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Regulatory T cells (Tregs) are an attractive therapeutic tool for several different immune 
pathologies. Therapeutic Treg application often requires prolonged in vitro culture to 
generate sufficient Treg numbers or to optimize their functionality, e.g., via genetic 
engineering of their antigen receptors. However, purity of clinical Treg expansion 
cultures is highly variable, and currently, it is impossible to identify and separate sta-
ble Tregs from contaminating effector T cells, either ex vivo or after prior expansion. 
This represents a major obstacle for quality assurance of expanded Tregs and raises 
significant safety concerns. Here, we describe a Treg activation signature that allows 
identification and sorting of epigenetically imprinted Tregs even after prolonged in vitro 
culture. We show that short-term reactivation resulted in expression of CD137 but 
not CD154 on stable FoxP3+ Tregs that displayed a demethylated Treg-specific 
demethylated region, high suppressive potential, and lack of inflammatory cytokine 
expression. We also applied this Treg activation signature for rapid testing of chimeric 
antigen receptor functionality in human Tregs and identified major differences in the 
signaling requirements regarding CD137 versus CD28 costimulation. Taken together, 
CD137+CD154− expression emerges as a universal Treg activation signature ex vivo 
and upon in vitro expansion allowing the identification and isolation of epigenetically 
stable antigen-activated Tregs and providing a means for their rapid functional testing 
in vitro.

Keywords: regulatory T  cells, chimeric antigen receptor, adoptive regulatory T  cell therapy, regulatory T  cell 
stability, regulatory T cell expansion, regulatory T cell signaling, cD137

Abbreviations: Treg, regulatory T cell; Teff, effector T cell; CAR, chimeric antigen receptor; TCR, T cell receptor; scFv, single-
chain variable fragment; Dex, dextran; GvHD, graft-versus-host disease; T1D, type 1 diabetes; EAE, experimental autoimmune 
encephalomyelitis; TSDR, Treg-specific demethylated region.
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inTrODUcTiOn

Adoptive transfer of regulatory T cells (Tregs) represents an attra-
ctive approach to exploit physiological self-regulating capacities 
for prevention or treatment of immune-mediated pathologies 
such as graft-versus-host disease (GvHD), organ transplanta-
tion, or chronic inflammatory diseases. Transfer of polyclonal 
Tregs, either ex vivo (1, 2) or after in vitro expansion, has been 
shown to be safe and effective for prevention of GvHD (3–8). In 
autoimmune diseases Treg treatment also seems to be safe, but 
therapeutic efficiency has so far not been sufficiently demon-
strated (9–13). Essentially, within polyclonal Treg populations, 
the number of Tregs with therapeutically relevant specificity may 
be too small to achieve optimal clinical effects. This might be 
overcome by increased Treg doses or alternatively via selection 
of Tregs with disease-relevant specificities. Indeed, experimental 
models have demonstrated increased therapeutic potential of 
antigen-specific Tregs compared to polyclonal Tregs, e.g., by 
targeting disease-relevant autologous or allogeneic antigens in 
type 1 diabetes (T1D) (14–17), GvHD (18–25), experimental 
autoimmune encephalomyelitis (EAE) (26, 27), and arthritis  
(28, 29). However, generation of antigen-specific Tregs and thus 
their therapeutic application is currently limited by their low 
frequencies, limited knowledge about the identity of disease- 
relevant target antigens, and lack of technologies for antigen- 
specific Treg selection and expansion. Therefore, genetic engineering 
has been used to redirect antigen-specificity of human Tregs 
using transgenic T  cell receptors (TCRs) (30–32) or chimeric 
antigen receptors (CARs). The immunosuppressive potential 
of CAR–Tregs, which can be universally applied to all donors 
independent of matched MHC alleles, has been shown to prevent 
development of EAE (33), colitis (34–36), GvHD (37–39), allergic 
airway inflammation (40), and neutralizing immune responses 
against Factor VIII (41) in mice. Most importantly, improved 
Treg-based therapies largely depend on efficient technologies for 
the in vitro expansion and manipulation of their functional prop-
erties. However, in  vitro cultured Tregs display highly variable 
purities resulting from contaminating effector T cells (Teffs) or 
potential Treg instability. So far, there are no markers for the rapid 
identification and sorting of stable Tregs from such expansion 
cultures. To date, FoxP3 expression and above all demethylation 
of a Treg-specific demethylated region (TSDR) within the FoxP3 
locus represent the gold standard for estimating the fraction of 
stable Tregs within a population (42–45), yet both do not allow 
for sorting of the specific subset.

In particular for Tregs equipped with disease-relevant antigen 
receptors, e.g., autoantigens, the risk to generate unpredictable 
numbers of Teffs with disease-amplifying potential has to be 
tightly controlled. However, the lack of discriminative markers 
also affects systematic functional optimization of in vitro gener-
ated Tregs, e.g., by genetic engineering. For example, transgenic 
TCR or CAR constructs may need to fulfill different requirements 
in Tregs versus Teffs, which is currently difficult to test in mixed 
cultures without clear-cut discriminative markers. Thus, the 
lack of markers for the identification of stable Tregs represents a 
major obstacle for the generation of expanded and functionally 
optimized Tregs for clinical applications.

A number of Treg-specific, activation-induced surface markers, 
such as CD137 (46–48), CD121a/b, LAP, GARP (49–51) or Ox40/
CD39 (52), have been described to identify activated Tregs ex vivo. 
Among those, CD137 is expressed after only 5–7 h of antigenic stim-
ulation and has been proven to be highly specific for Tregs (46, 47),  
allowing their ex vivo discrimination from CD137−CD154+ 
Teffs. CD137 expression enabled the specific enrichment of 
antigen-activated Tregs ex vivo, displaying all features of thymic 
Tregs such as a demethylated TSDR and a Treg-specific expression 
profile, including high levels of FoxP3, Helios, CTLA4, and lack of 
CD127 and effector cytokines (46, 47). After polyclonal stimula-
tion of Tregs ex vivo, Schoenbrunn et al. further demonstrated that 
co-staining of CD137 and CD154 allowed further enrichment of 
stable Tregs by exclusion of T cells co-expressing both markers 
(48). Whether this Treg signature is also maintained after activa-
tion and expansion in vitro and still allows discrimination from 
instable Tregs or Teffs are not known but would strongly improve 
current possibilities for optimal in vitro expansion of Tregs. Here, 
we show that after brief polyclonal or antigen-specific stimulation, 
CD137+CD154− expression represents a universal Treg-specific 
activation signature for the identification and sorting of stable, 
TSDR demethylated Tregs after prior in vitro expansion.

