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Epigenetics refers to the study of mechanisms controlling the chromatin structure, which has 
fundamental role in the regulation of gene expression and genome stability. Epigenetic marks, 
such as DNA methylation and histone modifications, are established during embryonic devel-
opment and epigenetic profiles are stably inherited during mitosis, ensuring cell differentiation 
and fate. Under the effect of intrinsic and extrinsic factors, such as metabolic profile, hormones, 
nutrition, drugs, smoke, and stress, epigenetic marks are actively modulated. In this sense, 
the lifestyle may affect significantly the epigenome, and as a result, the gene expression profile 
and cell function. Epigenetic alterations are a hallmark of aging and diseases, such as can-
cer. Among biological systems compromised with aging is the decline of immune response. 
Different regulators of immune response have their promoters and enhancers susceptible to 
the modulation by epigenetic marks, which is fundamental to the differentiation and function 
of immune cells. Consistent evidence has showed the regulation of innate immune cells, and  
T and B lymphocytes by epigenetic mechanisms. Therefore, age-dependent alterations in 
epigenetic marks may result in the decline of immune function and this might contribute 
to the increased incidence of diseases in old people. In order to maintain health, we need 
to better understand how to avoid epigenetic alterations related to immune aging. In this 
review, the contribution of epigenetic mechanisms to the loss of immune function during 
aging will be discussed, and the promise of new means of disease prevention and manage-
ment will be pointed.
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ePiGeNeTiCS: HOw THe GeNOMe TALKS wiTH  
THe eNviRONMeNT

Epigenetics (epi = beyond) refers to the study of the heritable information on the chromatin beyond 
that given by the DNA sequence. Epigenetic marks, represented by different chemical groups added 
on both the DNA molecule and histone proteins, play key roles in the control of chromatin struc-
ture and function (1, 2). Among the most studied epigenetic mechanisms are DNA methylation 
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and posttranslational histone modifications. The chromatin 
remodeling, the presence of structural and functional variants of 
histones, and the regulation by noncoding RNAs are additional 
epigenetic mechanisms working together with DNA methylation 
and histone modifications to maintain genome stability and 
control gene expression.

DNA Methylation
In mammals, each cytosine in the context of a CpG dinucleotide 
is a potential site for the covalent addition of a methyl group, 
yielding 5-methylcytosine (5mC) (3). This reaction is catalyzed by 
DNA methyltransferases (DNMTs)—DNMT1, 3A, and 3B, which 
transfer the methyl group from S-adenosylmethionine (SAM) to 
the 5-carbon of the cytosine (5mC) (4). SAM, a component of 
methionine cycle, is considered the universal donor of methyl 
groups to various biomolecules, including DNA and histones (5). 
Different components coming from the diet, such as B6 and B12 
vitamin, choline, and betaine act as cofactors in reactions taking 
part in methionine cycle, and the folate cycle is coupled to the 
methionine cycle, bringing up how cellular nutrient status may 
modulate epigenetic marks (6). In normal cells, most CpG-rich 
(CpG islands) gene promoters are unmethylated, making these 
genes permissive to transcription. Hypermethylated CpG-rich 
promoters are typically associated with gene silencing, since 
methylated CpGs can both impair the binding of transcriptional 
factors and recruit repressive complexes (7, 8). Regions, such 
as repetitive DNA sequences and transposons, present in high 
number in our genome, have CpGs heavily methylated in normal 
cells. The loss of methylation in these regions favors homologous 
recombination and the expression of undesirable elements, 
contributing to chromosomal instability (9). The technological 
advances in genome-wide chromatin profiling have revealed that 
in fact the role of DNA methylation in gene regulation depends 
on its position and context. While in promoters it is associated 
with transcriptional silencing, in other regions it can modulate 
enhancer activity and splicing (10). The methylation at gene 
bodies is frequent in ubiquitously expressed genes and correlated 
with transcriptional activation (11). The tissue-specific DNA 
methylation seems to occur not at CpG islands, but at regions of 
lower CpG density about 2 kb distant from CpG islands, named 
CpG island shores (12). In addition, other non-CpG sites were 
more recently described as sites for DNA methylation in humans, 
such as CHG and CHH sites (where H is A, C, or T) (13), but 
the mechanisms involved in this process are still unknown. The 
complexity of the covalent modification of DNA has additionally 
increased with the recent identification of a new family of enzymes 
known as ten-eleven translocation 1-3 (TET1-3), which are able 
to oxidize 5mC to 5-hydroxymethylcytosine (5hmC) in a reac-
tion that generates other intermediates (5-methylformylcytosine 
and 5-carboxylcytosine) (14, 15). These modified bases may be 
excised by thymine DNA glycosylases (TDG) and, through the 
base excision repair (BER) process, yield demethylated cytosines 
(16), which makes this process a mechanism of active DNA 
demethylation. The DNA can be also actively demethylated by 
the deamination of 5mC and 5hmC by the activation-induced 
deaminase/apolipoprotein B editing complex enzymes, followed 
by BER/TDG activity (17). Alternatively, 5hmC can be passively 

demethylated during DNA replication, since it is not recognized 
by DNMT1, yielding in this position non-methylated cytosine in 
the newly synthesized DNA strand.

