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Mosquitoes that transmit many deadly infectious diseases also need to keep fighting 
against many microbial infections. Constitutive expression of multiple antimicrobial pep-
tides (AMPs) in almost all body tissues is believed to facilitate the effective management 
of these local infections. When any infection breaches the local barrier, AMPs are induced 
rapidly in non-target tissues such as hemocytes (HCs) and establish their co-ordination 
with systemic immune effectors to clear off the body infection. But how interorgan 
immune communication is managed during local and systemic infections remain largely 
unknown. To understand this interorgan molecular relationship, we identified, extensively 
profiled and compared the expression of AMPs in three important mosquito tissues 
viz. midgut, fat body (FB), and HCs. dsRNA-mediated AMPs silencing suggests that 
mosquito tissues are able to manage an optimal expression of AMPs at the physiological 
level. We also examined the possible contribution of two important immune regulator 
genes relish (REL) and nitric oxide synthase, controlling AMPs expression in these tis-
sues during local or systemic infections. We show that each tissue has a unique ability 
to respond to local/systemic challenges, but HCs are more specialized to recognize and 
discriminate-specific antigens than gut and FB. Our investigation also revealed that both 
REL and NO participate in the overall management of the interorgan immune responses, 
but at the same time each tissue also has its own ability to maintain the interorgan flow 
of signals. In our knowledge, this is the first large-scale study examining the interorgan 
immune relationship in the mosquito.
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inTrODUcTiOn

Vector-borne diseases not only cause huge morbidity and mortality but also have an impact on the 
economic growth. In the era of genomics, now entomologists are taking new ways of “in-depth” 
understanding of the mosquito biology. Ongoing genome editing laboratory experiments strongly 
support the idea that target-specific genetic modification could enable us to alter and/or suppress 
natural vector population (1). One of the key idea includes blocking the parasite/virus develop-
ment within the mosquito host, and hence the transmission of disease (2). However, bringing such 
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scientific concepts in operation requires a deep knowledge of 
molecular interactions linked to vector’s defense mechanisms 
and pathogen’s ability to sustain within the hostile environment 
of the mosquito host.

A vast majority of literature clearly demonstrates that insects 
are evolved with a well-defined molecular architecture of innate 
immune components, which not only control “Local” (first-line 
defense) and “Systemic” (second-line defense) infections but 
also maintains tissue specificity and physiological integrity (3). 
When any microbial pathogens breach the “local” barriers, e.g., 
cuticle, trachea, midgut (MG) etc., a “systemic” response gets 
activated in the fat body (FB) or in the hemocytes (HCs) to clear 
off the infection remnants (4). Similarly, FB is also one of the 
principal tissue sites for the production and secretion of immune 
molecules, especially antimicrobial peptides (AMPs) which are 
rapidly induced in response to any exogenous exposure (5, 6).

Mosquito HCs encode diverse nature of molecular fac-
tors which not only contribute to maintaining physiological 
homeostasis but also regulate many cellular and humoral innate 
immune responses including phagocytosis, coagulation, and 
melanization (7–9). Each organ is specialized to perform their 
respective functions, but a great deal of interorgan communica-
tion and adjustment of immune regulators is essential to balance 
and maintain homeostasis during any altered pathophysiological 
condition. The mechanism for this co-ordination of interorgan 
immune network during any “local” or “systemic” infection is not 
well known.

In Drosophila, several recent studies provide evidence of 
molecular communication between different immune tissues 
(10–13), however, such evidence are lacking in mosquitoes. A 
recent study by Ramirez et al. (14) indicates that oral supplement 
of bacteria significantly alters AMPs expression in the MG as well 
as the FB of the mosquito Aedes aegypti. Studies in Anopheles 
mosquitoes also document that induction of MG associated nitric 
oxide (NO) kills parasites (15–23). A systemic bacterial immune 
challenge caused upregulation of nitric oxide synthase (NOS) in 
the hemocoel, indicating that free radical NO is an important 
modulator of antimicrobial immune response in the mosquito 
An. gambiae (24). In fact, MG of the blood feeding insects/
mosquitoes provides unique sites for multi-taxon interactions 
including gut flora, pathogens, vertebrate blood factors, etc. This 
may not only affect the vector physiology but also significantly 
influence immune responses (14, 25). Additionally, rapid blood 
meal digestion and gut microbe-pathogen interaction signifi-
cantly alters the level of redox molecules such as NO, hydrogen 
peroxide, superoxide, which modulate immunosignaling to man-
age the infection and repair of the damaged cells (26–28).