MaTerials anD MeThODs

Treg isolation
Leukapheresis products from healthy donors were obtained from 
the Charité University Hospital, Berlin, Germany, with informed 
consent according to ethical guidelines. PBMCs were obtained by 
Ficoll-Paque (GE Healthcare Life Sciences, Freiburg, Germany) 
gradient centrifugation. CD25+ Tregs were isolated from PBMCs 
according to manufacturer’s recommendations using CD25 
microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). 
Tregs were cultured in “Treg expansion medium” consisting 
of TexMACS medium (Miltenyi Biotec, Bergisch Gladbach, 
Germany)  +  5% (v/v) human AB-serum (Sigma-Aldrich, 
Schnelldorf, Germany) + 100 U/ml IL-2 + 100 nmol rapamycin 
(both Miltenyi Biotec, Bergisch Gladbach, Germany) and 100 U/ml  
penicillin/100  μg/ml streptomycin (Gibco®, Thermo Fisher 
Scientific, Schwerte, Germany) in the presence of Treg expansion 
beads (Miltenyi Biotec, Bergisch Gladbach, Germany) at a bead-
to-cell ratio of 4:1. During expansion, fresh culture medium was 
added every 2–3 days.

Dextran (Dex)–car generation
Dextran-specific CAR–Tregs with varying extracellular spacer 
domains were generated using lentiviral vectors encoding for 
a PGK promoter-driven AC146-derived single-chain variable 
fragment (scFv) (vh/vl orientation) linked to a human IgG4 hinge  
(L, M, XS) (53) or a human CD8 hinge (S) in combination with 
a CD8 transmembrane domain and the intracellular signaling 
modules of CD137 and CD3ζ. Additional lentiviral constructs 
shared the same scFv, an XS spacer, and the CD8 transmembrane 
region but differed with regard to their costimulatory and signaling 
domains consisting of either CD3ζ or CD3ε without any costimu-
lation or in combination with ICOS, CD28, CD134, CD137, or 
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PD-1. All constructs contained a P2A-linked ΔLNGFR. Lentiviral 
supernatants were generated by co-transfection of HEK293T cells 
with the expression vector and packaging plasmids. One day prior 
to transfection, 3 ×  106 HEK293T cells were seeded in a 10-cm 
cell culture dish in complete DMEM (cDMEM) consisting of 
DMEM (Gibco®), + 10% FCS + 100 U/ml penicillin, 100 µg/ml 
streptomycin  +  50  µM 2-Mercaptoethanol (all Thermo Fisher 
Scientific, Schwerte, Germany). Cells were transiently transfected 
with 0.84 µg pMDG-2.VSV-G, 5.16 µg pCMVΔR8.74, and 3.35 µg 
Dex–CAR plasmids diluted in ddH2O supplemented with 2.5 M 
CaCl2. While aerating, 2 ml of 2× HBS buffer (136.89 mM NaCl, 
4.96 mM KCl, 1.76 mM Na2HPO4, 20.98 mM HEPES in ddH2O, 
pH = 6.75–6.76) were slowly added to the solution, and 2 ml of the 
transfection solution was added dropwise to the cells. The medium 
containing the transfection solution was removed after 4 h, and cells 
were washed twice with prewarmed PBS before fresh cDMEM was 
added. After 48 h, lentiviral supernatants were harvested, filtered 
(0.45 µm), and used directly or stored at −80°C for up to 6 months.

Treg Transduction and activation
CD25+ Tregs were isolated and cultured as described above, and 
on d3 culture medium was replaced with the respective lentiviral 
supernatants supplemented with 4 µg/ml protaminsulfate (Sigma-
Aldrich, Schnelldorf, Germany). Cells were spinoculated on 
96-well plates coated with retronectin (Takara Bio via Clontech 
Laboratories, Saint-Germain-en-Laye, France) for 90  min at 
800  ×  g and 32°C. After centrifugation, viral supernatant was 
removed, and “Treg expansion medium” was added to the cells. 
Untransduced Tregs and CAR–Tregs were expanded for 10–12 days, 
and medium was replaced every 2–3 days. Tregs were rested for 
2 days without magnetic bead particles in RPMI-1640 (Gibco®, 
Thermo Fisher Scientific, Schwerte, Germany) + 5% (v/v) human 
AB-serum (Sigma-Aldrich, Schnelldorf, Germany)  +  100  U/ml  
penicillin/100  μg/ml streptomycin (Gibco®, Thermo Fisher 
Scientific, Schwerte, Germany) before 6 h restimulation with Treg 
expansion beads (4:1 bead-to-cell ratio, Miltenyi Biotec, Bergisch 
Gladbach, Germany), soluble FITC Dex (MW: 2,000,000, 2 µg/ml,  
Sigma-Aldrich, Schnelldorf, Germany), bead-bound Dex (1:100; 
Dex-coated microbeads in PBS, Miltenyi Biotec, Bergisch 
Gladbach, Germany), or 10 ng/ml PMA and 500 ng/ml ionomycin 
(Sigma-Aldrich, Schnelldorf, Germany). For cytokine staining, 
5 µg/ml Brefeldin A (Sigma-Aldrich, Schnelldorf, Germany) were 
added for the last 4 h of stimulation. 1 µg/ml anti-CD40 antibod-
ies (Miltenyi Biotec, Bergisch Gladbach, Germany) were added to 
the stimulation when CD154 was stained on the surface. When 
expression was analyzed together with cytokines, intracellular 
staining of CD137 and CD154 was performed.

