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Metabolism, including catabolism and anabolism, is a basic cellular process necessary 
for cell survival. T lymphocytes have a distinct metabolism that can determine both fate 
and function. T-cell activation depends on glycolysis to obtain materials and energy for 
proliferation and effector function. Importantly, T cells utilize different metabolic processes 
under different conditions and diseases. Allogeneic hematopoietic cell transplantation 
(allo-HCT) is a classic immunotherapy for hematological malignancies; however, the 
development of graft-versus-host disease (GVHD) is a major factor limiting the success 
of allo-HCT. T cells in the donor graft drive GVHD by mounting a robust immunological 
attack against recipient normal tissues. Hence, understanding T-cell metabolism after 
allo-HCT would provide potential metabolic targets for the control of GVHD and primary 
tumor relapse. The purpose of the current review is to highlight the key metabolic path-
ways involved in alloantigen-activated T cells and to discuss how manipulating these 
pathways can serve as potential new therapeutic strategies to induce immune tolerance 
after allo-transplantation. We will also summarize the recent progress in regulating T-cell 
metabolism in bone marrow transplantation by targeting novel metabolic regulators or 
immune checkpoint molecules.
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inTRODUCTiOn

Allogeneic bone marrow transplantation [BMT; allogeneic hematopoietic stem-cell transplanta-
tion (allo-HCT)] is a curative option to treat hematological malignancies. However, graft-versus-
host disease (GVHD) limits the success of allo-HCT (1). GVHD pathogenesis is characterized by 
a robust immunological attack by donor T cells against normal tissues of transplanted recipients 
(2). As donor T cells are the driving force in GVHD, suppressing T-cell responses is a standard 
therapeutic approach for the treatment of GVHD. However, these broadly immunosuppressive 
drugs, including corticosteroids and inhibitors of calcineurin or mammalian target of rapamycin 
(mTOR), leave patients highly susceptible to infections and induce remission in <50% of patients. 
The mortality rate of patients with steroid-refractory aGVHD is close to 90% (3). Hence, under-
standing T-cell pathobiology is critical to the development of effective therapies to prevent GVHD. 
Cell metabolism impacts the fate and function of T cells (4). Targeting T-cell metabolism is a viable 
therapeutic strategy in other immunological disorders, including systemic lupus erythematosus, 
rheumatoid arthritis, and experimental autoimmune encephalomyelitis (5–7). A growing body of 
evidence from multiple studies suggests T-cell metabolism is a promising target for controlling 
GVHD. Recently, our group and others attempted to characterize the metabolic profile of donor 
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T cells following allo-HCT, yet a consensus on the data has not 
been reached (2, 8, 9). In this review, we will detail the recent 
findings in the evolving field of immuno-metabolism with 
a focus on T-cell metabolism in the context of allo-HCT and 
discuss how this knowledge can help us reevaluate our current 
understanding of immune activation and suppression after allo-
HCT, and promising immunotherapeutic strategies to archive 
long-term transplantation tolerance in transplanted recipients 
aiming to prevent allograft rejection and GVHD.

OveRview OF T-CeLL MeTABOLiSM

Glycolysis and oxidative phosphorylation (OXPHOS) are fun-
damental cellular processes in generating energy, or adenosine 
triphosphate (ATP) (10, 11). Naïve T  cells rely primarily on 
OXPHOS to meet their energy demands (12). Upon antigen 
recognition, naïve T  cells clonally expand into T effector cells 
(Teffs). Upon antigen clearance, most of these effector T cells die, 
but a subset of long-lived memory T cells (Tm) persist with an 
enhanced mitochondrial capacity relying on fatty acid oxidation 
(FAO) to fuel OXPHOS (13). OXPHOS can generate up to 36 
molecules of ATP. The transition from resting naïve T-cells into 
activated Teffs requires substantial metabolic reprogramming 
(12, 13). A Teff ’s metabolic profile is characterized by a shift 
to aerobic glycolysis as a main energy source (12, 14). Aerobic 
glycolysis involves the mitochondrion-independent metabolism 
of glucose into pyruvate and provides only two molecules of ATP 
per glucose (15). While glycolysis is less efficient than OXPHOS 
at yielding an abundance of ATP per molecule of glucose, aerobic 
glycolysis supplies metabolic intermediates for cell growth and 
proliferation as well as induces the pentose phosphate pathway 
(PPP), which produces nucleotides and amino acids that sub-
sequently generate reducing power in the form of NADH to 
maintain cellular redox balance (NAD+/NADH) (15). Teffs also 
use glutamine as a carbon source to fuel the tricarboxylic acid 
(TCA) cycle via α-ketoglutarate (α-KG) through the process of 
glutaminolysis (16, 17).

