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Acetaminophen [paracetamol, N-acetyl-p-aminophenol (APAP)]-induced acute liver 
injury (ALI) not only remains a persistent clinical challenge but likewise stands out as 
well-characterized paradigmatic model of drug-induced liver damage. APAP intoxication 
associates with robust hepatic necroinflammation the role of which remains elusive with 
pathogenic but also pro-regenerative/-resolving functions being ascribed to leukocyte 
activation. Here, we shine a light on and put forward a unique role of the interleukin 
(IL)-1 family member IL-18 in experimental APAP-induced ALI. Indeed, amelioration 
of disease as previously observed in IL-18-deficient mice was further substantiated 
herein by application of the IL-18 opponent IL-18-binding protein (IL-18BPd:Fc) to 
wild-type mice. Data altogether emphasize crucial pathological action of this cytokine 
in APAP toxicity. Adding recombinant IL-22 to IL-18BPd:Fc further enhanced protec-
tion from liver injury. In contrast to IL-18, the role of prototypic pro-inflammatory IL-1 
and tumor necrosis factor-α is controversially discussed with lack of effects or even 
protective action being repeatedly reported. A prominent detrimental function for IL-18 
in APAP-induced ALI as proposed herein should relate to its pivotal role for hepatic 
expression of interferon-γ and Fas ligand, both of which aggravate APAP toxicity.  
As IL-18 serum levels increase in patients after APAP overdosing, targeting IL-18 may 
evolve as novel therapeutic option in those hard-to-treat patients where standard ther-
apy with N-acetylcysteine is unsuccessful. Being a paradigmatic experimental model 
of ALI, current knowledge on ill-fated properties of IL-18 in APAP intoxication likewise 
emphasizes the potential of this cytokine to serve as therapeutic target in other entities 
of inflammatory liver diseases.
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iNtrODUctiON

Intended or unintended overdosing of acetaminophen [paracetamol, N-acetyl-p-aminophenol 
(APAP)] is regarded a major cause of acute liver failure provoking roughly 50,000 emergency 
room admissions, 2,500 hospitalizations, and 500 fatalities per year in the United States. The global 
burden on health-care systems that connects to APAP is based on a narrow therapeutic margin and 
supported by its broad over-the-counter availability. In fact, adverse consequences of APAP (self-)
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pharmacotherapy fuel a sustained discussion on safety issues 
and regulations regarding this fairly weak but frequently used 
analgesic drug (1–4).

Murine models of APAP-induced acute liver injury (ALI) are 
well established and adequately resemble key features of human 
intoxication (5). A crucial characteristic of APAP-induced 
ALI is centrilobular hepatocyte necrosis driven by N-acetyl-p-
benzoquinone imine (NAPQI), an APAP metabolite generated 
by hepatic Cyp2e1 and Cyp1a2. Under the influence of NAPQI 
hepatocytes endure oxidative stress, malfunction of mitochon-
drial respiration, a drop in ATP, and predominantly necrotic cell 
death. Here, standard therapy with N-acetylcysteine interferes by 
providing NAPQI detoxifying glutathione (GSH) and by coun-
teracting APAP-associated oxidative stress. Aforementioned nox-
ious chain of events is amplified by cell intrinsic processes, among 
others activation of c-Jun N-terminal kinase (5–7). Since necrosis, 
by releasing danger-associated molecular patterns, notoriously 
connects to activation of innate immunity and inflammation (8), 
an additional immunological layer is considered a significant 
parameter determining APAP-induced ALI. Accordingly, several 
toll-like receptors (TLR) such as TLR4 (9, 10) and TLR3 (11) 
were reported to aggravate poisoning though conflicting reports 
impede straightforward interpretation (12, 13). Interestingly, 
TLR9 recognizing necrotic DNA has been identified consistently 
as pathogenic factor (12, 14, 15). Accordingly, TLR9 antagonism 
(16) or suppression of downstream type I interferon (IFN) func-
tion can ameliorate APAP toxicity (17, 18).

