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African trypanosomosis (AT) is a chronically debilitating parasitic disease of medical and 
economic importance for the development of sub-Saharan Africa. The trypanosomes 
that cause this disease are extracellular protozoan parasites that have developed effi-
cient immune escape mechanisms to manipulate the entire host immune response to 
allow parasite survival and transmission. During the early stage of infection, a profound 
pro-inflammatory type 1 activation of the mononuclear phagocyte system (MPS), involv-
ing classically activated macrophages (i.e., M1), is required for initial parasite control. Yet, 
the persistence of this M1-type MPS activation in trypanosusceptible animals causes 
immunopathology with anemia as the most prominent pathological feature. By contrast, 
in trypanotolerant animals, there is an induction of IL-10 that promotes the induction 
of alternatively activated macrophages (M2) and collectively dampens tissue damage.  
A comparative gene expression analysis between M1 and M2 cells identified galectin-3 
(Gal-3) and macrophage migration inhibitory factor (MIF) as novel M1-promoting factors, 
possibly acting synergistically and in concert with TNF-α during anemia development. 
While Gal-3 enhances erythrophagocytosis, MIF promotes both myeloid cell recruitment 
and iron retention within the MPS, thereby depriving iron for erythropoiesis. Hence, the 
enhanced erythrophagocytosis and suppressed erythropoiesis lead to anemia. Moreover, a 
thorough investigation using MIF-deficient mice revealed that the underlying mechanisms 
in AT-associated anemia development in trypanosusceptible and tolerant animals are 
quite distinct. In trypanosusceptible animals, anemia resembles anemia of inflammation, 
while in trypanotolerant animals’ hemodilution, mainly caused by hepatosplenomegaly, 
is an additional factor contributing to anemia. In this review, we give an overview of 
how trypanosome- and host-derived factors can contribute to trypanosomosis- 
associated anemia development with a focus on the MPS system. Finally, we will discuss 
potential intervention strategies to alleviate AT-associated anemia that might also have 
therapeutic potential.
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iNTRODUCTiON

African trypanosomes are extracellular protozoan parasites 
causing debilitating diseases of medical, veterinary, and socio
e conomical importance that adversely affect the economic develop
ment of subSaharan Africa (1–3). The distribution of the disease 
coincides with the habitat of the tsetse fly vector (Glossina spp.), 
and is called the tsetse fly “belt” or is sometimes referred to as 
“green desert” due to the fact that ~10 million km2 of potential 
fertile land is rendered unsuitable for cultivation (3). Within 
this area, the majority of the 39 tsetseinfested countries are 
underdeveloped, poor, heavily indebted, fooddeficit countries 
due to the lack of productive animals as far as meat/milk pro
duction and draft power are concerned, resulting in an annual 
economic loss of about 5 billion US$ (4, 5). In addition, about 
60 million people living in this belt are at potential risk of infec
tion with an estimated mortality rate of about 10,000 per year 
(6). Due to the low incidence of African trypanosomiasis, it is 
also considered a neglected disease. The disease caused by these 
extracellular hemoflagellates in humans is known as “sleeping 
sickness” or human African trypanosomiasis (HAT), while 
in domestic animals it is called “nagana” or animal African 
trypanosomiasis (AAT) (7). As far as HAT is concerned, two 
distinct subspecies of Trypanosoma brucei are responsible for 
the disease: (i) Trypanosoma brucei gambiense, typically found 
in western and central Africa (representing 98% of all cases, 
with humans as main reservoir), causes a chronic form of HAT  
(a few months to over several years) and (ii) Trypanosoma brucei 
rhodesiense, found in eastern and southern Africa [representing 
about 2% of all HAT cases due to the fact it is a zoonosis form 
with animals as main reservoir and humans being occasionally 
infected (8, 9)], generally causes an acute form of HAT leading 
to death within a few months if left untreated (6, 10, 11). HAT is 
characterized by two successive stages: an early hemolymphatic 
stage, whereby the parasites are observed in the peripheral blood 
and the lymphatic system, and a later meningoencephalitic stage, 
where parasites cross the blood–brain barrier and proliferate 
in the cerebral spinal fluid resulting in neurological complica
tions/cerebral pathology and death if left untreated (12, 13). 
As far as AAT is concerned, the strictly intravascular parasites 
Trypanosoma congolense, as well as Trypanosoma vivax, can be 
considered the most important causative agents (14). Yet, also 
Trypanosoma brucei brucei and Trypanosoma evansi, residing 
both in intravascular as well as extravascular spaces within their 
host, have been documented to contribute to livestock infections 
(14–16). In contrast to game animals, where these parasites cause 
only mild infections, the disease in domestic animals is severe 
and often fatal (5, 17, 18).