MeTABOLiSM AnD CD4+T CeLL 
DiFFeRenTiATiOn

Depending on the nature of antigen and cytokine signal, CD4+ 
T cells differentiate into Th1, Th2, Th9, Th17, T follicular helper 
cells (Tfh), Tr-1, or Treg. While Th1, Th2, and Th17 are patho-
genic, Tr-1 and Treg are suppressive in acute GVHD (18–20). 
Metabolism plays a critical role in CD4+ T-cell differentiation 
(12). While Th1, Th2, and Th17 lineages preferentially use 
glycolysis to meet energetic demand though activation of PI3K/
Akt/mTOR pathway, CD4+ Tregs use mitochondrial-dependent 
FAO (4). Therefore, enhanced FAO via inhibiting mTOR leads 
to increased Treg generation (21). Hypoxia-inducible factor 1 
is the key regulator of anabolic metabolism in Th17  cells (22). 
Meanwhile, Tfh, a pathogenic T-cell subset in chronic GVHD, 
depend on glycolysis and lipogenesis to meet energy demands 
required for differentiation (23). The metabolic profiles of Th9 
and Tr1 remain unclear.

MeTABOLiSM OF ALLOGeneiC T CeLLS

Glucose Metabolism
Using MHC-mismatched or haploidentical murine models of 
BMT, we uncovered that upon alloantigen activation, donor 
T cells increase both glycolysis and OXPHOS to obtain energetic 
materials necessary for activation and proliferation (2, 9). Albeit, 
they preferentially rely on glycolysis to maintain their capacity to 
induce GVHD (2, 9, 24). While OXPHOS of donor T cells isolated 
from syngeneic (no GVHD) and allogeneic (GVHD) recipients 
were similar, the glycolytic activity of donor T cells was signifi-
cantly higher in allogeneic than syngeneic recipients, indicating 
an escalation of T-cell glucose metabolism correlated with GVHD 
development (2) (Figure 1). Furthermore, T cells isolated from 
livers of allogeneic recipients exhibited higher glycolytic activity 
compared to those of syngeneic recipients 14 days after allo-HCT, 
implying an enduring glycolytic response by allogeneic T cells in 
GVHD target organs. While in vitro activated T cells upregulate 
and maintain expression of Glut1 for sufficient glucose uptake 
(17), allo-activated T  cells also increase Glut 3 to fulfill their 
extremely high demand for glucose (2). In addition, alloantigen-
activated T cells upregulate both hexokinase 1 (HK1) and HK2 to 
facilitate induction of glycolysis (2). To maintain sufficient glyco-
lytic activity, allogeneic CD4+ T cells activate mTOR and increase 
differentiation into Th1 and Th17 (2, 25) while decreasing Treg 
generation (24). Inhibition of glycolysis by genetic depletion 
or pharmacological blockade of mTORC1 (2, 26) or glycolytic 
checkpoints, including glut-1 (24), HK-2, PFKB3 (2), or PKM2 
(unpublished study), reduces alloreactive T-cell generation and 
subsequently ameliorates GVHD severity. Alternatively, enhanc-
ing FAO to inhibit mTOR using PI3K/AKT or AMPK inhibitors 
(27, 28) effectively prevents GVHD development.