Whereas sterile liver inflammation is an undisputed conse-
quence of APAP overdosing (5) its function is multifaceted and 
not fully understood. In this context, it must be appreciated that 
outcome of APAP poisoning is, to a significant degree, dependent 
on the capacity of the liver to activate repair and regeneration 
processes. Notably, in the later regenerative phase of intoxication, 
growth factors such as epidermal growth factor receptor ligands 
(19) but also pro-regenerative signal transducer and activator of 
transcription (STAT)-3-activating cytokines are regarded pivotal 
for efficient organ recovery (20). An interesting case in this 
context is interleukin (IL)-22 (21). Genetic models using IL22BP-
deficient mice suggest a pathogenic role for endogenous IL-22 
particularly during early intoxication (22). In contrast, adminis-
tration of a single supra-physiological dose of recombinant IL-22 
or its provision by liver-targeted IL-22 gene therapy mediates 
significant protection against APAP-induced ALI (23–25).

It adds to the overall complex nature of APAP-induced ALI 
that just sterile inflammation appears to be a prerequisite for acti-
vation of an efficient hepatic pro-regenerative program (20, 26).

A cOMPLeX rOLe FOr PArADiGMAtic 
NUcLeAr FActOr (NF) κB-ActivAtiNG 
iL-1 AND tNFα iN APAP-iNDUceD ALi

Sterile inflammation is largely initiated by NF-κB-activating 
cytokines among which IL-1 and TNFα stand out as crucial 
(8, 27–29). Whereas hepatic upregulation of IL-1α/β during 
APAP-induced necroinflammation is undisputed (14, 30–32), the 
contribution of IL-1 to disease is undecided on every level of IL-1 

biology. For example, inhibition of IL-1β maturation by lack of 
caspase-1 activity in C57BL/6 mice left APAP-induced ALI either 
unaffected (32, 33) or significantly bettered disease outcome (14). 
Notably, although IL-1α is not a caspase-1 substrate its protease 
activity is required for effective IL-1α release by monocytes (34). 
IL-1α/β-unresponsive IL-1 receptor-1 (IL-1R1)-deficient C57Bl/6 
mice likewise displayed discordant behavior with either no effect 
(30) or amelioration of APAP intoxication (32, 35) put on record. 
Finally, administration of IL-1 receptor antagonist (IL-1Ra) (36) 
or neutralizing antibodies targeting either IL-1α (32) or IL-1β 
(14) improved APAP-induced ALI in C57Bl/6 mice. Surprisingly, 
IL-1Ra-deficient mice also displayed weakened intoxication (37), 
though BALB/c mice were used in that study. Alike IL-1, TNFα 
is evidently produced during APAP-induced ALI (11, 23, 38) and 
similarly puzzling with regard to function. Exemplarily, a report 
using TNFα-neutralizing antibody-treated or TNF receptor-
1-deficient BALB/c mice proposed pathological action of this 
cytokine (39). Others found that TNFα-neutralization likewise 
inhibits (40) or is unable to influence (41) APAP toxicity in 
C57Bl/6 mice. Surprisingly, TNF receptor-1-deficiency actually 
aggravated disease in this mouse strain (42).

Differences in mouse characteristics, including the micro-
biome (43), as well as variations in APAP dosing may foster 
divergent conclusions regarding the role of IL-1 and TNFα in 
APAP-induced ALI. However, those observations may also echo 
an overlapping double-edged function of inflammation in the 
context of APAP overdosing. Specifically, while inflammation 
may initially promote early injury, hepatic repair and regenera-
tion in a later phase of disease apparently rely on signals derived 
from innate immunity and associated cytokines. IL-1 and TNFα, 
for example, are able to upregulate pro-regenerative IL-6 as well 
as antioxidant pathways that enforce repair (20, 42, 44, 45). Some 
previous studies actually indicated a protective role of endog-
enous IL-1 (37) and TNFα (42) in APAP-induced ALI. Moreover, 
pro-inflammatory IL-36γ (46) was recently shown to promote 
regeneration in APAP toxicity, an observation that agrees with 
IL-36 supporting intestinal repair (47, 48). It is noteworthy that 
an early study reported on amelioration of APAP-induced ALI by 
application of recombinant IL-1α (49).