Histone Modifications
In the nucleosomes, not only the DNA molecule but also histone 
proteins carry chemical modifications, which are fundamental 
for chromatin-dependent gene regulation (18). Several post-
translational histone modifications (PTMs) regulate the chro-
matin structure, by affecting inter-nucleosomal interactions, 
and recruit proteins and complexes that influence not only the 
gene transcription but also mediate processes, such as DNA 
replication, DNA repair, alternative splicing, and recombination 
(19). A large number of proteins acting as writers, erasers, and 
readers have been described as components of histone modifier 
machinery, targeting all core histones H2A, H2B, H3, and H4, 
and the linker H1 histone, which have their amino acids subjected 
to covalent modifications mainly in the N-terminal tails. Among 
these modifications are acetylation, phosphorylation, methyla-
tion, ubiquitylation, sumoylation, and ADP ribosylation (19). By 
decreasing the positive charge of histones, acetylation and phos-
phorylation weaken interactions between histones and DNA, 
facilitating transcription machinery to access the DNA. Histone 
methylation occurs mainly on lysines and arginines, which can 
be, respectively, mono-, di- or trimethylated, and mono- and di-
methylated, resulting in a high level of complexity regarding their 
effects. For example, high levels of trimethylated H3K4, H3K36, 
and H3K79 are associated with actively transcribed chromatin, 
while methylated H3K9, H3K27, and H4K20 are associated with 
transcriptionally inactive chromatin (20). The covalent attach-
ment of the large ubiquitin molecule changes the nucleosome 
conformation, affecting both intra-nucleosomal interactions and 
interactions with effector proteins. Sumoylation involves the addi-
tion of small ubitiquin-like molecules to histones, and has been 
associated with repressive functions. Histone mono- and poly-
ADP ribosylation has been correlated with a relaxed chromatin 
state. The number of possible histone modifications has increased 
with the continuous identification of novel histone PTMs, such 
as lysine propionylation (21, 22), butyrylation (21), crotonylation 
(23), succinylation, and malonylation (24), coupling cell metabo-
lism with chromatin structure and function. It is important to 
keep in mind that a single histone mark is not responsible for 
the final effect on chromatin, but rather the combination of all 
marks in a chromatin region defines the biological outcome  
(25, 26). Besides that, there is interplay of DNA methylation, 
histone modifications, and nucleosome positioning, and the 
outcome is a result of the sum of these interactions.

The Plasticity of the epigenetic Marks
Although presenting the same genome, each cell type in the 
same individual has a specific group of epigenetic marks, 
named epigenome. Epigenetic marks are established during 
embryonic development and transmitted through mitosis, 
stabilizing gene expression programs, and defining cell-type 
identities and function (27). In addition to their role in cell 
differentiation, these marks are fundamental to X chromo-
some inactivation in females and genomic imprinting during 
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development (28, 29). Although being relatively stable over 
time, epigenetic marks can change dynamically in response 
to cellular conditions and environmental cues (2, 30, 31). 
Recent studies have shown that the methylation patterns 
determined by the binding of factors on DNA motifs are less 
responsive to environment within the lifetime of an indi-
vidual, and that these patterns would persist across generations  
(32, 33). However, other DNA regions would have their 
epigenetic marks more susceptible to internal and external 
environment, such as stress, smoke, drugs, hormones, cir-
cadian rhythms, and metabolic variations caused by diet. In 
this way, the environment can modulate the epigenotype, and 
consequently the phenotype, being decisive to direct to health 
or disease states. In fact, many studies have shown the relation 
between epigenetic alterations and a wide variety of diseases, 
including aging-related diseases (34–36).

CHANGeS iN ePiGeNeTiC MARKS 
DURiNG AGiNG

During the aging of an organism, there is a gradual decline of nor-
mal physiological functions. In humans, these include decreased 
immune function, chronic inflammation, sarcopenia, and most 
importantly increased susceptibility to diseases, such as cancer, 
cardiovascular disorders, and metabolic and neurodegenerative 
diseases. Although systemic, these phenotypes are a result of 
alterations in different cellular processes, such as DNA damage 
response, mitochondrial and proteasome function, and cell 
death regulation (37–40). At the molecular level, transcriptional 
dysregulation is observed with aging, resulting in gene expression 
changes (41, 42). Epigenetic alterations are important contribu-
tors to these changes in the aged transcriptome, and are known 
as “epigenetic drift” (43–45).

DNA Methylation
Regarding DNA methylation, a progressive global hypometh-
ylation occurs invariably with advanced age (46). Repetitive 
DNA sequences normally silenced by epigenetic marks become 
expressed, being at least partly responsible for the well-
characterized loss of heterochromatin observed during aging 
(47, 48). An age-dependent hypomethylation of specific gene 
promoters, such as IL17RC, occurs and induces their transcrip-
tion (49). At the same time, some gene promoters become 
hypermethylated and abnormally silenced (50–52). Regarding 
5hmC, it was shown that although the global level of 5hmC in 
the brain increases with aging both in mice (53) and humans 
(54), it decreases in other tissues, such as blood (55).