OXPHOS and Oxidative Stress  
in Allogeneic T Cells
Allogeneic T  cells in lymphoid or target organs of recipients 
significantly increase OXPHOS compared to resting T  cells 
after allo-HCT (2, 9). Since OXPHOS activity was comparable 
in allogeneic and syngeneic T  cells (2), increased OXPHOS 
may not be a direct mechanism by which pathogenic T  cells 
are generated. However, due to increased non-mitochondrial 
oxygen consumption rate (OCR), allogeneic T cells had higher 
levels of oxidative stress yet lower levels of antioxidants (2, 9). 
As reactive oxygen species (ROS) are required for T-cell activa-
tion (30), this indicates chronic allo-activation of donor T cells 
after transplant. Increased ROS generation in allogeneic T cells 
may be the result of a hyperpolarized mitochondrial membrane 
potential (ΔΨm), subsequently making alloreactive CD4+ and 
CD8+T cells highly susceptible to small-molecule inhibitors of 
mitochondrial F1F0 adenosine triphosphate synthase in haploi-
dentical BMT model (9, 31).

The Pentose Phosphate Pathway
In murine models of GVHD, alloantigen-activated T cells have 
increased PPP activity (2, 31). Intracellular glucose metabolized 
by HK forms glucose 6-phospate (G-6P), which then enters the 
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FiGURe 1 | (A) Naïve/resting T cells are dependent on oxidative phosphorylation with fatty acid oxidation (FAO) as a major material resource. Upon activation by 
self-antigens under homeostatic state, naïve/resting T cells reprogram their metabolic phenotype to become partially activated T cells (29), which possess glycolytic 
metabolic phenotype. Due to lack of specific TCR stimulation, a large proportion of non-alloreactive T cells gradually die. However, specific self-epitopes of T cells 
can become memory T cells (Tm) which depend upon FAO for their metabolism. (B) Upon activation by alloantigen in transplant recipients, naïve/resting T cells 
proliferate and their memory differentiate to activate T cells both alloreactive and non-alloreactive. Alloreactive T cells and their differentiated memory cells are 
capable of causing target organ damage. Alloreactive T cells have much higher glycolytic activity compared to non-alloreactive counterpart. Both alloreactive and 
non-alloreactive T cells can die or differentiate into Tms accordingly. Glucose retention and glycolytic activity decide survival and alloreactivity of alloreactive T cells to 
induce graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation.
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PPP to generate ribose-5 phosphate (R-5P); the carbon donor 
during nucleotide biogenesis (32). The conversion of G-6P to 
R-5P is regulated by glucose-6-phosphate dehydrogenase in the 
oxidative arm of the PPP (33), which is significantly increased 
in allogeneic T  cells (2, 31). The oxidative arm of the PPP is 
crucial for the formation of NADPH, which plays a critical role 
in reductive biosynthesis of antioxidant molecules, such as GSH 
(34). GSH promotes T-cell expansion by driving glycolysis and 
glutaminolysis, and supporting mTORC1 and c-Myc signaling in 
inflammation (35). Due to chronic stimulation by alloantigens, 
nucleotide biosynthesis is sustained to support anabolic growth 
of T  cells during allogeneic responses; leading to a deficit in 
purine and pyrimidine catabolism (2) and exhaustion of GS and 
GSH (9).

Glutamine Metabolism
Glutamine uptake and metabolism are crucial for normal T-cell 
function (36). Donor T  cells require the rapid synthesis of 
macromolecules for their growth, proliferation, and for energy 
after allo-HCT (11). Glutamine converted to glutamate can 
support the progression of the TCA cycle, ultimately leading to 
production of α-KG, a citrate precursor. To generate new lipids, 
citrate is secreted into the cytosol and metabolized to form 
acetyl-CoA, the backbone for lipid synthesis (34). In addition 
to the PPP, glutaminolysis can provide NADPH to support lipid 
and nucleotide biosynthesis as well as maintenance of GSH (37). 
In vitro-activated T cells utilize the transcription factor Myc to 