A DistiNctive rOLe FOr iL-18  
iN APAP-iNDUceD ALi

Due to some unique properties, IL-18 stands out among mem-
bers of the IL-1 cytokine family (50, 51). IL-18 is constitutively 
expressed in a variety of cell types, for example, in hepatic Kupffer 
cells (52). Accordingly, IL-18 expression is detectable in healthy 
murine liver (53) where macrophages/Kupffer cells are a major 
source of bioactive IL-18 (50, 51). The active processed cytokine 
is usually (but not exclusively) generated by caspase-1 upon 
inflammatory stimulation (54). Besides being an inflammatory 
NF-κB-activating cytokine (55–57), two exceptional character-
istics are key to the function of IL-18 in liver diseases. First of 
all, IL-18, initially coined IGIF for IFNγ-inducing factor (58), is 
pivotal for IFNγ production by T (58) and natural killer (NK) 
cells (59). In addition, IL-18 is a strong inducer of Fas ligand 
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FiGUre 1 | Effects of IL-18BPd:Fc on APAP-induced ALI. (A–c) All animal experiments (fasted male C57Bl/6 mice, 9–10 weeks old) were carried out in accordance 
with the recommendations of the Animal Protection Agency of the Federal State of Hessen (Regierungspräsidium Darmstadt, Germany). The protocol was approved 
by the Regierungspräsidium Darmstadt (Germany). The model of murine APAP (i.p. 500 mg/kg in 0.9% NaCl)-induced liver injury was performed as recently 
described (46). Where indicated, mice were i.v. cotreated with recombinant IL-18BPd:Fc (IL18BP), IL-22, or etanercept in PBS. (A) Mice received either APAP 
(n = 18), APAP/IL-18BPd:Fc (15 µg, n = 12), APAP/Etanercept (75 µg, n = 7), or 0.9% NaCl/PBS (ctrl, n = 6). After 24 h, serum alanine aminotransferase (ALT) 
activity was determined (Reflotron, Roche Diagnostics, Mannheim, Germany) and is depicted as units/liter (means ± SEM). *P < 0.05, ***P < 0.001 compared to 
ctrl; ###P < 0.001. (B) Mice received either APAP/PBS (n = 12), APAP/IL-18BPd:Fc (15 µg; n = 12), or APAP/IL-18BPd:Fc (15 µg) plus IL-22 (3.5 µg) (n = 13). After 
24 h, serum ALT activity was determined and is depicted as units/liter (means ± SEM). $$$P < 0.001, #P < 0.05. (c) Mice received either APAP/PBS (n = 12) or 
APAP/IL-18BP (15 µg, n = 12) and were maintained for 16 h. For RNA analysis, liver tissue was snap frozen in liquid nitrogen and stored at −80°C. Total RNA was 
isolated as described (18). For real-time PCR, pre-developed reagents were used (Thermo Fisher Scientific, Darmstadt, Germany): GAPDH (VIC; 4352339E), Fas 
ligand (FasL) (FAM; Mm00438864_m1), and IFNγ (FAM; Mm01168134_m1). Assay mix was from Nippon Genetics (Düren, Germany). PCR: one initial step at 95°C 
(2 min) was followed by 40 cycles at 95°C (5 s) and 62°C (30 s). Detection of the dequenched probe, calculation of threshold cycles (CT values), and data analysis 
were performed by the Sequence Detector software (AbiPrism7500 Fast Sequence Detector, Thermo Fisher Scientific). Relative changes in hepatic FasL [(c), left 
panel] and IFNγ [(c), right panel] mRNA expression determined by real-time PCR were normalized to that of GAPDH and shown as fold-induction compared with 
untreated control mice (n = 6). *P < 0.05, **P < 0.01, ***P < 0.001 compared with untreated control; #P < 0.05, ##P < 0.01. (A–c) Data are shown as 
means ± SEM. Raw data were analyzed by one-way ANOVA with post hoc Bonferroni correction. (D) Graphical summary of processes affecting outcome of 
APAP-induced ALI with focus on the pathogenic role of IL-18. Detrimental pathways activated by APAP overdosing are counteracted by endogenous mechanisms 
supporting organ recovery through repair and regeneration [e.g., hepatocyte STAT3 activation; expression of heat shock protein (Hsp)70 and glutamate-cysteine 
ligase (Gcl)]. If therapeutic NAC intervention aiming at augmentation of hepatocyte glutathione (GSH) fails due a to an exceedingly high APAP dosage, a too late time 
point of intervention, and/or a pre-damaged liver parenchyma, acute liver failure may proceed to an ill-fated condition requiring transplantation for patient survival. 
Here, IL-18 may play a unique role by supporting hepatic expression of FasL and IFNγ. Application of recombinant IL-18 binding protein (Tadekinig-a) may evolve as 
a novel therapeutic option to intervene at this point.
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tABLe 1 | Data on the role of IL-18, IL-1, caspase-1, and TNFα in experimental 
APAP-induced ALI as detected in C57Bl/6 and BALB/c mice.