Various methods have been implemented to control African 
trypanosomiasis (19); including (i) vector control (20), (ii) reduc
ing the proximity of livestock to reservoir hosts, (iii) development 
op trypanotolerant livestock (diseaseresistant breeds) (5, 21), 
and (iv) using trypanocidal drugs (22). Yet, their success is lim
ited due to the fact that these techniques are often used locally and 
not necessarily in a coordinated fashion (23), game animals func
tion as parasite reservoir without exhibiting pathological signs 
(24), and the rapid emergence of drugresistant trypanosomes, 

thereby undermining their efficacy and leading to the widespread 
outbreaks of trypanosomiasis (19, 25, 26).

The main factor hampering control over African trypanoso
miasis is the fact that these parasites have evolved very efficient 
immune escape mechanisms and are able to manipulate the 
entire host immune response to avoid elimination [reviewed 
in Ref. (27)]. Accordingly, an alternative approach to tackle 
African trypanosomiasis is targeting the infectionassociated 
immunopathology. For example, in HAT patients neurological 
complications are the major pathological feature, yet, an addi
tional complication observed during the hemolymphatic stage 
is anemia (28, 29). In AAT, anemia is considered the most 
prominent immunopathological diseaserelated feature and the 
major cause of death due to Nagana (30). Importantly, in cattle, 
trypanotolerance has been referred to as the capacity of an animal 
to control severe anemia development which is assumed to be 
independent of parasitemia levels (21, 30). Moreover, Naessens 
et al. (31) showed using chimeric studies between trypanotolerant 
N’Dama (i.e., ancient cattle breeds/West African longhorn, Bos 
taurus) and trypanosusceptible Boran (more recently introduced 
cattle breeds, Bos indicus) that trypanotolerance is composed of 
two traits, (i) a better capacity to control parasitemia which is 
independent of the genetic origin of the hematopoietic tissue 
and (ii) a better ability to control anemia which is dependent 
on hematopoietic cells and thus a tolerant hematopoietic tissue 
genotype. Moreover, the capacity to control anemia is considered 
as the most important trait of the more resistant/trypanotolerant 
cattle (32). Yet, not only the genetic background (N’Dama versus 
Boran) but also other factors such as the age of the host, type 
of trypanosome spp. infecting, and nutrition can contribute to 
bovine trypanotolerance (33–38).

Tsetse fly mediated (i.e., natural infection mode) and experi
mental (i.e., using clonal parasites) murine models have been 
developed to allow a more detailed unraveling of the underlying 
mechanisms of trypanosomiasisassociated anemia develop
ment. Although most trypanosomes cannot be considered 
natural pathogens for rodents, experimental infections in mice 
may offer good models to identify the molecular pathways that 
mediate particular traits or pathological features such as anemia 
(39). Moreover, the genetic background of the mice was also 
found to contribute to susceptibility or tolerance as far as anemia 
is concerned, whereby during T. brucei and T. congolense infec
tion C57BL/6 mice exhibited severe anemia (yet low parasitemia) 
while BALB/c mice exhibited greatly reduced anemia (yet higher 
parasitemia) (40, 41). However, there are some differences in 
the phenotype. Indeed, even the most tolerant mouse strains 
eventually succumb to the infection, while in the absence of 
other stress factors, tolerant cattle survive such challenge. So far, 
studies in murine models focusing mainly on “clonal or natural 
(tsetse transmitted)” T. congolense and T. brucei parasites have 
shown that similar as in the bovine system, chronic anemia does 
not seem to correlate with parasitemia or survival, but rather is 
a result of infectionelicited host responses, where Bcells do not 
seem to play a major role (40, 42). By contrast, cells of the mono
nuclear phagocyte system (MPS, i.e., tissue resident myeloid cells 
and inflammationelicited/inflammatory myeloid cells derived 
from circulating monocytes) have been shown to play a key role 
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in infectionassociated pathogenicity/anemia development (43). 
Moreover, due to their sensing ability towards pathogen and 
hostderived signals in the environment, their phagocytic capac
ity and functional plasticity in response to these signals, cells 
of the MPS are considered as a crucial immune population in 
both health and disease. A large number of studies, including our 
work, have begun to establish how the ontogeny/differentiation 
of these cells is tailored during the course of African trypano
some infections. In this review, we aim at (i) giving an overview 
of how trypanosomederived and hostderived factors can affect 
the MPS and contribute to trypanosomosisassociated anemia 
development and (ii) discussing on potential intervention strate
gies to alleviate African trypanosomosis (AT)associated anemia 
that might also have therapeutic potential.