Though it is clear that rapid induction of harmful NO or reac-
tive oxygen species kills the pathogen (29), but how the AMPs 
expression is regulated during acute local and/or systemic infec-
tions remains unknown. In Drosophila both immunodeficiency 
(IMD)/TOLL pathways control transcriptional activation of 
AMPs, where toll pathway counteracts fungal and Gram-positive 
bacterial infections through nuclear translocation of Dif and IMD 
pathway deals with bacterial infection via nuclear translocation of 
Relish (REL) (30–36). In the absence of Drosophila Dif homolog, 
mosquito immune gene transcription is dominantly regulated 

by Rel1 and Rel2 transcription factors (37). We hypothesized 
that each tissue must have the ability to sense, communicate, 
and guide the flow of signals to regulate the AMPs expression. 
Thus, in the present investigation we attempted to clarify that (i) 
whether tissue-specific AMPs expression alters in response to 
microbial challenge; (ii) do FB and HC work synergistically or 
independently, specifically during systemic immune challenge; 
(iii) how AMPs expression alters in the HCs or FB during blood 
meal digestion and gut flora proliferation in the MG; and (iv) 
whether transcription factor Rel and NO signaling molecule also 
contribute in the management of interorgan immune signals.

Initially, we predicted, identified, and cataloged putative 
AMPs from the available genome of the mosquito An. stephensi, 
an urban malaria vector in India (38). Next, we profiled and 
examined the relative expression of selected family genes of AMPs 
in multiple organs. Through dsRNA silencing, we examined how 
different tissues manage their co-ordination in the absence of 
any one of the AMP family member protein. Later, we monitored 
the influence of natural gut flora on the AMPs expression during 
blood meal digestion. Lastly, we also examined the possible con-
tribution of Rel- and NOS-mediated immune regulation of AMPs 
expression in different immune tissues. Our data strongly sug-
gests that MG flora significantly alters the local response of AMPs 
during blood meal digestion. Exogenous/endogenous microbial 
exposure influence local and systemic responses, but distinct 
AMPs manage immune response in the different tissues. Our 
functional genomics analysis of AMPs network co-ordination 
and comparative profiling of their immune regulators provides 
initial evidence that each tissue has a synergistic ability to manage 
“local” and “systemic” infections. Any further understanding of 
the factors controlling interorgan immune communication could 
enable us to translate this knowledge to design new molecular 
weapons to block pathogen development and its transmission by 
vector’s genetic modification strategies.

eXPeriMenTal Design anD 
MeThODOlOgY

The technical design and experimental workflow are shown in 
Figure 1.

 (a) AMP identification, cataloging, and phylogenomics analysis: 
A reverse BLAST approach was applied against An. stephensi 
genome database, by querying the putative AMPs transcripts 
database originating from An. gambiae, A. aegypti, Culex 
quiquifaciatus, and D. melanogaster (http://cegg.unige.ch/
Insecta/immunodb). We also downloaded the complete tran-
scripts from An. stephensi (SDA-500 and Indian) from the 
vectorbase database (www.vectorbase.org). Reference AMPs 
were used as BlastN query with An. stephensi transcripts as 
input database at e-value 1e−03. All the blast hits were filtered 
out for query coverage ≥ 40%. The hits obtained were assigned 
the corresponding class and used for multiple sequence 
alignment using muscle software. Finally, the alignment file 
from each family of genes was used as input for PhyML tool 
for the phylogenetic tree using default parameters.

http://www.frontiersin.org/Immunology/
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FigUre 1 | Technical overview and basic methodology followed to understand the molecular and functional correlation of interorgan immune network 
communication. Fat body (FB): yellow color; hemocyte (HC): blue circle; midgut (MG); salivary gland (SG); bacteria: green colored stars (see text for detail).
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 (b)  AMPs expression and immune regulation: This part depicts 
schematic overview of 3–4  days old adult female naïve 
mosquitoes that were given live microbial challenge either 
by oral supplementation (endogenous exposure) eliciting 
dominant AMPs response in the MG epithelium (spiked 
blue/green dotes representing bacteria in MG); or by thorax 
injection (exogenous exposure) expected a direct interaction 
of bacteria (spiked blue/green dotes) with HCs (round blue 
cells/HC) or FB (oval light yellow shape/FB).

 (c)  Functional KO study: This part depicts dsRNA-mediated gene 
silencing strategy to deplete the native mRNA population by 
injecting purified dsRNA (small rod shape) in the thorax of 
the adult female mosquitoes.

 (d)  Gut flora influence on AMPs expression and regulation: A 
schematic overview to examine AMPs expression in response 
to blood meal (pinkish-red color in MG) induced gut flora 
expansion (spiked blue/green dotes representing bacteria 
in naïve mosquito) and to test the hypothesis whether pre-
immunization, i.e., exogenous challenge of mixed bacterial 
population in the thorax alters the proliferating population 
of gut bacteria in blood-fed mosquitoes.