Flow cytometry
Cells were stained in different combinations with the follow-
ing antibodies according to manufacturer’s recommendations: 
CD4-PE-Vio770, CD4-APC-Vio-770, CD4-FITC, CD4-VioBlue 
(VIT4), CD25-VioBright FITC (4E3), CD127-FITC, CD127-PE-
Vio770 (MB15-18C9), CD271 (LNGFR)-PE, CD271 (LNGFR)-
PE-Vio770 (ME20.4-1.H4), CD137-PE (4B4-1), CD154-APC, 
CD154-VioBlue (5C8), HLA-A2 (REA517), TNF-α-PE-Vio770 
(CA2), IL-2 APC-Vio770 (N7.48 A), IL-17-FITC (CZ8-23G1), 

FoxP3-APC (3G3) (all Miltenyi Biotech, Bergisch Gladbach, 
Germany), CD25-BV421 (BC96), and IFN-γ-PerCP Cy5.5  
(4S.B3; both from Biolegend, San Diego, CA, USA). Viobility 
405/520 Fixable Dye (Miltenyi Biotech, Bergisch Gladbach, 
Germany) or propidium iodide (Sigma-Aldrich, Schnelldorf, 
Germany) were used to exclude dead cells. Intracellular cytokine 
staining was performed using the Inside Stain Kit (Miltenyi 
Biotec, Bergisch Gladbach, Germany), and intracellular FoxP3 
staining was performed using the FoxP3 Staining Buffer Set 
(Miltenyi Biotec, Bergisch Gladbach, Germany) all according to 
manufacturer’s protocol. For staining of CAR surface expression, 
Tregs were incubated for 10 min with 2 µg/ml FITC-labeled Dex 
(MW: 2,000,000, Sigma-Aldrich, Schnelldorf, Germany) at 4°C 
together with labeling of other surface molecules. All data were 
acquired on a FACS Canto/LSRII (BD, Heidelberg, Germany) 
or MACS Quant Analyzer (Miltenyi Biotec, Bergisch Gladbach, 
Germany), and FACS sorting was performed on an Aria I, Aria 
II, or Influx Cell Sorter (BD, Heidelberg, Germany). FlowJo 
(TreeStar, Inc, Ashland, OR, USA) was used for data analysis.

Quantification of gene expression
The competitive expansion of Dex–CAR constructs with different 
signaling domains was analyzed by quantitative real-time PCR. 
DNA was isolated by Zymo Research Quick-DNA™ Miniprep 
Kit (Zymo Research, Freiburg, Germany) according to manu-
facturer’s instructions, and gene expression was analyzed using 
1× SYBR® Green PCR Master Mix (Thermo Fisher Scientific, 
Schwerte, Germany) and 500 nmol forward and reverse primers 
(TIB MOLBIOL, Berlin, Germany; Table S1 in Supplementary 
Material), respectively. Gene expression was analyzed on a 
StepOne™ Real-Time PCR System (Thermo Fisher Scientific, 
Schwerte) and normalized to expression of GAPDH.

Methylation-sensitive TsDr  
real-time Pcr
Genomic DNA was isolated with the QIAamp DNA Mini Kit 
(Qiagen, Hilden, Germany) and between 50 and 1,200 ng were 
used for bisulfite treatment (EpiTect, Qiagen, Hilden, Germany). 
Real-time PCR was performed in a final reaction volume of 
20 µl with 10 µl FastStart Universal Probe Master (ROX, Roche 
Diagnostics, Mannheim, Germany), 100 ng Lamda DNA (NEB, 
Frankfurt a.M., Germany), 5 pmol methylation or non-methyl-
ation specific probe, 30  pmol methylation or non-methylation 
specific primers, and at least 15  ng bisulfite-treated DNA or 
plasmid standard. Samples were analyzed in triplicates on an ABI 
7500 Cycler (Thermo Fisher Scientific, Schwerte). The percentage 
of FoxP3 TSDR was calculated by dividing the non-methylated 
copy number by the total genomic FoxP3 copy number.

Deep Bisulfite amplicon sequencing
CD137+CD154− and CD137+CD154+ Tregs (CD25+CD127− 
CD45RO+) from male donors were sorted and pooled, and 
cell pellets were digested with lysis buffer (10  mM Tris, 5  mM 
EDTA, pH 8.0) with 1  mg/ml Proteinase K (Sigma-Aldrich, 
Schnelldorf, Germany) at 55°C overnight. Cell lysates were used 
directly for bisulfite conversion of 100 ng DNA, which was treated 
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FigUre 1 | Phenotype of in vitro expanded regulatory T cells (Tregs). CD25+ Tregs were sorted and expanded for 14 or 28 days before analysis of (a,B) FoxP3 
expression; (a) representative dot plot of one donor and (B) statistical analysis of several donors (n = 30 from nine independent experiments for d0 and d14, and 
n = 19 from seven different experiments for d28). (c) Cytokine expression was analyzed on d28 after 6-h restimulation with PMA/ionomycin (n = 38 from 12 different 
experiments for IFN-γ, n = 40 from 13 different experiments for TNF-α, n = 19 from 7 different experiments for IL-17, and n = 17 from 6 different experiments for 
IL-2). (D,e) CD137 and CD154 expression were analyzed on expanded Tregs on d14 after restimulation with anti-CD3/-CD28; (D) representative dot plot of one 
donor and (e) statistical analysis of several donors (n = 64, 21 independent experiments were performed). (B,c,e) Each dot represents one donor, and (B) statistical 
significances were determined by one-way analysis of variance; lines indicate (B) mean or (c,e) median.
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with EZ-DNA methylation Gold kit (Zymo Research, Freiburg, 
Germany) according to manufacturer’s instructions. Amplification 
of bisulfite-treated DNA was done by PCR, which was performed 
with either 2.5 U HOT FIREPol®DNA Polymerase (Solis BioDyne, 
Tartu, Estonia) or 1.5 U HotStar Taq™DNA Polymerase (Qiagen, 
Hilden, Germany) with 20  ng bisulfite-treated DNA, 0.2  mM 
dNTPs, and 0.17  µM bisulfite-specific primers (Table S2 in 
Supplementary Material) according to manufacturer’s recom-
mendations. Amplicons were purified with Agencourt Ampure 
XP beads (Beckman Coulter, Krefeld, Germany) according to 
manufacturer’s instructions and sequenced on the Illumina MiSeq 
platform using MiSeq Reagent Kit v3 (Illumina, Inc., San Diego, 
USA). Sequencing results were processed with BiQ Analyzer HT 
(54) and filtered according to sequence identity (>0.9), bisulfite 
conversion (>0.95), and fraction of unrecognized sites (<0.1). 
Data for methylation of the indicated regions in central and effector 
memory T cells were obtained from the study by Durek et al. (55).