ANeMiA DeveLOPMeNT DURiNG 
AFRiCAN TRYPANOSOMe iNFeCTiONS

Myeloid Cells As Key Players in the 
Parasite–Host interaction and 
Trypanosomiasis-Associated Acute 
Anemia Development
The interaction between African trypanosomes and their mam
malian host elicits the sequential activation of innate and adaptive 
immune responses. Being extracellular parasites, they are con
tinuously confronted with the host’s immune system. However, 
through coevolution, a wellbalanced growth regulation system 
developed that allows sufficiently long parasite survival without 
killing its host to ensure transmission (44). This intricate balance 
consists of (i) a potent type 1 cellular/proinflammatory immune 
response and (ii) a strong humoral antiparasite Bcell response 
during the most prominent first peak parasitemia which col
lectively allows parasite control and temporary host resistance  
(42, 45). However, to avoid complete elimination, these extracellu
lar parasites have developed various immune evasion mechanisms 
(consisting of antigenic variation, immunosuppression and Bcell 
depletion/loss of Bcell memory) to ensure progression/chronic
ity and transmission (46–50). Moreover, the early “beneficial” 
proinflammatory immune response mediated by the activated 
MPS, can culminate into severe collateral damage to the host if 
persistent. In this context, the level of the inflammatory immune 
response triggered and the capacity of the host to control this 
response determines whether immunopathology (i.e., anemia 
and tissue damage) develops and allows discriminating between 
trypanosusceptible and trypanotolerant animals (see Figure 1).

Experimental murine models, using genespecificdeficient 
animals, have been very crucial in trying to unravel the mecha
nisms implicated in trypanosomiasisassociated pathogenicity 
and anemia in particular. In general, anemia occurs during all 
stages of a typical African trypanosome infection and can be 
divided into distinct phases (see Figure  1), (i) an early/acute 
stage whereby following/coinciding peak parasitemia clearance 
there is occurrence of a drastic drop in red blood cells (RBCs) 
numbers (i.e., acute or consumptive anemia) which is followed 
by a recovery phase and (ii) a more late/chronic phase coinciding 

with progressive anemia development. Accumulating evidence 
points to a pivotal role of myeloid cells in anemia development 
(see Figure  1). Hereby, their plasticity toward environmental 
triggers allows discriminating between classically activated 
macrophages (i.e., M1) and alternatively activated macrophages 
(i.e., M2). Moreover, the prevalence of M1 or M2 during the 
course of infection correlates with the severity of anemia (43). 
Consequently, both pro and antiinflammatory cytokines have 
been shown to be implicated in anemia onset and progression 
(51). In this section, different parasite and hostderived factors 
contributing to both myeloid cell activation and to acute and 
chronic anemia development will be discussed. To this end, two 
different murine African trypanosome models, i.e., the T. brucei 
and T. congolense infection model, will be compared. It is impor
tant to mention that within the murine African trypanosomiasis 
model, T. brucei infections are associated with severe anemia 
(i.e., a more susceptible model) and T. congolense infections with 
reduced anemia (i.e., a more tolerant model). Emphasis will be 
put on the more thoroughly investigated murine T. brucei infec
tion model. However, over the years more and more research has 
been conducted using the murine T. congolense infection model. 
Hence, we will also discuss, if possible, the common or distinct 
features underlying anemia development in both models.