Besides the epigenetic drift, which is stochastic non-site- 
specific changes in DNA methylation that contributes to variabil-
ity during aging, DNA methylation signatures in specific CpGs, 
both tissue-specific and present in several tissue types, were 
identified as associated with chronological age (56). Although 
age-related DNA methylation alterations are more frequent in 
CpG islands, tissue-specific changes occur in other genomic 
regions (57). In a comprehensive study of DNA methylation, 
Yuan and colleagues (58) showed that besides hypermethylated 

CpG islands, a great number of age-related differentially methyl-
ated regions fell into open sea (regions of megabase extension 
characterized by low CG content) or shore/shelf regions, which 
were found hypomethylated with age. These authors have also 
identified large age-associated hypomethylated blocks, similar 
to those described associated with cancer (59). Based on the 
genome-wide methylation profile of whole blood from 656 
individuals spanning a wide age range, a quantitative model was 
built to determine the rate at which an individual’s methylome 
ages, and was shown to represent a strong and reproducible mean 
to discriminate relevant factors in aging (60).

Histone Modifications
The global DNA hypomethylation observed during aging was 
shown to be associated with changes in histone modification pat-
terns (61, 62). Changes in the activity, function, and abundance 
of enzymes of the epigenetic machinery are present with aging  
(63, 64). Genes identified as hypermethylated in blood cells dur-
ing aging were associated with the presence of bivalent chromatin 
domains in embryonic stem cells and with the repressive histone 
marks H3K27me3 and H3K9me3 in differentiated cells (65–67). 
A global loss of histones, as well as an imbalance of activating 
and repressive histone marks, occurs with age (68, 69). For 
example, a diminished content of acetylated H3K9 (70) and 
trimethylated H3K27 (71) was described in aged cells. Reduced 
levels of H3K9me3, which can be a result of the downregulation 
of SUV39H1/2 (72), were found with age in human and murine 
tissues and cells and seem to contribute to the loss of hetero-
chromatin (72, 73). An age-decrease in the expression of HP1 
(74) and DNMTs (75) could favor DNA demethylation in the 
heterochromatin. Another alteration that could contribute to a 
more opened chromatin state is the increased level of H4K16Ac 
with replicative age, as described in human fibroblasts in culture 
(76). H4K16 is among the targets of the NAD+-dependent histone 
deacetylase SIRT1, which is associated with aging extent and 
genome maintenance in different organisms (77).

While the levels of the canonical histones decrease during 
aging, alterations in the replication-independent incorporation of 
histone variants occur during aging. The replication-independent 
histone variant H3.3 becomes more abundant with age in general, 
not just in non-replicating cells, such as neurons (78). Again, this 
could favor a chromatin state more accessible to the transcription 
machinery. Another replication-independent histone variant that 
seems to be linked to aging is the H2A.Z, since H2A.Z knock-
down fibroblasts were shown to develop premature senescence 
(79). The H2A variant macroH2A is characteristic of senescence-
associated heterochromatin foci, heterochromatin regions over 
proliferation-promoting genes in senescent cells (80). An age-
dependent increase in the macroH2A level was described both 
during replicative senescence in cultured human fibroblasts and 
in many tissues of aged mammals (81).

effects of the environmental and Lifestyle 
Factors on epigenetic Changes and Aging
A classical study by Esteller’s group (82) showed significant 
differences in epigenetic marks in old monozygotic twin pairs 
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compared to very young twin pairs, which presented these marks 
indistinguishable. More interestingly, those old twin pairs that 
had spent less of their lifetime together and/or had a more dif-
ferent natural health-medical history were those presenting the 
greatest differences in epigenetic marks. Studies with human 
population have shown that genetic factors cause no more than 
20–30% of the differences observed in the lifespan of identical 
twins, the epigenetic drift being the main responsible for varia-
tion during the lifetime (83, 84). These and other studies (85–88) 
illustrate how epigenetic marks change with aging and are under 
the effect of environment. As a whole, these alterations change 
the chromatin accessibility, resulting in abnormal gene transcrip-
tion and genomic instability, and have been proposed to be key 
regulators of the aging process, contributors to the development 
of age-related diseases and even predictors of the chronological 
age (52, 89–93). Age-related changes in multiple CpG sites across 
the genome were shown to accurately predict the biological age 
of an individual. This epigenetic clock has been shown a potential 
biomarker of aging in humans and associated with several aging-
related disease phenotypes (60, 90, 94, 95). Epigenetic age assessed 
in blood was able to predict, independently of chronological age, 
all-cause mortality in different cohorts, including different racial/
ethnic groups (93, 95–97).