Mosquito rearing
A cyclic colony of the mosquito An. stephensi was maintained 
at 28  ±  2°C and relative humidity of 80% in the insectary, at 
NIMR. All protocols for rearing, maintenance of the mosquito 

http://www.frontiersin.org/Immunology/
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FigUre 2 | Phylogenomic analysis of selected antimicrobial peptides (AMPs): (a) defensin; (B) cecropin; (c) diptericin; (D) gambicin; and (e) lysozyme.
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culture were approved by ethical committee of the institute. Live 
animal (rabbit) blood was fed for mosquito cycle maintenance 
and experimental purpose.

antibiotic Treatment
Prior to blood feeding, freshly emerged 50 adult mosquitoes were 
fed on sterile water supplemented with antibiotic cocktail (see 
below) for 3–4 days to remove the MG flora. An equal number of 
untreated mosquitoes were also grown in identical experimental 

conditions except for them water was supplemented without the 
antibiotic. All experiments were performed in a way to minimize 
the risk of contamination. The removal of bacterial gut flora was 
examined by LB plate assay. In this assay, the MG from control 
and antibiotic-treated adult female mosquitoes were dissected and 
homogenized in sterile phosphate buffer saline (PBS), followed by 
plating the crude diluted homogenate (1:10 or 1:50) on LB plates 
which were then incubated overnight at 37°C for the growth of LB 
cultivable microbial flora. After multiple experimental trials and 

http://www.frontiersin.org/Immunology/
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FigUre 3 | Real time (RT)-PCR expression analysis of antimicrobial peptides (AMPs) during the development of mosquito (a); tissue-specific relative expression 
analysis (B,c); silencing validation of cecropin family genes (D–F); effect of AMPs silencing in the FB and MG (g–i). The relative expression was monitored using 
RT-PCR assays. Three independent biological replicates were considered for statistical analysis viz. *p < 0.05; **p < 0.005; ***p < 0.0005, using Student’s t-test; 
NS, not significant. Abbreviations: FB, fat body; MG, midgut; SGs, salivary glands.
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different antibiotic combinations, we finally observed a maximum 
removal of the flora by the treatment of penicillin, amoxicillin, 
and gentamycin (~100  μg/ml each) combination (Figure S1 in 
Supplementary Material). Additionally, the depletion of the gut 
flora was also verified through 16sRNA based real-time (RT) PCR 
analysis assay and adopted for subsequent analysis of AMPs.

immune challenge
Escherichia coli (EC) and Bacillus subtilis (BS) were grown 
overnight in LB medium, precipitated, washed and re-suspended 
in PBS. A bacterial suspension of 100 nl (EC at O.D. 600 = 0.59 
and BS at O.D. 600 = 0.52) was injected into the thorax of cold 
anesthetized mosquito using nano injector. 100 nl of sterile PBS 
was injected into the control mosquitoes. The same bacterial 
suspension was used for bacterial feeding and a suspension of 
bacterial culture of O.D.  =  1 was prepared in 5% sterile sugar 
solution. Mosquitoes were fed with the respective live bacterial 

solution using a cotton swab. Control mosquitoes were fed on 5% 
sterile sugar solution only. Approximately a total of 135–150 adult 
female mosquitoes were kept for control or immune challenge for 
at least three minimum experimental replicates. We monitored the 
survival rate of mosquitoes after immune challenge and observed 
100% survival in the case of an endogenous challenge, however, 
only 50–60% survival was observed in the exogenous challenge.

rna isolation and cDna synthesis
Total RNA was isolated from MG, FB, HC tissues of mosquito 
and different developmental stages using the standard Trizol 
(Invitrogen) method. A minimum of 20 mosquitoes was dis-
sected to pool and collect MG or FB tissue, while HC was pooled 
from at least 40 mosquitoes, for each experimental set of RNA 
isolation. Flushing method opted for HC collection as described 
previously (39). Briefly 2–3 µl of Schneider’s (RPMI):FBS:citrate 
buffer (60:10:30) were injected into the lateral wall of mesothorax 

http://www.frontiersin.org/Immunology/
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FigUre 4 | Tissue-specific alteration of antimicrobial peptides expression in response to bacterial feeding/endogenous challenge. Mosquito fat body (FB) response 
to Bacillus subtilis (BS) feeding (a); mosquito FB response to Escherichia coli (EC) feeding (B); mosquito midgut (MG) response to BS feeding (c); mosquito MG 
response to EC feeding (D). *p < 0.05; **p < 0.005; ***p < 0.0005; NS, not significant.
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of cold anesthetized mosquitoes, followed by flushing out the 
diluted hemolymph with additional 3–5 µl of Schneider’s (RPMI), 
by clipping off the last abdominal segment and the diluted hemo-
lymph was collected in Trizol. First-strand cDNA was synthesized 
using a mixture of oligo-dT and random hexamer primers and 
Superscript II reverse transcriptase (Verso cDNA synthesis Kit, 
Cat#AB-1453/A, EU, Lithuania).