Trypanosome-Derived Factors That Affect Myeloid 
Cell Activation during the Early/Acute Stage of 
Trypanosome Infection
Upon the bite of a trypanosomeinfected tsetse fly, metacyclic 
parasites expressing a heterologous variant surface glycoprotein 
(VSG) coat (i.e., metacyclic VSG) that prevents early detection/
elimination (52), are inoculated. Already during the early stage of 
infection, trypanosomes release factors that alone or in concert 
with saliva components can dampen/impair the activation of 
the host’s immune response, to generate a privileged “micro” 
environment to allow infection establishment [reviewed in Ref. (27)  
and shown in Figure  2, left panel]. Of note, with respect to 
parasitereleased factors that could modulate the host MPS, most 
research so far has been performed using the model parasite  
T. brucei and remain to be determined for the T. congolense 
model. For instance, studies using the T. brucei model parasite 
revealed that they harbor a kinesin heavy chain 1 (TbKHC1), 
which induces IL10 and arginase1, signals through SIGNR1 in 
myeloid cells and downregulates inducible nitric oxide synthase 
activity (53). In turn, this stimulates the production by the host 
of lornithine and hereby the synthesis of polyamines, which 
promotes early parasite growth (54). Consequently, IL10/argi
nase1producing immune cells are impaired in their capacity to 
destroy the parasite, favoring parasite settlement. Another factor 
trypanosomes use to establish infection is the T. brucei adenylate 
cyclase, which converts ATP into cyclic adenosine monophos
phate (cAMP) and is upregulated upon phagocytosis by M1 cells 
(55). This phenomenon leads to the inhibition/suppression of 
macrophage activation and consequently to an impaired produc
tion of parasite controlling molecules (56–59). Hence, it seems 
that trypanosomes have developed a system, where altruistic 
phagocytosed parasites can “temporarily” tempering/disabling 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | The activation state of myeloid cells correlates with anemia development during trypanosome infections in trypanosusceptible and trypanotolerant 
animals. (A) Anemia development in trypanosusceptible (green) and trypanotolerant (blue) animals during the course of infection. Anemia progression can be divided 
into (i) an acute phase characterized by a rapid drop in red blood cell (RBC) numbers (i.e., consumptive anemia) followed by a partial recovery phase, (ii) a late stage 
characterized in the susceptible model by a progressive decline in RBC numbers (below that of the acute phase) and host death. In the tolerant model, this decline is 
less pronounced and leads to (iii) a chronic phase (i.e., progressive anemia), whereby RBC numbers keep on declining till finally reaching levels of that of the acute 
phase. (B) Throughout the course of infection progressive hepatosplenomegaly occurs, whereby the onset of splenomegaly precedes hepatomegaly. At the late/
chronic stage of infection, splenomegaly is more pronounced than hepatomegaly. (C) During the different stages of infection, the host produces different mononuclear 
phagocyte system (MPS) polarizing molecules. During the early/acute stage, both trypanosusceptible (upper, green) and trypanotolerant (lower, blue) animals produce 
IFN-γ (green line) required to trigger the induction of classically activated macrophages (M1), which is followed by a moderate induction of IL-10 (blue line) to dampen 
the pathogenic effects of the M1. Only in the trypanotolerant model, there is a second progressive increase in IL-10 during the late/chronic phase of infection, which is 
required to induce alternatively activated macrophages (M2). (D) Occurrence of M1 and M2 during the course of aggressive Trypanosoma brucei or T. brucei 
attenuating strategies (GPI-based strategy or AAV-10/anti-CD28) or less virulent T. brucei PLC−/−/Trypanosoma congolense infection.
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the M1mediated innate immune response required for parasite 
control (see Figure 2). In turn, this favors the induction of M2 
and paves the way for initiation and establishment of the first 
wave of parasitemia.

Following initial infection, trypanosomes also “deliberately” trig
ger in a welltimed manner host cellular responses, whereby myeloid 
cells get activated via the combined exposure of (i) parasitereleased 
components (i.e., pathogenassociated molecular patterns) such 
as the soluble and membranebound/glycosylphosphatidylinositol 
(GPI)anchored VSG (sVSG and mfVSG, respectively) and CpG
DNA and (ii) NK/NKT/Tcell released IFNγ, which most likely is 
mediated via a trypanosomelymphocytetriggeringfactor (TLTF) 
(see Figure 2, right panel) (45, 60–64). This combination triggers 