It is important to emphasize that the epigenome acts as a 
molecular interface between the genome and the environment. 
In this way, the lifestyle, including diet habits, exercises, life 
stressors, smoke, substance abuse, chemical exposition, among 
others, could alter the epigenetic landscape, affecting the chro-
matin structure and function, and, consequently, favoring the 
development of aging-related disease phenotypes. Exercise and 
nutritional habits remodel epigenetic marks in human skeletal 
muscle and adipose tissue (98–100). The effect of exercise on the 
improved cardiorespiratory fitness and running performance, 
as well as on the decreased low-density lipoprotein levels, was 
accompanied by a widespread demethylation of CpG islands, 
opposed of the methylation changes observed during aging 
(101, 102). Several studies have demonstrated the adverse effect 
of smoke associated with changes in epigenetic marks. Prenatal 
smoke exposure affects DNA methylation of blood cells from 
children of smoking mothers (103). Epigenetic alterations caused 
by chronic cigarette smoke sensitize bronchial epithelial cells to 
malignant transformation (104). Tobacco smoking may induce 
DNA methylation alterations in cell types of both the innate and 
adaptive immune system (105). Offspring DNA methylation 
alterations were associated with maternal alcohol consumption 
(106). The turnover of histones and histone variants was shown 
to be affected by the alcohol exposure in rats (107). Many of these 
effects of the environment on aging involve oxidative stress, both 
in humans and animal models. Although severe acute or chronic 
stress exposure accelerates aging by favoring error accumulation 
due to exhausting defense mechanisms, moderate stress has 
shown to delay aging process by activating defense mechanisms 
to prevent and/or eliminate errors (108). In the last years, several 
studies have demonstrated the relation between cellular stress and 
epigenetic alterations (104, 109–114). Reactive oxygen species 
(ROS) lead to oxidized DNA lesions that can contribute to DNA 
methylation alterations. One of the major DNA oxidative damage 

products is 8-hydroxy-2′-deoxy-guanosine that impairs binding 
of DNMTs and methyl-CpG binding proteins to DNA (115). In 
addition, ROS may interfere with TET-mediated DNA demethyla-
tion (116). SAM availability can also be decreased by the depletion 
of glutathione (GSH) because of redox status, inhibiting all meth-
ylation reactions (117). Sirtuins play important role in response 
to a variety of stresses, such as oxidative or genotoxic stress and 
are crucial for cell metabolism. ROS can both induce DNA dam-
age and SIRT1 relocation to these damage sites, for where SIRT1 
recruits other epigenetic machinery components, such as DNMTs 
and polycomb proteins in order to silence these regions. O’Hagan 
and coworkers (110, 112) showed that this process could result 
in stable aberrant epigenetic and gene transcription changes, 
similarly to alterations observed in cancer. In murine embryonic 
mesenchymal fibroblasts, increased levels of hydrogen peroxide 
induce SIRT1 to relocate from repressed DNA sequences to DNA 
breaks to promote repair, resulting in transcriptional changes 
that parallel those in the aging mouse brain (118). By responding 
to environmental stress, sirtuins promote cell survival and, as a 
result, increase replicative and chronological lifespan. Although 
not clearly established in mammals, the association of sirtuins with 
aging and lifespan is suggested by the overexpression of SIRT1 in 
murine tissues during caloric restriction (CR) (119), the require-
ment of Sirt1 to the increased physical activity and extended lifes-
pan during caloric restriction (120), and the improved health and 
survival of mice submitted to a high-calorie diet after resveratrol 
treatment, which activates Sirt1 (121). Several studies in different 
model organisms show the role of sirtuins in lifespan extension 
by CR (122–125), and evidences indicate that epigenetic mecha-
nisms have crucial roles in this process (126, 127). In this context, 
new and known compounds have been tested as “CR mimetics,” 
including sirtuin-activating compounds, such as resveratrol (128). 
Compounds inhibiting histone acetylation, such as spermidine, 
also extend lifespan (129).

As mentioned before, ROS may modify the TET-mediated 
DNA demethylation (116). Both the increase in endogenous 
antioxidants and caloric restriction were shown to impair the 
increase in 5hmC levels in murine aged brains (130). The dem-
ethylase activity of TET enzymes can be stimulated by nutrients, 
such as ascorbic acid (131, 132). Since the activity of many 
epigenetic enzymes depend on intracellular levels of essential 
metabolites (methionine, iron, ketoglutarate, NAD+, acetyl-CoA, 
SAM), the cellular metabolism controls epigenetic modifications 
and may regulate longevity (133, 134).

In another aspect, studies in human cohorts have shown that 
life stressors, in special during early development, can induce last-
ing epigenome alterations (135–139). Stress and glucocorticoids 
may induce long-lasting changes in DNA methylation both at the 
genome-wide level and within selective gene loci, as observed 
both in humans and rodent models (140–142).

ePiGeNeTiC ReGULATiON OF THe 
iMMUNe SYSTeM

An important characteristic of the immune system is its adaptive 
capacity to recognize self from non-self to protect the organism in 
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response to environmental signals of different types and duration, 
such as potentially pathogenic agents and substances. Several 
immune cell populations act against potentially hazard envi-
ronment by both innate and adaptive mechanisms, and their 
functions depend on highly controlled regulation of hemat-
opoietic cell differentiation. Increasing number of studies have 
demonstrated the crucial role of epigenetic mechanisms in the 
development and differentiation of immune system, as well as in 
related pathologies (143–145). With age, the immunocompetence 
becomes compromised and this has been linked to the repression 
of immune cell differentiation genes along with the activation 
of autoimmunity genes because of DNA methylation alterations  
(49, 146–148).