rT-Pcr and relative gene expression 
analysis
For differential expression analysis, routine RT-PCR and agarose 
gel electrophoresis protocols were used. Following PCR ampli-
fication parameters were used: 95°C/5 min (1 cycle); 95°C/30 s, 
52°C/30  s, and 72°C/30  s (32 Cycles); and final extension was 
performed at 72°C/5  min. The relative gene expression was 
assessed by SYBR green qPCR (Thermo Scientific) in Illumina 
Eco RT-PCR machine. PCR cycle parameters involved an initial 
denaturation at 95°C for 15 min, 40 cycles of 10 s at 95°C, 15 s 
at 52°C, and 22 s at 72°C. Fluorescence readings were taken at 
72°C after each cycle. The final steps of PCR at 95°C for 15  s 

followed by 55°C for 15 s and again 95°C for 15 s was completed 
before deriving a melting curve. Each experiment was performed 
in three independent biological replicates, except duplicate for 
HC-related experiments due to RNA limitation from the HCs. 
The relative quantification results were normalized with internal 
control Actin gene and analyzed by 2–ΔΔCt method (40). For a 
comprehensive understanding, data were interpreted to evaluate 
a general response, however, where ever required “test” sample 
data was compared with “control” data set and statistically ana-
lyzed using Student’s t-test. The primers used for each gene are 
shown in Table S3 in Supplementary Material.

dsrna-Mediated gene silencing
For gene silencing of cecropin family (C1, C2, and C3), we 
used RT-PCR amplification strategy with newly designed 
primers carrying T7 overhang sequence: dsrCec1: forward 
5′-TAATACGACTCACTATAGGGTGTCAAGGCTCTTGGA 
TGAA-3′ and reverse 5′-TAATACGACTCACTATAGGGTGAC 
AGCGGTTTGATTAGAGG-3′. Cec2: forward 5′-TAATACGAC 
TCACTATAGGG CTGGTGCTGATGGCTGTCT-3′ and reverse  

http://www.frontiersin.org/Immunology/
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FigUre 5 | Tissue-specific alteration of antimicrobial peptides expression in response to bacterial injection/exogenous challenge. Mosquito fat body (FB) response 
to Escherichia coli (EC) injection (a); mosquito FB response to Bacillus subtilis (BS) injection (B); mosquito midgut (MG) response to EC injection (c); mosquito MG 
response to BS injection (D). *p < 0.05; **p < 0.005; ***p < 0.0005; NS, not significant.
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5′-TAATACGACTCACTATAGGG GCGCTTTATTGGAACTG 
CAT-3′. Cec3: forward 5′-TAATACGACTCACTATAGGGTCC 
CTTTCTGTATCCGCCTA-3′ and reverse 5′-TAATACGACTC 
ACTATAGGGTCAGGTCCGCTCCATTTATC-3′. The ampli-
fied PCR product was examined by agarose gel electrophoresis, 
purified, quantified, and subjected (~1  ug) to double-stranded 
RNA synthesis using Transcript Aid T7 high-yield transcription 
kit (Cat# K044, Ambion, USA). To generate control dsRNA, we 
use LacZ gene of EC similar to our test gene. About 69 nl (3 µg/ul) 
of the corresponding dsRNA in nuclease-free water was injected 
into the thorax of cold anesthesized 1–2-day old female mosquito 
using nano- injector (Drummond Scientific, CA, USA). The 
silencing of the respective gene was confirmed by quantitative 
RT-PCR 3-day post-dsRNA injection.

rOs Determination of Mosquito Mg 
during endogenous Bacterial challenge
To determine the level of ROS generation in the MGs during 
endogenous bacterial challenge (24  h), we incubated the MG 

of naïve and bacterial challenged mosquitoes with a 2  mM 
solution of the oxidant-sensitive fluorophores, CM-H2DCFDA 
[5-(and-6)-chloromethyl-29,79-dichloro-dihydrofluorescein 
diacetate, acetyl ester] (Sigma). After a 20-min incubation at 
room temperature in the dark, the MGs were washed three times 
with PBS. Next, the MGs were transferred to a glass slide in a drop 
of PBS and checked the fluorescence intensity under a fluorescent 
microscope at 490 nm.

resUlTs

aMP identification, cataloging, and 
Phylogenomics analysis
Our analysis suggested that An. stephensi genome predicted 
transcript database which includes both SDA-500 Pakistani strain 
and Indian strain, has a total of 11 AMPs genes of which 4 belongs 
to cecropin and 5 to defensin family (Table S1 in Supplementary 
Material). However, only three genes from each cecropin and 
defensin families were observed from Indian strain. We also 

http://www.frontiersin.org/Immunology/
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FigUre 6 | Hemocyte (HC)-mediated antimicrobial peptides response to bacterial challenge (exogenous/endogenous). HC response to Escherichia coli (EC) 
injection (a); Bacillus subtilis (BS) injection (B); EC feeding (c); BS feeding (D). *p < 0.05; **p < 0.005; ***p < 0.0005; NS, not significant.