suppression assay
Expanded Tregs were stimulated for 6 h with Treg expansion beads 
(4:1 bead:cell ratio, Miltenyi Biotec, Bergisch Gladbach, Germany) 
before CD137+CD154− and CD137+CD154+ Tregs were sorted 
and expanded. After 14  days of further expansion, Tregs were 
rested for 2 days in RPMI-1640 medium (Gibco®, Thermo Fisher 
Scientific, Schwerte, Germany)  +  5% (v/v) human AB-serum 
(Sigma-Aldrich, Schnelldorf, Germany)  +  100  U/ml penicillin/ 
100  μg/ml streptomycin (Gibco®, Thermo Fisher Scientific, 
Schwerte, Germany). Responder T  cells (Tresps) with opposite 
HLA-A2 expression were isolated with the CD4+ T cell Isolation 

Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) according 
to manufacturer’s instructions and stained with CellTrace™ 
Violet Cell Proliferation Kit (Thermo Fisher Scientific, Schwerte, 
Germany) at a final concentration of 2.5 µM. A total of 5 × 104 
Tresps were co-cultured with Tregs in different ratios in 96-well 
flat bottom plates and stimulated with Treg Suppression Inspector 
(Miltenyi Biotec, Bergisch Gladbach, Germany). Dilution of 
proliferation dye was analyzed on day 7. The percentage of inhibition 

was calculated as 
( )A B

A
−

×100, where A is the uninhibited Tresp 

and B is the inhibited Tresp.

statistical analysis
The exact values of n and the respective statistical tests that 
were used to determine significances are specified in the respec-
tive figure legends. Statistical analysis was performed with 
GraphPad PRISM software 5.02 (GraphPad Inc., La Jolla, CA, 
USA). Significances are indicated with *p ≤ 0.05, **p ≤ 0.01, and 
***p ≤ 0.001.

resUlTs

In Vitro expansion of cD25+ Tregs 
compromises Purity
The generation of sufficient numbers for Treg-based therapies or 
the modification of Treg functionality, e.g., by genetic engineer-
ing, requires prolonged in vitro expansion, which typically results 
in reduced frequencies of FoxP3+ Tregs (Figure  1A). FoxP3+ 
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Tregs were enriched by GMP-compliant isolation using CD25 
microbeads and expanded for 14–28  days using anti-CD3-/
anti-CD28-coated microspheres in the presence of IL-2 and 
rapamycin. Upon expansion, frequencies of FoxP3-expressing 
cells significantly decreased resulting in cultures with only 
41.01% (mean ± 14.50% SD) FoxP3+ cells after 28 days compared 
to 65.79% (mean ± 10.46% SD) at the beginning of the culture 
(Figure  1B). Furthermore, high levels of pro-inflammatory 
cytokines (IFN-γ, IL-17, IL-2, and TNF-α) were detected after 
restimulation of expanded cultures, indicating significant 
amounts of contaminating Teffs or potential Treg instabilities 
(Figure  1C). Independent of FoxP3, CD25 was expressed by 
almost all expanded cells, whereas CD127 expression was lost 
and could therefore no longer distinguish between Tregs and 
contaminating Teff (Figure  1A). Recently, converse expres-
sion of CD137 and CD154 has been described to discriminate 
between activated Tregs and Teffs ex vivo (46–48, 56). Therefore, 
we wanted to test whether these markers represent a universal 
activation signature, which allows discrimination between Tregs 
and Teffs after prolonged in vitro expansion. CD25+ sorted Tregs 
were expanded for 2  weeks as described (Figures  1A–C) and 
restimulated for 6 h with anti-CD3/anti-CD28. Flow cytometric 
analysis of CD137 and CD154 expression revealed the presence 
of three distinct subsets with differential CD137 and CD154 
expression (Figure  1D). While most cells were defined by a 
CD137+CD154− phenotype, a variable percentage expressed 
the Teff-specific activation marker CD154 exhibiting either a 
CD137+CD154+ or CD137−CD154+ phenotype (Figure 1E).

cD137+cD154− expression identifies 
stable Tregs within expansion cultures
To investigate the phenotype of CD137- and CD154-expressing 
cells within expanded Treg cultures, FoxP3 was stained on 
the different subsets after 6-h stimulation (Figures  2A,B). 
Remarkably, FoxP3+ Tregs were highly enriched within the 
CD137+CD154− Treg subset (mean  ±  SD, 63.24%  ±  14.92), 
while frequencies were significantly reduced or almost completely 
absent within CD137+CD154+ (mean ±  SD, 39.78 ±  15.76%) 
and CD137−CD154+ cells (mean  ±  SD, 24.32  ±  13.71). In 
addition, expression of effector cytokines was almost exclusively 
detected within CD154+ cells (Figures  2C,D). In contrast, 
CD137+CD154− Tregs completely lacked effector cytokine expres-
sion, in particular IL-2, IL-17, and IFN-γ, and they expressed only 
low levels of TNF-α (Figures 2C,D). Next, the in vitro suppressive 
capacities of CD137+CD154− and CD137+CD154+ Tregs were 
analyzed. While CD137+CD154− Tregs were highly efficient in 
inhibiting Teff proliferation, CD137+CD154+ Tregs exhibited an 
impaired suppressive potential compared to unsorted total Tregs 
(Figure 2E). To investigate the stability of FoxP3 expression within 
the different subsets, demethylation of the TSDR was analyzed 
revealing a striking difference between the different subsets. The 
TSDR was almost completely demethylated in CD137+CD154− 
Tregs, hypermethylated in CD137+CD154+ cells and almost 
completely methylated in CD137−CD154+ cells (Figure 2F). This 
suggests either a gradual loss of TSDR demethylation correlating 
with the acquisition of CD154 expression or the co-existence of 