innate immune Cells
The innate immune system, consisting of macrophages, neutro-
phils, dendritic cells (DCs), and natural killer (NK) cells, is the 
first response to pathogenic agents. Macrophages and DCs are 
professional antigen-presenting cells (APCs) able to capture anti-
gens for processing and presentation to lymphocytes. When acti-
vated, resident macrophages can act directly by destroying their 
targets or indirectly via initiating an acute inflammatory response 
by producing cytokines, chemoattractants, and inflammatory 
mediators, and recruiting neutrophils, monocytes, and DCs 
(149). Activated macrophages release different factors in response 
to the extracellular environment, being able to acquire function-
ally distinct phenotypes, classic M1 and alternative M2. Activated 
M1 macrophages are induced by the cytokine interferon-gamma 
(IFN-γ) and bacterial products and have a pro-inflammatory 
profile, playing an important role in host defense. Differently, 
M2 macrophages are induced by interleukin-4 and -10 (IL-4 and 
IL-10) and helminthic products and have an anti-inflammatory 
profile, promoting tissue repair. Since mature cells of the immune 
system have to rapidly respond to pathogens, the contribution 
of epigenetic mechanisms to the regulation of genes involved in 
these responses has been substantially described. In this context, 
epigenetic mechanisms were shown to be involved in the modula-
tion of macrophage polarization, mainly by histone marks present 
in enhancers of specific genes (150). The first study showing the 
epigenetic regulation of inflammation was that by Saccani and 
Natoli (151). They demonstrated the induction of inflammatory 
cytokines, such as IL-8 and macrophage inflammatory protein 
1-alpha (MIP-1α), by the loss of H3K9 methylation at the promoter 
regions after exposing cultured human monocyte-derived DCs 
to bacterial endotoxin lipopolysaccharide (LPS). Innate immune 
cells have a degree of specificity by presenting pattern recognition 
receptors (PRRs) to recognize damage- or pathogen-associated 
molecular patterns in non-infectious substances or microbes, 
respectively (152). Recent evidences indicate that, different from 
previously believed, cells of innate immune system may keep a 
memory of past stimulations, named “trained immunity,” chang-
ing the response upon new stimuli and becoming able to respond 
to a larger number of microbes than the initial agent (153, 154). 
This immunological memory involves changes in transcriptional 
programs by reprogramming epigenetic marks. For example, 
metabolic changes in monocytes activated by β-glucan from 
Candida are associated with increased levels of the active histone 

marks, H3K4 trimethylation, and H3K27 acetylation, leading to 
increased production of IL-6 and TNF cytokines, inflammation, 
and “trained immunity” (155). Macrophages restimulated with 
LPS induce an attenuated inflammatory response, although 
maintaining an intact antimicrobial response. Foster and col-
leagues (156) showed that genes involved in LPS-tolerance lose 
the active histone marks H3K4me3 and H4Ac in their promoters 
during restimulation with LPS, while non-tolerizeable genes 
maintain these active marks after a secondary challenge with 
LPS, correlated with a permissive gene transcription. Epigenetic 
mechanisms also regulate the differentiation of human mono-
cytes into DCs under specific stimuli. For example, the observed 
increased expression of CD209 during differentiation was shown 
to be a result of the acquisition of H3K9Ac and loss of H3K9me3, 
H4K20me3, and DNA methylation in its promoter (157).

T Lymphocytes
The age-dependent deterioration of the immune system, named 
immunesenescence, is accompanied by alterations in epigenetic 
marks. Kuwahara and colleagues (158) showed that CD4 T-cell 
senescence and cytokine homeostasis is controlled by the mainte-
nance of histone acetylation on the Bach2 locus promoted by the 
binding of menin. In addition, the increased genomic instability 
in the thymus with age is associated with a loss of heterochroma-
tin marks, including H3K9me3 with corresponding reduction 
in SUV39H1 expression (159). The senescence seems to be also 
activated by DNA hypomethylation since the hypomethylation 
is observed in senescing but not in immortalized cells (160), 
and the DNA methylation inhibition leads immortal cells to cell 
arrest (161).

Cells from the innate immune system present antigens to both 
B and T lymphocytes, activating them to proliferate and differen-
tiate into effector cells. APCs activate T cell receptor and costimu-
latory molecules of naïve T cells, initiating T cell differentiation 
by the activation of the nuclear factor of activated T cells and pro-
duction of interleukin-2 (IL-2). IL-2 orchestrates the molecular 
switch of transcriptional programs of immune-responsive genes 
in response to T cell activation. Naïve and resting CD4+ T cells do 
not express IL-2, but this cytokine is expressed in T cells under 
antigen stimulation. Murayama and colleagues (162) showed that 
demethylation of a single specific CpG site in an enhancer region 
is a prerequisite for IL-2 transcription and, more interestingly, 
that this epigenetic change constitutes a memory that CD4+ 
T cells encountered the antigen.