FigUre 7 | Comparative analysis of antimicrobial peptides in the midgut (MG) collected from hemocyte (HC) flushed and HC un-flushed naïve (a); and immune 
challenged (IC) mosquitoes (B). *p < 0.05; **p < 0.005; ***p < 0.0005; NS, not significant.
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FigUre 8 | Tissue-specific response of relish (REL) and nitric oxide synthase (NOS) against endogenous (oral feeding) challenge in midgut (MG), fat body (FB), and 
hemocyte (HC). Mosquito MG response to Bacillus subtilis (BS) (a), Escherichia coli (EC) (B) feeding; FB response to BS (c), EC (D) feeding; HC response to BS 
(e); EC (F) feeding. **p < 0.005; ***p < 0.0005; NS, not significant.
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found one gene from diptericin and gambicin families. Similarly, 
we observed three transcripts from lysozyme family with more 
than 70% identity in the An. stephensi SDA-500 and Indian 
strain. We have generated the phylogenetic tree for each of the 

family cecropin, defensin, diptericin, gambicin, and lysozyme, 
respectively (Figures 2A–E). Defensin genes phylogenetic analy-
sis suggested that AMP3 (DEF3) of the An. stephensi and An. 
gambiae are different from the main clade. Similarly, in cecropin 

http://www.frontiersin.org/Immunology/
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FigUre 9 | Tissue-specific response of relish and nitric oxide synthase (NOS) against exogenous (thorax injection) challenge in fat body (FB), hemocyte (HC), and 
midgut (MG). Mosquito FB response to Bacillus subtilis (BS) (a), Escherichia coli (EC) (B) injection; HC response to BS (c), EC (D) injection; MG response to BS (e); 
EC (F) injection. *p < 0.05; **p < 0.005; NS, not significant.
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family AMP6 (CEC3) from An. gambiae and An. stephensi, AMP7 
(gambicin) of A. aegypti form a single clade, however, D. mela-
nogaster cecropins formed entirely a different clade. Phylogenetic 
analysis of lysozyme family showed four clades of which one clade 
is highly specific to D. melanogaster (red color). As expected An. 
stephensi is more closely related to An. gambiae, A. aegypti, and C. 
pipiens, while D. melanogaster form a separate clade.

constitutive expression of aMPs Manages 
local infection
Constitutive expression of eight antimicrobial peptides defensin 
(AsD1 and AsD3), cecropin (AsC1, AsC2, and AsC3), gambicin 
(AsG), and lysozyme (AsLys1 and AsLys7) in RT-PCR analysis, 
indicated that AMPs significantly contribute to maintain a basal 
level of immunity throughout the development of the mosquito 

http://www.frontiersin.org/Immunology/
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FigUre 10 | Examination of gut flora influence on antimicrobial peptides (AMPs) expression: effect of blood feeding on AMPs expression in the mosquito midgut 
(MG) (a); effect of antibiotic treatment on AMPs expression in the mosquito MG (B). *p < 0.05; **p < 0.005; ***p < 0.0005; NS, not significant.
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(Figure  3A). A tissue-specific relative expression analysis of 
AMPs in the digestive epithelial tissues viz. salivary gland (SG), 
MG, and the HCs, indicated that all the transcripts abundantly 
expressed in the MG and SGs when compared with HCs 
(Figure 3B).

FB-Mg co-ordination and local  
response Management
Our initial observation of elevated AMPs expression in the FB 
than MG (Figure 3C) confirmed that FB is the principle organ 
for the production of AMPs, but its co-ordination with HCs and 
MG, remains largely unknown. Therefore, first, to test whether 
depletion of AMPs mRNA alters the expression in the FB/MG, we 
examined relative expression of cecropin family members, 4 days 
post-dsRNA injection. An effective depletion of all three tested 
C1, C2, and C3 were observed in the MG. The FB also showed the 

depletion of AMPs except for C3, which was slightly upregulated 
(p  <  0.05) (Figures  3D–F). Next, we tested whether depletion 
of any one of the AMP member protein alters the expression of 
the other AMP members of the same family. For example, we 
observed that effective mRNA silencing of cecropin (C1) family 
member simultaneously reduces the expression of tested (C2 and 
C3) cecropin members in the MG (Figures 3G–I).

Endogenous exposure by oral feeding of EC/BS significantly 
suppresses the basal level expression of AMPs in the FB, except D3 
which was upregulated in response to EC feeding (Figures 4A,B). 
Endogenous exposure of BS resulted in an early upregulation of 
C2, C3, D1, and late induction of D3 post 24 h of bacterial feed-
ing. However, EC feeding slightly downregulated the expression 
of all the tested AMPs in the MG (Figures 4C,D). Interestingly, 
exogenous exposure by microinjection showed significant 
upregulation of almost all AMPs in the MG as well as the FB, 