Tregs and Teffs that were similarly able to express both markers. 
Furthermore, there was a strong association of the mean TSDR 
demethylation in unseparated Treg cultures with the frequency of 
CD137+CD154− T cells (Figure 2G), which was even stronger 
than correlation with the frequencies of FoxP3+ cells (Figure 2H). 
The different subsets that were defined by CD137 and CD154 
expression were also detected within the CD25+CD127− Treg 
compartment ex vivo (Figure  3A). As observed within expan-
sion cultures, FoxP3+ cells were significantly enriched within 
CD137+CD154− Tregs and strongly reduced within CD154-
expressing subsets (Figure 3B). In addition to the TSDR, we also 
determined the methylation status of additional markers that 
have been shown to contribute to a stable epigenetic Treg signa-
ture and were differentially methylated between Tregs and Teffs  
(57, 58). CD137+CD154− Tregs exhibited an epigenetically sta-
ble Treg signature including demethylation of not only the TSDR 
but also ctla4, ikf2, lrrc32, il2ra, and tnfrsf9, which were almost 
completely methylated in central and effector memory T  cells 
(Figure 3C). Interestingly, CD137+CD154+ Tregs exhibited an 
intermediate Treg–Teff epigenetic signature that further suggests 
that CD137+CD154+ Tregs either represent a transitional state 
between both subsets or a mixture of Tregs and Teffs, which have 
acquired the potential to co-express both markers. Thus, our data 
suggest that CD137+CD154− expression represents a highly 
specific activation signature allowing to dissect Treg populations 
with different suppressive potential and epigenetic stability. This 
activation signature enables the rapid identification and sorting of 
epigenetically stable FoxP3+ Tregs ex vivo and within expanded 
cultures.

cD137 expression enables rapid analysis 
of Treg activation
Regulatory T  cell functionality is dependent on activation by 
the antigen receptor, and quality of the TCR signal has a major 
impact on their suppressive potential. However, so far it has been 
difficult to directly determine TCR activation of Tregs due to a 
lack of suitable markers. In particular, in mixed cultures of stable 
and instable Tregs or Teffs, the clear-cut assignment of certain 
functional readouts to stable Tregs has been impossible since 
commonly used parameters such as cytokine production are lim-
ited to Teffs and instable Tregs. Genetic engineering of Treg anti-
gen specificity represents one important example for functional 
optimization of Tregs, e.g., for therapeutic purposes. However, it 
has so far not been possible to optimize artificial antigen recep-
tor constructs for Tregs, which actually may differ from Teffs in 
their requirements for optimal activation, e.g., by different signal 
transduction moieties. Functional testing of bulk populations, 
e.g., for suppressive activity, or expansion are rather indirect, 
time consuming, and do not provide information on the level of 
individual cells. Therefore, we tested whether the Treg activation 
signature described here may allow fast functional in vitro testing 
of genetically engineered Tregs. To provide a controllable system 
for Treg activation, Treg specificity was redirected toward an 
innocuous exogenous antigen. To this end, a Dex-specific CAR 
construct was designed (Figure 4A) and CAR–Tregs were gener-
ated by lentiviral transduction. CAR–Tregs could be identified by 
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FigUre 2 | Phenotype of CD137- and CD154-expressing cells within expanded regulatory T cell (Treg) cultures. (a,B) CD25+ Tregs were sorted and expanded 
before analysis of FoxP3 expression; (a) representative dot plot of one donor and (B) statistical summary of several donors (n = 61, 20 independent experiments 
were performed). (c,D) CD25+ Tregs were sorted and expanded before 6-h restimulation with PMA/ionomycin for analysis of cytokine expression on CD137- and 
CD154-expressing cells; (c) representative dot plot of one donor and (D) statistical summary of several donors (n = 30 from nine different experiments for IFN-γ and 
TNF-α, n = 11 from four different experiments for IL-17 and IL-2). (e) Tregs were sorted from expanded CD25+ Tregs according to CD137 and CD154 expressions 
or left unsorted, and all populations were expanded for another 14 days before in vitro suppression of proliferation of CD4+CD25− effector T cells was analyzed 
(n = 4–6, two independent experiments were performed); inhibition of proliferation relative to untreated responder T cell (Tresp) is shown. (F) Tregs were sorted from 
expanded cultures according to CD137 and CD154 expression after 6-h restimulation with anti-CD3/anti-CD28 before Treg-specific demethylated region (TSDR) 
demethylation was analyzed (n = 7, two independent experiments were performed). (g,h) CD25-enriched Tregs were expanded for 14 or 28 days before analysis  
of TSDR demethylation; correlation of TSDR demethylation with (g) CD137+CD154− expression, and (h) FoxP3 expression is shown (n = 11, three independent 
experiments were performed). Statistical significances were determined by (B,F) Kruskal–Wallis test, (D) Friedman test, or (g,h) linear regression analysis. 
(B,D,F,g,h) Each dot represents one donor, lines indicate (B,D,F) median, (e) mean ± SEM is shown.
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surface expression of LNGFR (Figures 4B,C) and Dex was bound 
by CAR–Tregs, indicating functional receptor expression and 
antigen binding (Figure 4D). Following antigen-specific stimula-
tion with soluble or bead-bound Dex, CD137 was upregulated 
selectively on LNGFR+ cells, but not on LNGFR− cells within 
the same culture (Figures 4E,F; Figures S1A,B in Supplementary 
Material). Next, the functionality of different extracellular spacer 
and intracellular signaling domains to activate Tregs in vitro was 
analyzed by CD137 expression. To this end, we generated different 
CAR constructs with long (L, 228aa), medium (M, 119aa), short 
(S, 45aa), and very short (XS, 12aa) extracellular spacer domains 