the activation of M1 cells, which in turn release proinflammatory 
molecules such as tumor necrosis factor (TNFα) and nitric oxide 
(NO). However, the timing of exposure of these (parasite and 
hostderived) components is pivotal in the development of the 
immune response toward the parasites. These key events control
ling host resistance occur within a short time period following 
initial exposure to the parasitederived components. Indeed, 
trypanosomes can cleave their GPIanchored VSG molecules from 
the membrane by the trypanosome GPIphospholipaseC, which 
results in the release of soluble glycosylinositolphosphate VSG 
(GIPsVSG) and the retention of the dimyristoylglycerol (DMG) 
moiety in the parasites’ membrane (65–68). Both components 
(DMG and GIPVSG) exhibit a distinct macrophageactivating 
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FiGURe 2 | Proposed model for acute anemia development during trypanosome infections in trypanosusceptible animals (i.e., Trypanosoma brucei). During the 
early stage of infection, saliva components in concert with parasite-derived factors such as KHC [fueling parasite nutrient production (i.e., polyamines)] and AdC 
(dampening the potential of M1), temporarily disable/attenuate the M1-mediated innate immune response, thereby allowing parasite initiation/establishment.  
In addition, parasites release TLTF to trigger IFN-γ production by NK/NKT and CD8+ T cells, which will promote M1 cell activation. At the peak of parasitemia,  
these IFN-γ-primed M1 in concert with parasite-derived factors such as GPI-VSG (GIP/DMG) and CpG fuel M1 to produce pro-inflammatory molecules such  
as TNF, MIF, and Gal-3. In turn, TNF in concert with parasite-released extracellular vesicles (EVs) and/or sialidase trigger/enhance RBC senescence and hence 
erythrophagocytosis by M1 cells, leading to the development of acute anemia (i.e., hemophagocytic/consumptive anemia). Both MIF and Gal-3 promote M1 
polarization and at this stage, there is an amplification of the iron homeostasis [i.e., increased iron storage (ferritin) and export (FPN-1)], which triggers extramedullary 
erythropoiesis. MIF also promotes recruitment/retention of mononuclear phagocytes and neutrophils, which in turn fuel the pathogenic effects of M1. At this stage, 
the host transiently produces IL-10, which is required to dampen the pathogenic effects of the M1 and in concert with the extramedullary erythropoiesis results in a 
partial recovery from acute anemia. Abbreviations: TLTF, T-lymphocyte triggering factor; KHC, kinesin heavy chain; AdC, adenylate cyclase; GPI, 
glycosylphosphatidylinositol; GIP, glycosylinosytolphosphate; RBC, red blood cell; MIF, macrophage migration inhibitory factor; Gal-3, galectin-3; FPN-1, 
ferroportin-1; Hemato, hematopoietic; Non-Hemato, non-hematopoietic; DMG, dimyristoylglycerol; VSG, variant surface glycoprotein.
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potential (60, 62). For example, the GIPVSG moiety is recognized 
by a type A scavenger receptor (SRA) expressed mainly on 
mononuclear cells (e.g., macrophages and dendritic cells) leading 
to the concentrationdependent activation of NFκB and MAPK 
pathways and expression of proinflammatory genes such as (TNF
α, IL6, IL12p40, and granulocytemacrophage colonystimulating 
factor) in a MyD88 dependent manner (61, 63). However, the 
fluctuating levels of parasite (e.g., GIPsVSG) and host (e.g., IFNγ)  
factors during infection act to control macrophage activity in 
a complex and subtle way, with the outcome determined by the 
concentration of each mediator, the sequential pattern of its pro
duction, and the microenvironment of the target macrophage (69). 
For instance, during the early/initial stage of infection, the GIP
sVSG released before a high level of IFNγ production prevents a 
prominent strong proinflammatory immune response and hence 
favors parasite establishment. Yet, if the IFNγ levels increase this 
will prime macrophages to respond stronger toward the parasite
derived GIPsVSG, which in turn will fuel M1 cells to mount a 
prominent proinflammatory immune response.

Host-Derived Factors That Affect Myeloid Cell 
Activation during the Early/Acute Stage of 
Trypanosome Infection
Using genedeficient mice or neutralizing antibodies it was 
shown that the sequential production of IFNγ by NK, NKT, 
as well as CD8+ and CD4+ T  cells during the early stage of 
trypanosome infection seems to be crucial to initiate acute 
inflammationassociated anemia (70), also termed consumptive 
anemia (71, 72) (see Figure 2, left panel). In this scenario, IFNγ 
activates M1 cells, which in turn allows parasite elimination/
removal, but at the same time also promotes the M1mediated 
enhanced uptake of RBCs resulting in a first rapid drop in RBC 
numbers. Indeed, IFNγ receptordeficient mice were found to 
exhibit greatly reduced acute anemia levels (73), coinciding with 
a reduced influx of myeloidderived cells, e.g., neutrophils and 
M1, within the liver that exhibit an impaired erythrophagocytosis 
capacity (70). Increased levels of hostderived IFNγ furthermore 
induce splenomegaly (71), which is typically observed during the 
acute stage. Recently, Stijlemans et al. (74) demonstrated using a 
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TABLe 1 | Overview of acute and chronic anemia development in different 
Trypanosoma brucei-infected mouse strains.