incorporate glutamine into metabolic pathways (17). Allogeneic 
T  cells increase glutamine uptake by upregulating glutamine 
transport channels, such as glutamine-fructose-6-phosphate 
transaminase, phosphoribosyl pyrophosphate amidotransferase, 
and glutaminase 2 post allo-HCT (2). While the level of glutamine 
was increased in allogeneic T  cells, the level of glutamate was 
lower. Moreover, the levels of aspartate and ornithine, products of 
glutamate conversion to α-KG by ornithine aminotransferase and 
glutamate oxaloacetate transaminase, respectively, were increased 
in allogenic T  cells after allo-HCT (2, 31). These data suggest 
that alloantigen-activated T cells further increase glutaminolysis 
to replenish intermediate metabolites of the TCA cycle that are 
depleted in proliferating T  cells after allo-HCT. Studies using 
radioactive tracers indicate that alloreactive CD4+ and CD8+ 
T  cells preferentially use glutamine to provide substrates for 
ribose synthesis (31).

Fatty Acid Metabolism
Alloantigen-activated T  cells accumulate various types of FAs 
and lysophospholipids after allo-HCT (2). In addition to glucose 
and glutamine, lipids are an effective energy source as well as 
biosynthetic intermediates (38). FAs can be generated through 
three different pathways: environmental uptake, synthesis, or 
hydrolysis of membrane or lipid droplets (39). FAs are classified 
according to (a) to their backbone lengths (short-, medium-, 
long-, and very long-chain), (b) saturation, i.e., the number of 
double bonds (unsaturated, mono-, poly-unsaturated), and (c) 
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position of the double bonds (37). During activation, in vitro acti-
vated T cells augment fatty acid synthase (FAS) while decreasing 
FAO, thus enhancing the accumulation of FA metabolites needed 
for the membrane (17). The effect of lipids on T-cell function 
seems to be mediated by a complex network dependent on the 
type of lipids (40).

Fatty Acid Synthesis
FAs have an important role in Teff function and differentiation. 
Acetyl-CoA carboxylases 1 (ACC1), ACC2, and FAS are recog-
nized as key rate-limiting enzymes in this process (41). Inhibition 
of FAS limits development of Th1, Th2, and Th17 subsets (42, 43). 
Blockade of the enzyme ACC1 enhances the formation of Tregs 
during Th17 differentiation (43). In vitro, induction of FAS after 
TCR stimulation is regulated via the mTORC1–SREBP pathway 
(14, 44). Moreover, Myc is essential for activation of glucose-
metabolizing genes and also for FA synthesis, linking glycolysis 
to de novo FAS (45). Recent studies showed that FAS is required 
for maintaining glycolytic activity in allogeneic T  cells (46). 
Disruption of FAS at ACC1 effectively ameliorates GVHD devel-
opment (46, 47). This study emphasizes the relationship between 
glycolysis and FAS in allogeneic T cells.

Fatty Acid Oxidation
Fatty acid oxidation is a multistep energetic process by which 
FAs are broken down in the mitochondria via sequential removal 
of 2-carbon units at the β-carbon position of a fatty acyl-CoA 
molecule (39, 48). A given long-chain acyl-CoA that enters the 
FAO yields one molecule of acetyl-CoA from each cycle of FAO. 
This acetyl-CoA can be directly shuttled into TCA cycle. The 
NADH and FADH2 produced during FAO and the TCA cycle are 
then available to be used. While saturated short long-chain FA 
(SCFAs) and medium chain FA are almost exclusively oxidized in 
the mitochondria, long-chain FA and very long-chain fatty acids 
(>14 carbons) can also be oxidized in peroxisomes (49). Previous 
studies have indicated that alloreactive T cells increase FAO, and 
that targeting FAO could arrest GVHD in haploidentical allo-
HCT (8, 9). Although they reported substantial increases in FA 
transport and intracellular acylcarnitines, suggesting changes in 
FA metabolism, it was not determined if FAO was directly respon-
sible for the increase in OXPHOS (31, 34). Also, no improvement 
in survival of recipients treated with FAO inhibitors was shown.  
By contrast, our recent study showed intracellular carnitine-
derived metabolites were diminished in alloantigen-activated 
T  cells after MHC-mismatched or haploidentical allo-HCT 
(2). Allogeneic T  cells dramatically decreased mitochondrial-
dependent FAO and pyruvate oxidation through the TCA cycle. 
Therefore, it is possible that FAO is downregulated in allogeneic 
T  cells after allo-HCT. These inconsistent observations likely 
result from the different controls used in these two studies. While 
studies from Ferrara’s group compared bioenergetic parameters 
of allogeneic T cells to naïve/resting T cells (9), we used those 
isolated from syngeneic recipients as controls (2); intended to 
account for homeostatic proliferation of T cells under an inflam-
matory environment (29). In addition, we observed both Glut1 
and Glut3 expression could serve as indicators of glycolytic 
activity (9), as alloreactive T cells increase Glut3 to an even larger 