(Figures S2A,B in Supplementary Material). In spite of superior 
Dex binding by S spacers (Figure  5A), CD137 expression was 
only efficiently upregulated on CAR–Tregs with XS spacers even 
among cells that had bound Dex (Figure 5B). To investigate the 
impact of costimulation on CAR–Treg functionality, we generated 
several different Dex-specific CAR constructs with an optimized 
XS spacer consisting of CD3ζ signaling combined with CD28, 
CD137, ICOS, CD134, or PD-1 costimulation. To control for 
the effect of costimulation alone, we generated CAR constructs 
with CD28–CDε and CD137–CDε signaling (Figure S2C in 
Supplementary Material). In spite of similar transduction rates as 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 3 | CD137+CD154− expression identifies stable regulatory T cells (Tregs) ex vivo. (a) CD137 and CD154 expression were analyzed on CD25+CD127− 
Tregs after 6-h stimulation with anti-CD3/anti-CD28 ex vivo (n = 68, 17 independent experiments were performed). (B) Frequencies of FoxP3+ cells were  
analyzed among CD137- and CD154-expressing cells within the CD25+CD127− Treg compartment (n = 30, five independent experiments were performed).  
(c) CD137+CD154− and CD137+CD154+ Tregs (CD25+CD127−CD45RO+) were sorted after 6-h stimulation with anti-CD3/anti-CD28, and methylation of 
indicated regions was analyzed (data from two independent experiments are shown, and five and six male donors were pooled for each experiment). Methylation  
of central memory and effector memory T cells was derived from the study by Durek et al. (55). (a,B) Each dot represents one donor, lines indicate (a,B) median, 
(c) mean ± SEM is shown; statistical significances were determined by (B) Kruskal–Wallis test.
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determined by LNGFR expression (Figure S2D in Supplementary 
Material), CAR constructs differed in their ability to bind Dex 
(Figure S2E in Supplementary Material). Particularly CAR–Tregs 
with ICOS costimulation and CDε signaling exhibited impaired 
binding of Dex, indicating inefficient CAR surface expression 
that potentially derives from structural inhibitions that result 
in unstable CAR expression (59–61). Although the remaining 
constructs were similarly able to bind Dex, only CAR–Tregs 
containing CD137–CD3ζ or to a lesser extent CD134–CD3ζ 
signaling were activated, but not CAR–Tregs that contained, 
e.g., commonly used CD28 costimulation (Figure  5C). Next, 
the impact of costimulation on the expansion of CAR–Tregs 
was analyzed. To directly compare the CAR constructs within a 
single culture, CAR–Tregs with different signaling domains were 
pooled and expansion of the different constructs was determined 
by quantitative real-time PCR. There was an enrichment of 
LNGFR+ cells in the presence of Dex compared to stimulation 
with anti-CD3/anti-CD28 (Figure  5D). To determine selective 
expansion of a particular construct, primers spanning construct-
specific regions within the intracellular signaling domain were 
designed and expression was calculated relative to the beginning 
of the culture. Within this competitive co-culture, there was a 
selective expansion of CAR–Tregs with CD137–CD3ζ signaling 
in the presence of Dex (Figure 5E), while polyclonal expansion 
did not favor any construct (Figure 5F). Interestingly, there was 
minor expansion with CD28 costimulation in some donors, while 
CD134 did not induce CAR–Treg proliferation. Taken together, 

CD137 expression enabled the rapid evaluation of various spacer 
and signaling domains for CAR-mediated Treg activation in vitro 
revealing the superiority of CD137–CD3ζ signaling over CD28 
costimulation for CAR–Treg functionality.

cD137+cD154− expression identifies 
antigen-activated FoxP3+ car–Tregs
In vitro generated antigen-specific Tregs require increased safety 
measures to prevent contaminations with potentially autoag-
gressive Teffs. To this end, CAR–Tregs with an optimized 
extracellular XS spacer and intracellular CD137–CD3ζ signal-
ing domain were generated and sorted by LNGFR expression. 
While transgene expression (Figure 6A) and dextran binding 
(Figure 6B) were maintained upon expansion, FoxP3 expression 
was significantly reduced compared to ex vivo isolated Tregs 
(Figures  6C,D). Following 6-h antigen-specific stimulation, 
CD137 and CD154 were upregulated by dextran-reactive cells 
revealing variable frequencies of CD154-expressing cells, indi-
cating the presence of significant numbers of CAR-expressing 
non-Tregs within this culture (Figures 6E,F). In line with our 
observations after polyclonal stimulation (Figures 2A–D and 3B),  
antigen-specific CD137+CAR– Tregs that lacked CD154 
expression were characterized by high levels of FoxP3 expres-
sion (Figures 6E,G), low levels of TNF-α, and complete absence 
of IL-2 expression (Figure 6H). In contrast, CD154 upregula-
tion identified dextran-reactive cells that expressed low levels 
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FigUre 4 | CD137 expression identifies antigen-activated chimeric antigen receptor (CAR)–regulatory T cells (Tregs). (a) Schematic diagram of the dextran- 
specific CAR construct [transmembrane [TM], 2A peptide (P2A)]. (B–D) CAR–Tregs were generated by lentiviral transduction, and efficiencies were analyzed by  
(B–c) LNGFR expression; (B) representative dot plot of one donor and (c) statistical analysis of several donors is shown (n = 50 from 16 independent experiments 
of CAR–Tregs and n = 12 from 4 different experiments of untransduced Tregs are shown). (D) CAR surface expression was analyzed on LNGFR+ and LNGFR− 
cells by incubation with FITC-labeled dextran (n = 3–9 from 1 to 3 independent experiments are shown). (e,F) Tregs were restimulated for 6 h with anti-CD3/
anti-CD28, bead-bound dextran or 2 µg/ml soluble FITC dextran, and expression of CD137 was analyzed. (e) Representative dot plots of one donor and  
(F) statistical analysis of bead-bound stimulation are shown (n = 21, seven different experiments were performed). (c,F) Each dot represents one donor, and  
(c) lines indicate mean; (D) mean ± SEM is shown. (F) Statistical significance was determined by paired t-test.
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of FoxP3 and high levels of IL-2 and TNF-α (Figures  6G,H) 
and therefore represent antigen-specific non-Tregs with a 
significant inflammatory potential, which may cause adverse 
effects upon transfer in  vivo. Taken together, we identified 
CD137+CD154− expression as Treg-specific activation signa-
ture, which enabled rapid analysis of in vitro generated Tregs 
in regard to their activation and stability emerging as a novel 
tool for the optimization of Treg efficacy and purity, e.g., for 
therapeutic applications.