Mouse model Acute anemia Late/chronic 
anemia

Reference

BALB/c + + (41, 42)
C57BL/6 (WT) +++ +++ (41, 42, 74, 83, 90)
aB-cell−/− +++ +++ (42)
aNu/Nu + + (70)
aIFN-γ−/− or IFN-γR−/− + + (70, 73)
aCD8−/− + ++ (70)
aCD4−/− +++ + to ++ (70)
C57BL/6 + anti-NK1.1 + +++ (70)
C57BL/6 + anti-CD28  
superagonist

+ +++ (130)

C57BL/6 + AAV-IL-10 ND + (131)
C57BL/6 + GPI-based 
strategy

+ + (95, 132)

aIL-10−/− +++ ND (131)
aTNF−/− + + (59, 83, 118)
aTNF-R1−/− +++ +++ (41)
aTNF-R2−/− ++ + (41)
aLT-α−/− ++ + to +++ (118)
C57BL/6 + L-NAME + ND (84)
aMIF−/− + + (93)
aGal-3−/− + + (133)

+, Mild anemia (<25% drop in RBCs); ++, moderate anemia (25–35% drop in RBCs); 
+++, severe anemia (>35% drop in RBCs); ND, not determined; RBC, red blood 
cell; AAV-IL-10, alternatively, adenoviral delivery of IL-10; Gal-3, galectin-3; MIF, 
macrophage migration inhibitory factor; WT, wild-type; LT-α, lymphotoxin-alpha.
aGene-deficient mice in C57BL/6 background.
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pHrodobased assay that during the early stage of T. brucei infec
tion, CD11b+Ly6G+ neutrophils, CD11b+Ly6Chigh monocytic 
cells, as well as splenic CD11b+F4/80+ myeloid cells exhibit an 
enhanced erythrophagocytosis capacity that might account for 
the occurrence of severe acutestage nonhemolytic anemia. 
Interestingly, it was shown by others that enhanced erythropha
gocytosis is associated with the mobilization of Ly6Chigh mono
cytes in a CCR2dependent manner from the bone marrow 
into the blood (75), which accumulate mainly within the liver 
and subsequently ingest stressed/senescent erythrocytes. These 
cells differentiate into ironrecycling/ferroportin1 (FPN1, sole 
iron exporting molecule)expressing tissue macrophages and 
subsequently into ironrecycling Kupfferlike cells, which is a 
natural mechanism to preserve homeostasis during fluctuations 
of erythrocyte integrity (76).

Host- and Parasite-Derived Factors That Contribute 
to Acute Anemia
It was shown that RBCs from infected (i.e., day 6 postinfection) 
wildtype (WT) mice exhibited an enhanced osmotic fragility and 
an altered fatty acid membrane composition compared with RBCs 
from noninfected WT mice (70). This change in RBC fragility was 
not due to IFNγ but might be due to hostderived factors such as 
TNFα produced by M1 cells (77–80). Indeed, TNFα could be a 
driving force for the observed changes in RBC fragility given that 
it was shown that it can decrease the RBC halflife and thereby 
fuel RBC senescence/elimination (81). The importance of host
derived factors such as TNFα in acute anemia development was 
further substantiated by the observation that T. bruceiinfected 
TNFαdeficient (TNFα−/−) mice exhibited greatly reduced acute 
anemia levels compared with control WT mice (see Table  1). 
Thereafter, RBC levels in TNFα−/− mice remained elevated. By 
contrast, in the T. congolense model, TNFα−/− mice exhibited 
similar acute anemia (and chronic) levels as control WT mice  
(82, 83), suggesting that in this model the underlying mechanisms 
of anemia development are different. Besides TNFα produced 
by activated myeloid cells, NO was also found to be an important 
factor affecting T. bruceiassociated acute anemia development. 
Indeed, treating C57BL/6 mice with lNAME (a typical inhibitor 
of NO synthase) alleviated acute anemia development (coincid
ing with reduced peak parasitemia) and was proposed to affect 
proliferation of immature erythrocytes or hematopoietic stem 
cells (73, 84). In line with these observations, mice treated with 
corticosteroids (which downregulates NO synthesis) exhibited an 
alleviated anemia development (85). However, more research is 
required to unravel at which level NO affects T. bruceiassociated 
acute anemia development.

Also parasitederived factors such as sialidases in the case 
of T. congolense or extracellular vesicles (EVs) in the case of  
T. brucei infections could contribute to modifications of RBCs 
and thereby promote elimination (77–80). Indeed, it was pro
posed at least for the murine T. brucei model that during the 
acute stage, trypanosomes release EVs (filled with intracellular 
parasite cargo as well as VSG) that can fuse with RBCs. This 
causes a change in the physical properties of the RBC membrane, 
which enhances erythrophagocytosis and thereby fuels anemia 