extent than Glut1 in allogeneic recipients (2). Taken together, 
with study from by Rathmell’s group (24), we speculate that FAO 
might not be the major material resource fueling the TCA cycle 
and OXPHOS in alloreactive T cells.

Sphingolipids (SLs) in Allogeneic  
T-Cell Metabolism
Sphingolipids represent a major class of lipids important for cell 
membrane formation (50). S1P is emerging as a key regulator 
of proliferation, inflammation, vasculogenesis, and resistance 
to apoptotic cell death (51). Recently, a report demonstrated 
that S1P1 regulates T  cell metabolism through activation of 
mTOR-Akt, which suppressed Treg function (52). Blockade of 
the S-1P receptor effectively prevents GVHD by modulating the 
migration of allogeneic T cells. Ceramide plays a central role in 
the metabolism of SL (53, 54). Ceramide can be generated via 
de novo synthesis or by degradation of complex SLs, especially 
sphingomyelin (51). The key rate-limiting step in the biosynthesis 
of ceramide is the attachment of various acyl-CoA side chains to a 
sphingoid base by ceramide synthases (CerS) (55). The CerS show 
substrate preferences for specific chain lengths of fatty acyl CoAs. 
Briefly, CerS1 shows significant preference for C18-FA CoA, 
CerS4 for C18-/C20-FA CoA, CerS5 and CerS6 for C16- FA CoA, 
CerS2 for C22/C24- FA CoA, and CerS3 for ultra-long-chain 
FA CoA (51, 56). Recent work from our lab showed that CerS6 
regulates SL metabolism in alloantigen-activated CD4+ and CD8+ 
T cells and required for alloreactive T cells to induce GVHD (57).

THe ROLe OF PD-1 AnD CHeCK POinT 
BLOCKADe On ALLOGeneiC T CeLL 
MeTABOLiSM

The coinhibitory receptor programmed death 1 (PD-1; CD279) 
has key roles in modulating T-cell responses in both normal and 
antitumor immunity (58). PD-1 binds to PD-L1 (B7-H1; CD274), 
which is expressed by macrophages, DCs and non-hematopoietic 
cells, and PD-L2 (B7-DC; CD273), which is primarily expressed 
by monocytes and inflammatory macrophages in GVHD target 
organs (59, 60). Donor T  cells significantly upregulate PD-1 
expression, which can increase in response to FAO, superoxide, 
hyperpolarized mitochondrial membrane potential, and ROS 
formation which subsequently induces T-cell death following 
allo-HCT. In the absence of PD-1/PD-L1 ligation, donor T cells 
displayed higher glycolytic activity and OCR. Hence, PD-L1/
PD-1 ligation, versus that of PD-L2/PD-1, plays a predominant 
role in downregulating GVHD (59).