Peptide antigens are presented by APCs to T cells in the con-
text of the major histocompatibility complex (MHC) molecules. 
Cytotoxic T cells, expressing CD8, recognize antigens presented 
by normal cells in the context of MHC class I molecules, being 
able to directly destroy the infected cells. Activated CD8+ 
T cells have increased levels of H3Ac at the IFN-γ promoter and 
enhancer, modification that is maintained through memory CD8+ 
T  cells, and permits a quicker and stronger cytotoxic response 
to additional antigen stimulation (163). MHC class II are the 
MHC molecules involved in the antigen presentation to CD4+ 
helper T cells. The class II transactivator (CIITA) is a key factor 
controlling the expression of MHC-II, and both CIITA expres-
sion and CIITA-dependent MHC-II expression are epigenetically 
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regulated (164). Analysis of chromatin accessibility in PBMCs 
identified memory CD8+ T cells as the subpopulation with the 
most profound chromatin remodeling with aging (165, 166).

After antigen recognition, depending on cytokine environ-
ment, naïve T lymphocytes differentiate into effector T “helper” 
(Th1, Th2, and Th17) or regulatory (Treg) CD4+ T  cells, and 
coordinate specific immune responses by producing distinct sets 
of cytokines (167). The differentiation toward a Th1 profile is 
induced by IFN-γ, IL-12, or IL-15, whereas differentiation toward 
the Th2 profile—by IL-4, IL-10, or IL-13; both pathways involve 
the regulated expression of multiple effector genes. Transforming 
growth factor beta and IL-6 are responsible for inducing naïve 
T cell differentiation into Th17 cells. The CD4+ T cells differen-
tiation into these different profiles is tightly regulated to assure 
specific cytokine signatures and changes in the epigenetic marks 
are fundamental to complete this process. The IFNG promoter, 
hypermethylated in human naïve T  cells, becomes demethyl-
ated during the differentiation into Th1 profile (168). Specific 
histone marks were identified across the IFNG locus, where 
H4Ac and H3K4me3 are present in Th1  cells and H3K27me2 
and H3K27me3 in Th2 cells (169). Naïve and Th1 cells present 
IL-4 promoter highly methylated, while Th2 cells have the intron 
2 of IL-4 partly demethylated (170). Th17 cells are characterized 
by the expression of IL-17 cytokine and RAR-related orphan 
receptor C (RORC) transcription factor. The demethylation of 
both IL-17A and RORC loci correlates with gene expression in 
human Th17 cells (171), and the active histone marks H3Ac and 
H3K4me3 were found in the IL-17 locus (172). The demethyla-
tion of Foxp3 locus, as well the hyperacetylation of histones, was 
shown to be important to maintain the stable expression of 
forkhead box P3 (FOXP3) and stabilize the regulatory phenotype 
in Treg cells (173, 174).

B Lymphocytes
After binding to an antigen and be induced by T helper cells, B cells 
differentiate into antibody-secreting plasma cells. Antibodies 
bind to the specific antigen, leading to a better recognition and 
destruction of the pathogen (such as bacteria, virus, and tumor 
cells) by activating complement and/or interacting with lytic cells. 
During B cell differentiation, lineage-specific genes are expressed, 
whereas genes related to multipotent progenitors and alternative 
lineages are repressed. Complex epigenetic regulatory mechanisms 
coordinate B cell differentiation and function, including mono-
allelic V(D)J rearrangement and antibody diversity (175–178).  
A key transcriptional factor involved in B cell commitment is 
paired box 5 (Pax5) that, besides having its expression regulated 
by epigenetic mechanisms (179, 180), recruits chromatin-
modifying proteins to regulate the expression of its targets. 
For example, CD79a gene promoter, hypermethylated in the 
progenitor stage, becomes demethylated during early stages of 
B cell differentiation, followed by the action of histone acetyl-
transferases recruited by Pax5, allowing gene expression (181). 
Pax5 can also interact with chromatin-modifying enzymes to 
repress genes specific for other lineages (182). V(D)J rearrange-
ment and antibody diversity are necessary for the production of 
effective antibodies and require the activation-induced cytidine 
deaminase (AID), expressed by B  cells at specific stages of 

differentiation. In naïve B  cells, AID gene promoter is hyper-
methylated and the gene is not expressed. Upon B cells activa-
tion, AID gene becomes demethylated and acquires increased 
levels of the active histone mark H3Ac (183). The acquisition 
of this histone mark in active promoters and distal enhancers 
is also crucial for gene expression changes occurring during 
the differentiation of B  cells to plasma cells (184). Blimp-1, a 
transcriptional repressor that maintains plasma cell identity, 
has its expression epigenetically induced and epigenetically 
suppresses the expression of mature B  cell genes by recruit-
ing histone modifiers (185, 186). After V(D)J rearrangement 
and antibody diversity processes, B cells can differentiate into 
memory B  cells, which acquire additional epigenetic marks 
beyond those acquired during B cell activation (187). Different 
epigenetic modifications, as well as epigenetic enzymes, such 
as enhancer of zeste homolog 2 (188), histone acetyltransferase 
monocytic leukemia zinc finger protein (189), and DNMT3a 
(190), are observed in resting and activated B cells, and indicate 
that the memory B cell epigenome could favor a faster and more 
efficient activation than that of naïve cells.