IL-18 blockage ↓ IL-18BPd:Fc (herein); ↓ il18−/− mice (14)

IL-1-blockage ≈ il1r1−/− mice (30)

↓ il1r1−/− mice (32, 35); ↓ anti-IL-1β (14); ↓ anti-IL-1α 
(32)

IL-1 receptor antagonist 
deficiency

↓ il1ra−/− mice (37), using BALB/c mice

Casp-1 blockage ≈ casp1−/− (32, 33)

↓ casp1−/− ( (14)

TNFα blockage ≈ Etanercept (herein); ≈ anti-TNFα (41)

↑ TNF-R-p55−/− (42)

↓ anti-TNFα (39) using BALB/c mice (40)

↓ TNF-R-p55−/( [(39) using BALB/c mice]

Unless otherwise indicated, data were generated using C57Bl/6 mice.
Casp-1, caspase-1; ≈, lack of effect; ↓, amelioration of disease; ↑ aggravation  
of disease.

4

Bachmann et al. IL-18 in APAP-Induced ALI

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 161

(FasL), particularly on NK cells (60). Both characteristics should 
be of significance for APAP-induced ALI because IFNγ (31) and 
Fas/FasL signaling (38, 61, 62) are crucial for the development of 
full APAP toxicity.

In accord with aforementioned characteristics, IL-18-deficient 
mice display strong protection from APAP-induced ALI (14). Since 
the pathogenic role of IL-18 in APAP intoxication has, best to our 
knowledge, not been confirmed in wild-type mice, we set out to 
determine consequences of IL-18 neutralization in this context. 
APAP (500 mg/kg) was applied intraperitoneally to fasted male 
C57Bl/6 mice as previously described (46). Where indicated, mice 
were i.v. cotreated with recombinant murine IL-18BPd:Fc (15 μg/
mouse, R&D Systems, Wiesbaden, Germany). This genetically 
engineered agent corresponds to the neutralizing murine IL-18 
opponent IL-18 binding protein d (IL-18BPd) (50, 63). Liver 
injury was quantified by determining serum alanine aminotrans-
ferase (ALT) activity 24 h after APAP administration, a time point 
coinciding with maximal hepatic damage in this protocol (46). 
In accord with data on IL-18-deficient mice, blockage of murine 
IL-18 biological activity by IL-18BPd:Fc indeed improved APAP-
induced ALI (Figure 1A). As already alluded to, we and others 
have previously reported on amelioration of APAP intoxication 
by therapeutic provision of IL-22 (23–25). Interestingly, adding 
IL-22 (i.v. 3.5 μg/mouse, Immunotools, Friesoythe, Germany) to 
IL-18BPd:Fc further diminished serum ALT activity with an over-
all reduction by 69.5 ± 5.8% (Figure 1B). As further control, mice 
were i.v. treated with etanercept (75 μg/mouse, Pfizer, Karlsruhe, 
Germany), a clinically used TNFα blocker (TNFR2:Fc) known 
to likewise neutralize biological activity of the murine cytokine 
(64). As shown in Figure  1A, TNFα blockage did not affect 
APAP toxicity. Altogether, we confirm previous observations on 
a pathogenic role of IL-18 (14) and on lack of TNFα function (41) 
in APAP-induced ALI.