FigUre 11 | Effect of pre-immunization (thorax injection) and evaluation of relish (REL)/nitric oxide synthase (NOS) expression in the hemocyte (HC)/midgut (MG) 
during gut flora expansion and blood meal digestion. 16SrRNA based gut flora comparison in the MG (a); REL/NOS expression in the HC in response to 
pre-immunization (B); REL/NOS expression in response to pre- immunization in the MG of naive sugar-fed mosquito (c); REL/NOS expression in the MG in 
response to pre-immunization in the blood-fed mosquito (D). *p < 0.05; **p < 0.005; ***p < 0.0005; NS, not significant.
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except moderate change of C2/C3 expression in the FB against 
BS challenge (Figures 5A–D).

hcs Manage local and systemic immune 
responses
In insects, the systemic immune response is largely managed by 
HCs, but their co-ordination with local response remains poorly 
understood, especially in mosquitoes. To clarify this relationship, 
we first examined the inducible expression of AMPs in the HCs/
MG for more elaborated time period, i.e., early (30  min, 2  h), 
medium (12  h) and late (24  h), against exogenous challenge. 
A significant upregulation of most of the AMPs was observed at 
late hours against the microbial challenge in the HCs. As expected 
most of the AMPs family proteins such as cecropin (C1, C2, and 
C3) showed significant induction against Gram-negative bacte-
rial (EC) challenge, whereas defensin (D1) was induced against 
Gram-positive bacterial (BS) challenge (Figures 6A–D). Except 
mild induction of C1/D3, the endogenous bacterial feeding did 
not alter AMPs expression in the HCs (Figures 6C,D).

Unlike HCs, MG showed a non-specific induction of AMPs 
irrespective of the type of bacterial strain, a questionable observa-
tion also noted in earlier experiments (Figures 5C,D; Figure S2 
in Supplementary Material). Together, these results supported 
the possibility of physical interactions (attachment/detachment) 
between HCs and MG during infection. To clarify this complex-
ity, we challenged 3–4  days old naïve adult female mosquitoes 
with EC or BS. Postmicrobial challenge, first we flushed the HCs 
and then collected MG from the same mosquito (flushed MG), 
and monitored AMPs expression. Interestingly, we observed a 
significant alteration of AMPs expression when compared un-
flushed and flushed MG of the naïve as well as exogenous immune 
challenged mosquitoes (Figures 7A,B).

Oral Feeding of Bacteria to Mg alters 
rel/nOs response in the FB
Relish and NOS level were found to be significantly upregulated in 
the MG and FB, post 24 h of BS feeding (Figures 8A,C), while HCs 
showed downregulation (Figure  8E). These findings suggested 
that a direct communication mechanism may exist between MG 
and FB, which may not require the participation of HC NOS 
activity (Figures  8A,B). However, unlike BS, the endogenous 
exposure of EC cause downregulation of REL and NOS in the MG 
and upregulation in the FB (Figures 8D,F), possibly due to more 
adaptive nature of Gram-negative bacteria to the mosquito gut.

exogenous Microbial challenges influence 
rel-Mediated hc-FB immune 
communication
To uncover that how FB–HC communicate immune signals, 
we challenged the naïve mosquitoes with microbial injection 
and monitored the transcriptional expression of REL and NOS 
in the FB and HC. Surprisingly, only Rel showed a significant 
modulation irrespective of the nature of microbial injection 
(Figures  9A–D), suggesting that REL alone could efficiently 
manage the HC–FB immune network co-ordination and does 
not require NO participation. However, a mild up regulation of 
REL and NOS expression was observed in the mid gut, possibly 
a mixed response elicited by direct interaction of bacteria with 
the mid gut outer membrane (Figures 9E,F), demanding further 
experimental verification to establish HC–MG correlation. Thus, 
to track the possible molecular link we tested the influence of 
natural gut flora on the HC-MG correlation, as described below.

immune activated hc limits the gut Flora 
Development in the Mg
To clarify any immune communication strategies of the MG to HC 
co-ordination, first we examined the relative expression of AMPs 
in the MG collected 30 h post blood meal (PBM). Interestingly, 
in this analysis we observed a significant upregulation of all 
AMPs in the gut of the blood-fed mosquitoes (Figure  10A). 
To test the role of proliferated gut flora on the AMP induction, 
we re-examined and compared the transcriptional response of 
AMPs in the MG of untreated (Antb−ve) and antibiotic-treated 
(Antb+ve) mosquitoes after 30 and 72 h PBM. Interestingly, each 
family member of AMPs showed a significant downregulation in 

FigUre 12 | Proposed working hypothesis/model for future validation 
and establishment of a possible co-ordination and participation of relish 
(REL)/nitric oxide (NO) synthase controlling antimicrobial peptides 
response. To establish possible flow of signal relationship, we interpreted 
the cross tissue experimental data as below: (i) Endogenous bacterial 
feeding: demonstrating NO dominantly regulate flow signal from midgut 
(MG)-to-FB and/or MG-to-hemocyte (HC) (Table S2 in Supplementary 
Material). (ii) Exogenous bacterial injection: demonstrating REL dominantly 
regulate flow signal from FB-to-MG; while NO regulate HC-to-MG (Table 
S2 in Supplementary Material). A synergistic relationship of REL/NO 
between FB and HC was established using combined data from individual 
as well mixed bacterial challenge experiments.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


14

Das De et al. Corss Tissue Immune Communication in Mosquitoes

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 148

response to antibiotic treatment at both the time points of PBM 
(Figure  10B). Unexpectedly, we also observed an intermittent 
induction of AMPs (e.g., C2/C3/D1) in response to antibiotic 
treatment in the sugar-fed mosquito MG. Whether this response 
is transiently required for the maintenance of the physiological 
integrity of the epithelial tissues or the immune response was 
elicited by bacterial remnants are yet to be clarified.