CONTRiBUTiON OF ePiGeNeTiC 
ALTeRATiONS TO iMMUNe AGiNG

Age-associated defects are observed in all cells from the immune 
system, affecting their activation and cytokines production.

innate immune Cells
Regarding the innate immune system, many immune responses 
decrease during aging, but at the same time hyperreactivity of 
some responses are also observed (191). Epigenetic alterations 
seem to affect the monocyte differentiation with age, since older 
hematopoietic progenitor cells (HPCs) present hypomethylation 
of differentiation-related genes compared to progenitor cells from 
umbilical cord blood (192). It could be related to the reduced 
pluripotency and decreased potential of differentiation of HPCs 
from older donors (193). At the same time, older HPCs pre-
sented de novo methylation of a subset of genes associated with 
the Polycomb repressive complex that could contribute to the 
reduced phenotypic plasticity of aged stem cells (192). Indeed, 
epigenetic dysfunction could be a precursor to hematologic 
disease in elderly individuals (194). In macrophages, epigenetic 
mechanisms contribute to the decreased expression of MHC-II 
observed with age (195). Although the number of NK  cells 
increases in older individuals, their cytotoxic activity decrease, 
and DNA methylation regulation of IFN-γ and IL-2 seems to 
contribute to this defected function of NK cells (196). Aging is 
well characterized by an imbalance between inflammatory and 
anti-inflammatory responses, where increased levels of inflam-
matory mediators, such as IL-6 and tumor necrosis factor-alpha 
(TNF-α), are observed even in the absence of acute infection 
or other physiologic stress (process known as “inflammaging”) 
(197). TNF-α has its expression increased during aging linked 
to its promoter demethylation (198). This epigenetic alteration 
contributes to the increased levels of TNF-α and also IL-1α  
(199, 200), which initiate the low-grade inflammation associated 
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with resting neutrophils from aged donors. A major cause of 
worldwide morbidity in the elderly is the age-associated inflam-
matory lung disease (201). In this context, promoter hypomethyl-
ation of inflammatory genes, such as toll-like receptor 2, carnitine 
O-acetyltransferase, and coagulation factor III, were associated 
with decreased lung function (202). Zinc is a micronutrient 
crucial for the development and function of immune system, and 
its deficiency, frequently observed during aging, contributes to 
a wide range of immune defects (203), including an enhanced 
inflammatory response by inducing IL-6 promoter demethyla-
tion (204). Using the C-reactive protein (CRP) as an inflamma-
tory biomarker, Ligthart and coworkers (205) performed a 
meta-analysis of epigenome wide association studies of DNA 
methylation on chronic low-grade inflammation. In this study, 
the authors demonstrated that several inflammation-related CpG 
sites were associated with the expression of nearby genes, and that 
many of these CpGs presented association with cardiometabolic 
phenotypes and incident coronary heart disease. Among these 
genes is AIM2, important in innate immune response since it 
takes part of host defense mechanisms against bacterial and viral 
pathogens, and that was found hypermethylated and expressed at 
low levels in samples with low levels of CRP.

T Lymphocytes
The involution of thymic structure and function, characterized 
by a reduced number and functional defects of thymic naïve 
T cells, is other process contributing to the immune aging (206). 
By analyzing the methylome of CD4+ T cells from newborn and 
centenarian individuals, Heyn and coworkers (207) showed 
these immune cells present the same DNA methylation changes 
that are observed in other tissues during aging, a global DNA 
hypomethylation and a higher variability of DNA methylation. 
Later, by an integrated analysis of transcriptome, methylome, and 
miRNAome in the same CD4+ T cells, Zhao and colleagues (148) 
found a potential relationship between gene transcription and 
DNA methylation for age- or immune-related genes, indicating 

the involvement of DNA methylation in the transcription regu-
lation related to the development and functions of T  cells in 
aging. Mice with a heterozygous Dnmt1 null mutation have 
hypomethylated DNA and showed to be phenotypically normal, 
but presented immune senescence and developed early autoim-
munity compared with normal mice of the same age (208). By 
analyzing naïve CD4+ T cells from 74 healthy 19- to 66-year-old 
individuals, Dozmorov and colleagues (209) identified sites 
hypomethylated with age presenting T cell-specific enrichment 
in active enhancers marked with H3K27Ac and H3K4me1, sug-
gesting a progressive age-associated shift in T-cell epigenomes 
toward pro-inflammatory and T cell activating phenotype that 
could contribute to increased autoimmunity with age. It was also 
shown that aged individuals, who have higher levels of autoanti-
bodies, have T cells presenting demethylation and overexpression 
in the same genes demethylated and overexpressed in T cells from 
lupus patients (146). The progressive loss of the costimulatory 
molecule CD28 in CD4+ T lymphocytes during aging is associ-
ated with impaired immune response. Recently, a unique DNA 
methylation landscape was described in CD28null T cells, leading 
to the expression of inflammasome-related genes (210). Other 
recent study found two CpG sites present in the promoter region 
of KLF14, involved in CD4+ T cell differentiation via suppres-
sion of FOXP3, that exhibit stable methylation early in life and a 
rapid increase late in life in peripheral whole blood, monocytes, 
and isolated CD4+ T cells (211). Dysfunctional Treg cells have 
been considered to be contributors to immune senescence and 
increased susceptibility to age-associated diseases by suppressing 
T cell responses. Garg and colleagues (212) showed that the high 
number of Treg cells observed in aged mice is associated with 
hypomethylation of the upstream FoxP3 enhancer, resulting 
in its increased expression. They also demonstrated that Treg 
cells from aged mice release more IL-10, are more efficient in 
downregulating the costimulatory molecule CD86 on DCs, 
and modulate the extracellular redox environment, suppressing 
T cells proliferation.