DiscUssiOn

The potential of in vitro generated Tregs to control chronic inflam-
matory diseases emerges as important target for clinical applica-
tions. To date, stability of expanded Tregs depends on the purity 
of the starting population as there are currently no unambiguous 
markers to separate stable Tregs from Teffs after expansion. In this 
study, we present a Treg-specific activation signature that enables 
the identification of epigenetically stable antigen-activated Tregs 
not only ex vivo but also following prolonged in vitro activation 

of human Tregs, which provides the opportunity to identify and 
purify Tregs after prior expansion.

In vitro generation of Tregs by large-scale expansion and/or 
genetic engineering remains a major challenge as there are cur-
rently no markers for the unambiguous identification of Tregs 
ex vivo or after prior in vitro culture. It has been proposed that 
naive Tregs represent a particularly stable Treg subset (62–66). 
Indeed, cord blood-derived CD25+ Tregs, consisting mainly of 
naive Tregs, were successfully expanded in vitro and have proven 
safety and efficacy in allogeneic umbilical cord blood transplan-
tation (3–5). However, limited availability of cord blood and 
low frequencies of naive Tregs in adult blood currently prevent 
their large-scale clinical application. Alternatively, expanded 
FACS-sorted CD25+CD127− Tregs have been used in autolo-
gous settings for treatment of autoimmunity (8, 12). Yet, FACS 
sorting is still not routinely applicable under GMP conditions, 
and even expansion of FACS-sorted CD25+CD127− Tregs fails 
to eliminate non-Treg contaminations (67, 68). Clinical Treg 
isolation protocols are largely based on magnetic separation of 
CD25-expressing T cells (1, 4, 7, 69–71). Although this enriches 
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FigUre 5 | Comparison of regulatory T cell (Treg) activation by different chimeric antigen receptor constructs. (a–B) CD25-enriched Tregs were transduced with 
dextran (Dex)–CAR constructs with different spacer lengths (L = 228aa, M = 119aa, S = 45aa, XS = 12aa), and (a) binding of FITC-labeled Dex was analyzed 
(n = 12, four independent experiments were performed). (B) CAR–Tregs were restimulated for 6 h with 2 µg/ml FITC-labeled Dex, and CD137 expression was 
analyzed on Dex-binding cells; CD137 expression in unstimulated samples was subtracted, and negative values were set to 0 (n = 6–9, and two to three 
independent experiments were performed). (c–F) CD25-enriched Tregs were transduced with Dex–CAR constructs with different costimulatory domains 
combined with CD3ζ or CD3ε. (c) CD137 expression was analyzed on CAR–Tregs after 6-h restimulation with bead-bound Dex, and CD137 expression in 
unstimulated samples was subtracted (n = 22–26, seven to eight different experiments were performed). (D–F) CAR–Tregs with different signaling domains were 
pooled and expanded in the presence of anti-CD3/anti-CD28 or bead-bound Dex; (a) LNGFR expression was analyzed at different time points (n = 5–7, two to 
three different experiments were performed). (e,F) Expression (relative to GAPDH) of the different signaling domains with CD3ζ was determined at different time 
points of expansion with (e) bead-bound Dex or (F) anti-CD3/anti-CD28. Expression was quantified by qPCR and normalized to relative expression on d0 (n = 7, 
three different experiments were performed). Statistical significances were determined by (a) Kruskal–Wallis test, (B) one-way analysis of variance, or  
(c) Wilcoxon signed-rank test indicating activation above background. (a–c) Each dot represents one donor, lines indicate (a,c) median, or (B) mean;  
(D–F) mean ± SEM is shown.
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FoxP3+ Tregs ex vivo, purity is highly variable and depends on 
the composition of the starting material, i.e., cord blood, adult 
peripheral blood, or leukapheresis. Furthermore, non-Tregs can 
acquire a CD25+CD127− phenotype in  vivo or upon in  vitro 
culture and upregulate FoxP3 without acquisition of regulatory 
functions (72–75). Therefore, the lack of markers for the isolation 
of Tregs ex vivo as well as for their purification after prior expansion 
represents a significant technological challenge. Furthermore, the 
functional optimization of Tregs is hampered by the lack of Treg-
specific activation markers, which allow discrimination between 
activated Tregs and activated Teffs to permit a direct evaluation 
of signals and pathways required for Tregs versus Teffs. Thus, the 
Treg-specific activation signature identified here provides a con-
venient tool to improve purity and function of human Tregs and 
to overcome a major hurdle for in vitro generation of functionally 
optimized Tregs for therapeutic applications.

In this study, CD137+CD154− expression was shown to sele-
ctively identify epigenetically stable antigen-activated Tregs 
within in vitro expanded cultures. It has been shown that FoxP3 
expression is unable to distinguish between Tregs and non-Tregs 
after prolonged in vitro expansion, whereas TSDR demethylation 