development. In this context, it could be that binding of mfVSG 
(present in the EVs) to the RBC surface sensitizes erythrocytes to 
antiVSG antibodymediated complement lysis (86). In addition, 
this observation might also explain how active adenylate cyclase, 
playing a key role in increasing cAMP in host cells resulting in 
the activation of protein kinase A and downregulation of TNFα, 
could be transferred from the parasite to the mammalian host 
(see above). Indeed, the highly fusogenic EVs containing this 
enzyme might be transferred to recipient host cells, thereby 
increasing the intracellular levels of cAMP. Given that these EVs 
are mainly produced at the peak of parasitemia, they might in 
one way stimulate RBC elimination and at the same time dampen 
sub sequent inflammatory reactions, thereby allowing the next 
wave of parasites to escape. Also for the murine and bovine  
T. congolense model, factors such as congopain and sialidases 
were suggested to contribute directly/indirectly to anemia deve
lopment, by damaging RBCs that results in the exposure of 
erythrophagocytosis promoting targets (phosphatidylserine) on 
the RBC membrane (78, 87, 88).

Different factors might account for the occurrence of acute 
anemia in both the T. brucei as well as the T. congolense murine 
infection model. Hence, the acute stage of anemia could be due 
to a “natural” reaction of the host following infection as well 
as to parasitederived factors resulting in a rapid drop in RBC 
numbers due to enhanced erythrophagocytosis (89). At this stage 
of infection, due to the enhance erythrophagocytosis, there is an 
amplification of the ironhomeostasis metabolism (90), resulting 
in an increased release of iron to fuel the enhanced demand for 
erythropoiesis (Figure 2, right panel).
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Transition from Acute to Chronic Anemia: The 
Recovery Phase
Following this acute anemia phase, there is a transient recovery 
phase in both the T. brucei as well as the T. congolense infec
tion model (see Figure 1), as a natural response of the host to 
control/alleviate acute anemia development. Of note, within the 
T. brucei infection model, this recovery was more pronounced 
in the IFNγR−/−, CD8−/−, TNFα−/−, and TNFR2−/− mice, sug
gesting that a reduced early proinflammatory response/insult 
allows better recovery from acute anemia. However, so far, the 
exact mechanism(s) involved are not well characterized. From 
other experimental models of acute anemia (phenylhydrazine
induced injection or bleeding), it could be inferred that this is 
most likely due to an enhanced extramedullary erythropoiesis 
occurring mainly in the spleen and to a lesser extent in the liver 
and coincides with the occurrence of hepatosplenomegaly. In this 
context, both in the T. brucei and T. congolense infection model, 
hepatosplenomegaly has been documented starting already dur
ing the early stages of infection, and coincided with an increase in 
immature RBC numbers within the splenic compartment (91–95). 
It is generally known that anemia induces tissue hypoxia, which 
in turn triggers the activation of a physiological stress response  
(i.e., stress erythropoiesis) designed to increase oxygen delivery to 
tissues by rapidly generating large numbers of erythrocytes (96). 
Moreover, tissue hypoxia triggers the induction of erythropoietin 
(EPO) in the kidney (97), which drives the expansion and dif
ferentiation of erythroid progenitors. Of note, during murine and 
bovine trypanosome infections, serum EPO levels are increased 
during both the acute and chronic stage of infection (83, 98). 
Subsequently, the bone marrow progenitor cells migrating into 
the spleen or stress erythroid progenitors resident in the spleen 
expand and differentiate in response to bone morphogenetic 
protein 4 (BMP4) and Hedgehog, which act in concert with 
signals previously associated with stress erythropoiesis, such 
as EPO, stem cell factor and hypoxia, to replenish the pool of 
stress erythroid progenitors (96, 99, 100). Whether macrophages 
play also a role at the level of erythropoiesis within the African 
trypanosome model remains to be further investigated. However, 
it was shown that upon anemia or stress, macrophagedependent 
erythropoiesis (within erythroblastic islands) is needed to 
adequately respond to produce enough erythrocytes to allevi
ate the shortage (101, 102). Interestingly, in experimental  
T. congolense infections in rats, erythroblastic islands were found 
to expand already during the early stages of infection within the 
bone marrow (103). It is important to mention that following this 
prominent proinflammatory immune response and coincid
ing with the partial recovery of acute anemia, the host is able 
to trigger a “transient” antiinflammatory immune response, 
whereby IL10 was shown to play a key role (104, 105). At this 
stage, CD4+ T cells were shown to be important IL10producing 
cells to dampen the pathogenic effects of the IFNγinduced M1 
(106). Yet, it can not be excluded that other cells (hematopoietic 
or nonhematopoietic) might also contribute (see Figure 2, right 
panel). Recently, it was also suggested that IL27 can play a key 
role in dampening the pathogenic effects of T  cellmediated  
IFNγ during T. brucei and T. congolense infection without affect
ing IL10 levels (107).