MiCROBiOTA ReGULATeS T CeLL 
MeTABOLiSM

The composition, or diversity, of intestinal microbiota shapes the 
innate and adaptive immune responses (61). The onset of GVHD 
is associated with a progressive reduction in microbiota diversity, 
with an increase in Lactobacillales and Blautia and a decrease in 
Clostridiales species (62–64). The microbiota metabolome, which 
consists of products generated by host metabolism, microbial 
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metabolism, and mammalian–microbial co-metabolism in the 
intestines, influences the development of GVHD (65, 66). SCFA-
bacterial metabolites, derived from carbohydrate fermentation 
and include acetate, propionate, isobutyrate, and butyrate, increase 
histone H3 acetylation in the locus of Foxp3; thereby increasing 
the numbers of Tregs directly, yet also indirectly through increas-
ing the production of TGFβ in the intestinal epithelium (67). The 
effect of SCFAs on T  cells is also related to mTOR activation 
(68). SCFAs induce the expression of receptor GPR15, which 
is responsible for the recruitment of Tregs to the large intestine 
(69–71). Restoration of butyrate, which is diminished in intestinal 
epithelial cells (IECs) after allo-HCT, improved IEC junctional 
integrity, decreased apoptosis, and mitigated GVHD (66). Aryl 
hydrocarbon receptor (AhR) is a cellular metabolic sensor (72). 
AhR ligands are derived from intestinal microbiota metabolism. 
AhR ligand, indole-3-aldehyde, produced by Lactobacilli through 
tryptophan breakdown (73), modulates the development of 
GVHD through inducing Tregs and Tr1 cells (74).

TARGeTinG T-CeLL MeTABOLiSM  
TO SePARATe GvHD AnD THe  
GRAFT-veRSUS-TUMOR eFFeCT

Given that tumors and alloreactive T cells share a glycolytic phe-
notype, pharmacological glycolysis inhibition could prevent both 
GVHD and tumor relapse, a primary complication after allo-
HCT. Inhibition of glucose-metabolizing enzymes could reduce 
allogeneic T activation and function (2, 17) and, further, lower 
levels of glycolysis would support the generation of long-lived 
CD8 Tm (3) which are required for maintaining the graft-versus-
tumor (GVT) effect. Moreover, in vivo activated CD4+T cells are 
more dependent on glycolysis than CD8+T cells (75), which are 
critically important for maintaining GVT activity in allo-HCT. 
Increasing evidence indicates that CD8+ T cells with lower rates 
of glycolytic activity have better antitumor efficacy in eradicat-
ing established tumor in adoptive T cell transfer (ACT) models 
(76). Blocking glucose metabolism at HK2 by 2-deoxyglucose 
improves antitumor efficacy of ACT therapy (40). The aforemen-
tioned evidence suggests a valid possibility of targeting glycolysis 
to treat GVHD while preserving the GVT effect after allo-HCT.

iMPACT OF CURRenT 
iMMUnOSUPPReSSive DRUGS On 
T-CeLL MeTABOLiSM in ALLO-HCT

Corticosteroids inhibit glycolysis and endogenous respiration 
in donor lymphocytes and impair GVL activity (77). Inhibiting 
mTOR with rapamycin decreases glycolysis and enhances FAO in 
donor T cells; this is expected to reduce alloreactive T cells and 
enhance Treg function (27). However, attempts to conceptually 
translate this into patients have proven difficult. This challenge 
may be because rapamycin can promote CD8 memory T-cell 
responses by enhancing FAO and hence be detrimental in estab-
lishing tolerance (78). Alternatively, inhibition of calcineurin 
with cyclosporine diminishes glycolytic activity of donor T cells 
by decreasing glycolytic enzymes and the expression of glut1/3 
(79); which support Treg expansion and GVHD attenuation (80).

COnCLUDinG ReMARKS

Current immunosuppressive regimens, including steroids and 
calcineurin inhibitors, help to prevent allograft rejection and 
GVHD. Consequently, patients are vulnerable to complications, 
such as opportunistic infections and tumor relapse. Therefore, 
bioenergetic signatures of immune cells at different stages of toler-
ance induction after transplant could serve as a promising clinical 
therapeutic strategy. Metabolism inhibitors, in concert with 
cancer immunotherapies, highlight an avenue by which to achieve 
better antitumor efficacy and functional tolerance to allografts. 
Hence, distinguishing metabolic signatures between allogeneic 
T cells and tumor cells is critical to truly fulfilling this goal.
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