enabled unambiguous identification of suppressive Treg clones 
(76). We show a striking linear correlation of CD137+CD154− 
expression with TSDR demethylation revealing the potential of 
this surface marker combination to identify epigenetically stable 
FoxP3+ Tregs. Treg instability has been observed upon in vitro 
expansion resulting in the loss of FoxP3 expression and acquisi-
tion of effector functions (62–65, 77) and also notable numbers 
of IFN-γ-producing CD25+CD127− cells have been shown in 
patients suffering from MS (78), T1D (79), arthritis (80–82), pso-
riasis (83), or inflammatory bowel disease (84–86). Furthermore, 
studies from mice have shown that Treg plasticity contributes 
to anti-helminth immune responses (87), but also to heighten 
chronic inflammation (81, 88, 89) and allergy (90). Collectively, 
the contribution of Treg plasticity to immune responses and toler-
ance in humans remain to be determined in future studies, yet its 
potential to exaggerate immune pathologies represents a signifi-
cant safety risk for adoptive transfer. Here, we show that plasticity 
including upregulation of effector functions and downregulation 
of FoxP3 as well as impaired suppressive capacities were restricted 
to CD154+ cells. With regard to their highly methylated TSDR, 
it can be assumed that CD137+CD154+ and CD137−CD154+ 
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FigUre 6 | Phenotype of antigen-activated chimeric antigen receptor (CAR)–regulatory T cells (Tregs). (a–h) LNGFR+ CAR–Tregs were sorted and expanded for 
10–12 days before analysis of (a) LNGFR expression and (B) dextran-binding (n = 12 for LNGFR+ sorted and n = 11 for LNGFR− sorted from four independent 
experiments). (c,D) FoxP3 expression in LNGFR+ sorted CAR–Tregs was analyzed ex vivo and after 21 days; (D) representative dot plot of one donor and  
(c) statistical summary of several donors (n = 6 from two independent experiments). (e–h) CAR–Tregs were restimulated for 6 h with bead-bound dextran and 
(e,g) FoxP3 expression (n = 6 from two independent experiments) and (e,F) CD137 and CD154 expression (n = 12 for from four independent experiments)  
were analyzed; (e) representative dot plot of one donor and (F,g) statistical summary of several donors. (h) Cytokine expression was analyzed on CD137- and 
CD154-expressing CAR–Tregs (n = 6 from two independent experiments). (a–c,F–h) Each dot represents one donor, and statistical significances were determined 
by (c) paired t-test or (h) Wilcoxon signed-rank test; lines indicate (a,B) median or (F–h) mean.
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cells contain significant frequencies of contaminating effector 
cells. Since CD137+CD154+ Tregs contained higher levels of 
FoxP3+ Tregs compared to cells that lacked CD137 expression, 
it can be hypothesized that instable Tregs were enriched within 
this subset, while CD137+CD154− Tregs were of remarkable 
phenotypic stability, which was mediated by a robust epigenetic 
Treg signature.

Here, we show a notable correlation of CD137 expression with 
a Treg phenotype, including FoxP3 expression and epigenetic Treg 
identity. Stable FoxP3 expression is dependent on TSDR dem-
ethylation (42–45), and it has been shown that cooperative com-
plexes of FoxP3 and NFAT can directly regulate gene expression 
by suppressing effector molecules (e.g., IL-2) while upregulating 
Treg-associated genes (e.g., CTLA4) (91). Furthermore, Marson 
et al. showed that tnfrsf9 (CD137) is a direct target of FoxP3 (92) 
providing a possible link between CD137 expression with a stable 
Treg signature that was shown here. Yet, CD137 expression is 
not limited to the Treg lineage, but can also be upregulated by 

CD4+ Teffs upon prolonged stimulation (48, 93). To account for 
the different kinetics of CD137 expression on Tregs and Teffs, it 
can be speculated that accessibility of the region is regulated by 
epigenetic modifications as CD137 has been shown to be hypo-
methylated in Tregs compared to Teffs (58). Similarly, tnfrsf9 was 
almost completely demethylated in CD137+CD154− Tregs while 
cd40lg (CD154) was highly methylated providing a molecular 
basis for rapid CD137 upregulation and lack of CD154 expression 
on stable Tregs. The importance of CD137 as costimulator for 
T cell activation has been well established (94), yet its role in Tregs 
remains elusive. CD137L is expressed on a variety of APCs and 
activated T cells and studies have shown that CD137–CD137L 
interaction increases Treg function (95–99) although impaired 
suppressive capacity has also been reported (100). Therefore, 
the function of CD137 expression on human Tregs remains to 
be determined, yet its rapid upregulation on Tregs could provide 
a versatile and wide-ranging mechanism enabling regulatory 
interactions with various immune cells (101).
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Redirecting Treg specificity by CARs is currently emerging as 
a promising approach for increased efficacy of therapeutic Tregs 
(33–41). However, the generation of functional CAR–Tregs 
in vivo requires evaluation of their functionality in vitro, which 
is currently limited due to the lack of Treg-specific activation 
markers. LAP and GARP have been shown to be upregulated 
on Tregs after polyclonal (49, 51, 102, 103) or alloantigen-
specific (50) stimulation, yet expression requires prolonged 
stimulation and does not necessarily correlate with FoxP3 
expression (104–106). Here, CD137 was shown to be upregu-
lated selectively on FoxP3+ Tregs after 6-h stimulation, which 
enabled the rapid identification, isolation, and characterization 
of antigen-activated Tregs. To generate a controllable system for 
Treg activation, we redirected Treg specificity toward dextran 
as a model antigen. Dextran naturally exists in different sizes 
depending on the molecular weight and can be applied in dif-
ferent forms (e.g., soluble vs. bead-bound) providing a system 
for the rapid analysis of the effect of antigen binding on Treg 
activation. To date, little is known about the requirements of 
Treg activation via CAR stimulation, and individual CARs 
may differ in their specific requirements to optimally activate 
T cells (107). It has been proposed that the extracellular spacer 
(53, 108–112) and the intracellular signaling domain (113–119) 
have a significant impact on the functionality of CAR–T cells. 
Activation-induced CD137 expression enabled the rapid com-
parison of different CAR constructs in their ability to activate 
Tregs revealing superiority of CD137 costimulation compared to 
commonly used CD28–CD3ζ signaling. It has been shown that 
CD28, but not CD137 costimulation, can initiate tonic signaling 
in conventional T cells leading to an exhaustion phenotype and 
limited efficacy (107). However, in that particular study, the 
degree of exhaustion varied between CARs with different scFv 
domains in spite of identical signaling domains. Therefore, it can 
be speculated that CD28 costimulation can be a potent inducer 
of T cell activation depending on the CAR. Nevertheless, it was 
shown here that CD137–CD3ζ signaling was superior for in vitro 
CAR–Treg activation and expansion indicating potentially dif-
ferent signaling requirements than Tcon.

In conclusion, we show CD137+CD154− expression to be a 
highly specific Treg activation signature that enabled the identi-
fication and isolation of stable Tregs even after prolonged in vitro 
culture. We also show that this short-term activation signature 
allowed rapid screening and optimization of CAR functionality in 
Tregs. Taken together, universal application of this Treg-spe cific 

activation signature will greatly improve Treg selection and 
functional optimization, such as for clinical applications in Treg-
based therapies.
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