FiGURe 1 | The epigenetic landscape, modulated by intrinsic and extrinsic factors, regulates immune system and contributes to define a healthy or pathological 
state. Our life style, including nutritional habit, exercises, life stressor, drugs, toxics exposition, and smoke, dynamically sculpts our epigenome along lifetime. The 
immune system is one of the systems in which functions are importantly regulated by epigenetic mechanisms. In this way, the accumulation of abnormal epigenetic 
marks in immune cells might contribute to the development of age-related diseases.
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Immune senescence is also characterized by a loss of naïve 
and central memory cells and an expansion of effector memory 
cells within the CD8+ T cell compartment. A shift toward more 
differentiated state of chromatin openness was observed in 
naïve and central memory cells from older individuals, as well 
a loss of chromatin accessibility at gene promoters mediated in 
part by the loss of nuclear respiratory factor 1 (NRF1) binding 
in aged naïve cells (213). By analyzing PBMCs methylation 
data set in an Italian population, Horvath and colleagues (214) 
showed that the centenarians are younger than expected based 
on their chronological age. McEwen and colleagues (215), 
by examining one of the highest old-age life expectancies 
populations from Costa Rica (Nicoyans), found this popula-
tion to possess a significant higher abundance of predicted 
CD8+ T naïve cells and a lower abundance of estimated CD8+ 
T memory cells compared with non-Nicoyans, suggesting a 
younger immune cell profile. In addition, they showed a lower 
variability in the DNA methylation in Nicoyans compared with 
non-Nicoyans as an epigenetic characteristic of the longevity 
in this population.

B Lymphocytes
Considering the role of epigenetic mechanisms in B cell differen-
tiation and function, age-associated epigenetic changes could be 
the responsible for the decline of humoral immunity in elderly 
individuals. Loss of function of B  cells and their progenitors, 
reduction in the immunoglobulin diversity and affinity, and shifts 
in the proportion of naïve and antigen-experienced peripheral 
B  cells subpopulation are characteristics of immune aging  
(216, 217). Hematopoietic stem cells (HSCs) lose their capac-
ity to differentiate with age, and epigenetic alterations are 
important contributors to this change. Aged mice present HSCs 
with an aberrant gene expression profile because of epigenetic 
deregulation (218). Defects on both B-lineage commitment and 
transit through early development stage are observed during 
aging (219).

CONCLUSiON AND PeRSPeCTiveS

Considerable progress has been made in understanding epige-
netic alterations involved in aging over the recent years. Most 
of recent knowledge about epigenetics and aging is almost lack 
regarding immune aging. Many gaps and questions are still 
open and should be deeply investigated in this area. However, 
there are also important challenges and limitations in this 
study. For example, several analyses in this field use samples 

contained mixed cell types, instead isolated cells, which may 
bring confusion in the data interpretation. The dynamic nature 
of the immune system per  se becomes challenging to study 
plastic molecular alterations involved in immune responses. 
It remains to be determined which epigenetic changes are 
causally related to aging process, and how they cause immune 
aging. Future studies are needed to determine the overlapping 
epigenetic signatures between immune aging and age-related 
immune diseases.

Independently of these challenges, and taking into account 
that: (1) epigenetic mechanisms modulate chromatin states, 
defining gene expression profiles, (2) epigenetic mechanisms 
play crucial roles in the development and function of immune 
system, (3) a tightly regulated functioning of immune system 
is necessary to maintain a healthy state, (4) the environment 
modifies epigenetic marks throughout lifetime, and (5) 
epigenetic marks are potentially reversible, the knowledge 
about how the environment modulates the immune system by 
epigenetic mechanisms contributing to age-related diseases 
may lead to the design of novel strategies for prevention and 
therapeutics. Since some age-related epigenetic alterations are 
similar across a range of tissues (52, 220), these alterations 
could be also potentially used as biomarkers for aging-related 
disease phenotypes in biological samples, such as blood or 
saliva. But most importantly, considering that both intrinsic 
and external factors modify epigenetic marks throughout 
life, it is important to have in mind that healthier lifestyle 
may be still the most effective way to prevent diseases later 
in life (Figure 1) (221). In conclusion, huge efforts should be 
undertaken to better understand the relation among epigenet-
ics, immune aging and age-related diseases, in order to define 
interventions in the lifestyle able to modulate our epigenome 
for a healthy aging.
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