The pathogenic role of IL-18 during APAP-induced ALI likely 
connects to the aforementioned potential to upregulate hepatic 
IFNγ and FasL. Both latter parameters are increased in liver tissues 
of APAP-challenged mice (38). Administration of IL-18BPd:Fc 
in fact suppressed hepatic expression of FasL (Figure  1C, left 
panel) and IFNγ (Figure 1C, right panel) in APAP-treated mice. 
Interestingly, IFNγ is known to support hepatocyte necrosis in 
response to APAP, possibly by enhancing nitric oxide formation 
(5, 31). IFNγ may additionally impair APAP-associated liver 
regeneration (45). This detrimental IFNγ activity has been shown 
to determine course of disease in experimental partial hepatec-
tomy (65). The pathogenic role of Fas/FasL in APAP-induced ALI 
is likewise well established, detectable in Fas- or FasL-deficient 
(38, 62) as well as in wild-type mice (61), and apparently medi-
ated by non-canonical Fas action. Specifically, apoptosis of 
hepatocytes is not regarded as relevant mechanism contributing 
to APAP-induced ALI. Accordingly, hepatocyte apoptosis by 
Fas/FasL is largely ruled out as relevant pathogenic mechanism 
in that context (26). Although Fas is famous for mediating 
apoptosis, it is noteworthy that this receptor can also activate 
classical signal transduction, e.g., via mitogen-activated protein 
kinases and NF-κB (66) which disconnects from pro-apoptotic 
signaling (67). Pathogenic action of Fas in APAP-induced ALI 
has been related to downregulation of glutamate-cysteine ligase 

and prolongation of GSH depletion as well as to reduction of 
heat shock protein (HSP)-70 (62). HSP70 is protective in APAP 
poisoning (68) and actually supports liver regeneration in murine 
partial hepatectomy (69). Moreover, Fas deficiency connects to 
impaired expression of STAT3-activating IL-6 and IL-10 (62), 
both are capable of ameliorating APAP-induced ALI (20). It is 
a further remarkable facet that interactions between hepatic 
macrophages and lymphocytes directed by Fas/FasL actually 
support production of bioactive IL-18 in caspase-1-independent 
but caspase-8-dependent manner (70, 71). Since IL-18 enhances 
FasL expression (60) which in turn enhances IL-18 (70, 71) this 
regulatory path represents a classical vicious cycle promoting 
liver pathology (54). Figure 1D provides a graphical summary of 
the complex events affecting outcome of APAP-induced ALI with 
focus on the pathogenic role of IL-18.

cONcLUDiNG reMArKs

The unresolved role of NF-κB-activating inflammatory cytokines 
including that of the caspase-1/IL-1β axis in APAP-induced 
ALI (20, 26, 72–74)—see Table  1—may reflect Janus-faced 
properties of theses mediators in the early injury and the later 
(partly overlapping) regeneration phase of intoxication. Herein, 
we confirm and put forward the perspective that IL-18 plays a 
unique pathogenic role in this model of sterile inflammation. 
Regardless of whether being activated by caspase-1, caspase-8, 
or by extracellular proteases such as proteinase-3 (50, 54), the 
potential of mature IL-18 to upregulate hepatic IFNγ and FasL 
appears decisive for its function during APAP-induced ALI. It 
is noteworthy that a detrimental role for hepatic IL-18 is not 
only conceivable for APAP intoxication. Specifically, adminis-
tration of IL-18 neutralizing antibodies or recombinant IL-18 
binding protein likewise ameliorates Propionibacterium acnes/
lipopolysaccharide- (53, 75) as well as concanavalin A-, Fas-, 
and Pseudomonas aeruginosa exotoxin A-induced murine liver 
damage (75). Moreover, treatment with recombinant IL-18 bind-
ing protein protected from liver injury in murine experimental 
hemophagocytic lymphohistiocytosis (76). Current data also 
suggest an additional benefit of the combination IL-18BPd:Fc 
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of the Animal Protection Agency of the Federal State of 
Hessen (Regierungspräsidium Darmstadt, Germany). The 
protocol was approved by the Regierungspräsidium Darmstadt 
(Germany).
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