To test whether pre-immunized, i.e., immune activated HC, 
influences a microbial flora development, we pre-immunized 
3–4-day old adult female mosquitoes with a mixed paste of live 
Gram-positive/Gram-negative bacteria and kept for 24 h before 
blood meal. In our comparative analysis, we did not observe any 
significant change in the AMPs expression in the pre-immunized 
blood-fed mosquito guts (Figure S4 in Supplementary Material), 
but noticed a significant reduction of the bacterial load as 
measured by 16S rRNA expression (Figure 11). Although such 
direct evidence of HC-gut relation is not yet established, our data 
suggested that immune activated HCs may have cross tissue regu-
lation ability over gut flora proliferation. In these experiments, 
we further observed that a consistent upregulation of NOS than 
REL in the HCs up to 48 h post challenge in the non-blood-fed 
mosquitoes (Figure 11B). In case of the MG, the exogenous chal-
lenge with mixed bacterial exposure did not alter the NOS/REL 
expression significantly, except slight upregulation of REL post 
48 h of challenge (Figure 11C). Interestingly, in contrast to very 
limited change for REL/NOS in HCs (Figure S5 in Supplementary 
Material), we observed an exclusive rapid induction of NOS in the 
blood-fed MG of the pre-immunized mosquitoes (Figure 11D). 
Taken together, we hypothesize that NOS and REL may have 
a synergestic role in limiting the gut flora expansion as well as 
HC-mediated immune responses.

DiscUssiOn

Even though the knowledge on cross tissue communication is 
limited, our initial data confirms that AMPs play an important role 
to fight local infections. Data also indicated that HCs relatively do 
not express AMPs locally, until they are signaled or exposed to 
any antigen. With our initial experiments with dsRNA-mediated 
gene silencing, we hypothesize that FB and MG may carry the 
ability to manage the fine adjustment of the AMPs requirement 
during any local infection. To test and verify this correlation, 
next, we independently examined and compared the differential 
expression of selected AMPs in the FB and MG against endog-
enous and exogenous exposure of BS (Gram-positive) and EC 
(Gram-negative) bacteria.

Interestingly, both FB and MG caused mild suppression 
of AMPs expression, except to a significant upregulation in 
response to BS oral feeding, indirectly suggesting that mosqui-
toes gut environment may favor a cost-effective immune toler-
ance against symbiotically associated Gram-negative bacteria 
(41, 42), than a non-adaptive member of virulent bacterial family 
members, especially BS which also releases toxic proteins (43). 
In contrast to the above, a significant upregulation of almost 
all AMPs in the FB as well as MG in response to the exogenous 
exposure of both EC/BS, suggested that FB has an ability of fine 
adjustment of AMPs expression to meet and supply the AMPs 

on-demand basis (44). However, striking upregulation of AMPs 
in the mosquito MG remains a questionable observation, by the 
fact that FB and MG do not come in direct contact at any stage 
of the infection (26, 45).

Emerging evidence strongly suggests that mosquito HCs are 
the key partners of systemic immune responses (7, 39, 46–48), 
but their immune relation with other organ(s) remains unclear. 
When given an exogenous challenge, our experimental data indi-
cated that HCs are not only specialized to discriminate antigen 
but a consistent upregulation of AMPs till late hours, suggested 
their important role to clear off the remaining persistent bacteria 
in the hemolymph, a mechanism proposed in insects (49). We 
hypothesized that depending on the nature of infection the HC 
immune response may be different than other tissues because (i) 
AMPs do not naively express in HC but are late inducible; (ii) HC 
may have dual ability to face injury responses to minimize the 
tissue damage during early hours (28, 50). Furthermore, it may 
also be critical to access the HC–FB correlation, specifically due 
to the complexity associated with free circulating HCs than fixed 
but loosely distributed FB tissue, where bacteria may encounter 
to FB/HC during circulation within hemolymph. Therefore, we 
tested whether circulating mosquito blood cells, i.e., HCs play 
any role in this interorgan communication, i.e., FB/MG immune 
network management. A comparison between un-flushed and 
flushed MG indicated that HC attachment/detachment may 
account for a mixed response in the MG (Figures  7A,B). The 
possible reason of these observations may be due to exogenous 
exposure of specific microbes in the thorax, which may encoun-
ter with the outer lining of the MG epithelia, i.e., basal lamina, 
eliciting a mixed immune response at the interface of HCs–MG 
attachment.

