interacting 
protein; SC, spleen cells; SDC, syndecan; SLC, Solute carrier family; SLFN5, Schlafen family member 5; TLR, toll-like receptor; ZC3H12a, zinc finger CCCH-type 
containing 12A). The nature of initiating triggers, target structures, and molecular pathways of progression remain to be defined. Clarification would greatly assist 
“therapeutic” Exo/Exo mimetic furnishing. Personal view: recovery of selected membrane markers of MDSC-Exo would be highly desirable. Should there be no 
selective markers, a binding unit for the target cell could be introduced. In concern about vesicle loading during biogenesis, the abundant recovery of proteasome 
subunits, histones, and splicing complex components requires special attention. It is conceivable that integration of these components rather than the small amount 
of transferred proteins, coding/non-coding RNA and DNA initiates target cell reprogramming by modulating transcription, translation, and metabolism. These 
activities will be well supported by MDSC-Exo binding to the T-cell and B-cell synapses, the receptor complexes and the adjacent accessory molecules being 
targeted by their counterparts on MDSC-Exo and being prone for internalization and initiation of signaling cascades. FcR and FcR-like molecules may cope with 
similar tasks in NK, granulocytes and Mϕ. Further progress in MDSC-Exo content elaboration and recovery in target cells will provide the answer, whether it appears 
more suitable loading MDSC-Exo with effector or initiator molecules.
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non-coding RNA (284, 285) and are suggested being a most 
potent therapeutics by maintaining stemness and inducing 
reparative programs (286, 287). There is justified hope on 
their therapeutic efficacy in SC transplantation, repair, and 
transplant acceptance (24, 288, 289).

Patrolling through the body to control for burglar and killers and 
to start the alarm clock was the privilege of cells of the innate 
immune system. For a long time, it was missed that they also con-
trol via Exo the response of the adaptive immune system, they had 
initiated. Taking into account that Exo are still newcomers in cell 
biology and all the excellent work collected during a short period, 
for which I apologize having cited only few, I am confident that 
open questions are quickly answered. This will provide a means 
to correct for overshooting and vanishing responses evolving 
in long-lasting diseases, such as cancer, chronic infections, and 
autoimmune diseases. The ease of tailoring Exo (290) will fortify 

therapeutic efficacy. Last, not least, provided open questions on 
Exo targeting and function-relevant components are answered 
(Figures 1D,E), Exo mimetics are expected to provide a homo-
geneous and reliably reproducible therapeutic agent (179, 291).
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