In the mosquito An. gambiae, it has been demonstrated that 
~25% HCs are sessile in nature and dominantly associated with 
abdomen (51). In fact, any exogenous or endogenous micro-
bial challenge significantly alters systemic and local immune 
responses, where HCs may play interorgan communication 
between MG and FB, probably through immune signal activation 
and MG attachment during infection. Though it is unclear that 
whether sessile HCs also contribute toward “systemic-cum-local” 
responses, however, we interpreted that a synergistic relationship 
of early induction of AMPs in FB, and late induction in HC 
may not only manage the systemic infection but also establish 
a successful co-ordination with local response through immune 
signaling mechanism (52).

Nitric oxide, a by-product of NOS activity, serve as an impor-
tant immune signaling modulator in insects (53). In Drosophila 
NO induces innate immune genes upon natural infection of 
Gram-negative bacterial infection (26). While in the Anopheline 
mosquitoes, transcriptional upregulation of NOS not only kill 
Plasmodium in the gut (15, 17, 20–23, 54), but also regulate 
HC-mediated bacterial killing during systemic infection with EC 
(24). IMD signaling pathways regulate the expression of several 
innate immune genes during microbial challenge via activation 
of transcription factor Rel (55–57).

Thus, to trace the possible molecular link associated with 
the interorgan flow of signals, we selectively profiled NOS as 
well as REL expression during exogenous as well as endogenous 
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exposure. A significant alteration in the level of Rel and NOS 
expression, i.e., upregulation in the MG and FB, while down-
regulation in the HC, suggested that a direct communication 
mechanism may exist between MG and FB, requiring a negligible 
level of HC NOS activity. Alternatively, the upregulation of REL 
and NOS in the FB can also be interpreted by the generation of 
intestinal oxidative stress after bacterial feeding (58). This eleva-
tion of the ROS activity was determined by the DCFDA staining 
of the endogenous challenged MG (Figure S3 in Supplementary 
Material). The resulting ROS may send a putative signal to the 
FB which may result in the NOS upregulation (24). Furthermore, 
we observed that oral supplement of EC does not influence Rel/
NOS expression in the gut than the FB. Since, enterobacteria 
such as EC are thought to constitute the pre-dominant gut flora 
of adult female mosquitoes (42, 59), we interpret that endogenous 
exposure of EC may not be immunogenic as BS. But EC may 
be more invasive than Bacillus which may disrupt the epithelial 
barrier of the mid gut, eliciting the FB and HC response (60). 
Taken together, our data summarize that MG to FB communica-
tion may largely depend on REL while MG to HC through NO 
signaling. On the other hand, our data also suggested that FB to 
HC is dominantly managed by the immune network activated 
REL alone in the adult mosquitoes, but it remains a challenge to 
uncover MG to HC signaling path.

Previous studies demonstrate that blood meal induces several-
fold increase in the population of gut flora, which may also influ-
ence the immune response of the mosquito (25, 41, 61). To clarify 
MG -HC immune communication strategy, we tested a hypothesis 
whether (i) the blood meal-induced expansion of natural gut flora 
influences the REL/NOS expression in the HC or (ii) pre-immune 
activated HC influences this gut flora expansion. Our findings 
suggested that a synergistic actions of AMPs enables optimal 
regulation of the native microbial gut flora proliferation during 
blood meal uptake and digestion (62). Though, a transient induc-
tion of AMPs could also be expected in early hours in response 
to temperature switch from vertebrate blood (37°C) to a 28°C 
gut temperature of naïve mosquito (63). However, we believe late 
induction of AMPs after 30 h of blood feeding may dominantly 
depend on the proliferation of naïve bacteria as reported earlier 
(64, 65). Next, our data also suggested that immune activated 
HCs may have the cross tissue regulation ability, over gut flora 
proliferation, possibly through NOS, because we observed a 

consistent upregulation of NOS than REL in the HCs up to 48 h 
post challenge in the non-blood-fed mosquitoes (Figure  11B). 
Surprisingly, a rapid induction of NOS in the blood-fed MG of 
the pre-immunized mosquitoes allowed us to hypothesize that 
NOS and REL may have synergetic role in limiting the gut flora 
expansion as well as HC-mediated immune responses.

cOnclUsiOn

To understand the interorgan immune communication strategy, 
in the present investigation, we not only examined the AMPs 
expression in three important mosquito tissues such as MG, FB, 
and HCs, but also traced the molecular link of the signaling trans-
mitters, i.e., REL and the synthesizer of NO, i.e., NOS, controlling 
AMPs expression. We found that each tissue has unique ability 
to respond local/systemic challenges; however, HCs are more 
specialized than the gut and FB to recognize and discriminate-
specific antigens. This study also demonstrates that both REL 
and NO participate in the overall management of the interorgan 
immune communication, but each tissue specifically maintains 
the interorgan flow of signals (Figure 12).
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