Myeloid Cells As Key Players during the 
Late/Chronic/Progressive Stage of 
Trypanosomiasis-Associated Anemia 
Development
Following partial recovery from acute anemia, there is a new 
equilibrium established, which is different from the steadystate 
situation (see Figure  1). At this stage, the capacity of the host 
to keep the balance between erythrophagocytosis and eryth
ropoiesis determines whether anemia persists. This also allows 
discriminating between susceptible and tolerant animals as far as 
anemia is concerned, whereby the activation stage of the myeloid 
cells determines the degree of anemia. Indeed, on one hand, 
trypanosusceptible animals maintain a prominent/polarized M1 
activation state and exhibit progressive anemia (i.e., T. b. brucei 
model), which resembles anemia of chronic disease or anemia 
of inflammation (90). This is characterized by an enhanced 
erythrophagocytosis and impaired/reduced erythropoiesis that 
is linked to a perturbed iron homeostasis including altered iron 
recycling by macrophages and iron sequestration (Figure  2). 
Therefore, the ironprocessing pathway is skewed toward iron 
sequestration (40, 90), as evidenced by increased ferritin expres
sion (main iron storage molecule) and reduced FPN1 (sole 
iron exporter), while enhanced uptake of RBC/ironcontaining 
compounds is maintained (see Figure 3, left panel). Moreover, 
iron sequestration by cells of the MPS can fuel their M1type 
activation status and limit iron availability for erythropoiesis 
(108–111), thereby contributing to the persistence of anemia.

In this context, it was shown that proinflammatory cytokines 
such as IFNγ, TNF, IL1, and IL6 can affect ironhomeostasis 
regulation as well as erythropoiesis. Indeed, during homeostasis, 
there is a balance between RBC destruction and production, 
where the iron availability is adequate to accommodate the 
host’s erythropoietic demand (112). Yet, during inflammation 
this balance is shifted toward an enhanced RBC destruction and 
impaired/insufficient production or RBCs, leading to anemia. 
These proinflammatory cytokines trigger (i) the upregulation of 
the divalent metal transporter1, which increases iron uptake by 
the reticuloendothelial cells, (ii) an enhanced ferritin expression 
(i.e., iron storage molecule), and (iii) a downregulation of FPN1 
expression thereby promoting iron retention within the MPS (113, 
114). This will cause a deprivation of iron from erythropoiesis. At 
the same time, these proinflammatory cytokines inhibit eryth
ropoiesis by (i) downregulating EPO receptors thereby impairing 
the EPOmediated effects, (ii) increasing erythroid apoptosis, 
and (iii) antagonizing prohematopoietic factors (115, 116).

On the other hand, trypanotolerant animals are able to switch 
to a protective antiinflammatory response (induced via IL10), 
which is reflected by the occurrence of M2 cells that in concert with 
IL10 are able to dampen the pathological effects of the M1 cells, 
and exhibit an alleviated anemia development [i.e., T. brucei atte
nuation strategies, phospholipaseCdeficient (PLC−/−) T. brucei  
and T. congolense model]. Moreover, trypanotolerant animals 
in contrast to trypanosusceptible animals exhibit a restored 
iron homeostasis (i.e., an enhanced FPN1 and reduced ferritin 
expression) and increased iron availability for erythropoiesis 
(95). In addition, M2 cells exhibit a reduced erythrophagocytosis 
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capacity, whereby iron homeostasis is skewed toward export 
(117). It is important to mention that in both the T. brucei and 
T. congolense infection model, the host is able to produce IL10 
during the acute stage of anemia to dampen the pathogenic 
effects mediated via the pronounced proinflammatory response, 
which is linked to the first wave of parasitemia control. However, 
it seems that in the T. brucei (susceptible) model the host is 
unable to retrigger IL10 induction to dampen the second wave 
of inflammation, while in the PLC−/− T. brucei/T. congolense 
(tolerant) model the host is able to mount a second progressive 
IL10 response, which is sufficient to dampen the lower level of 
inflammation. This difference in ability to trigger a second wave 
of IL10 (or alternatively, maintain an IL10 triggering potential) 
is also reflected at the level of differences in M1 and M2 between 
susceptible and tolerant animals.

Myeloid Cell Activation in the T. brucei (Susceptible) 
versus T. congolense (Tolerant) Model
As far as the T. brucei model (using AnTat1.1E) is concerned, 
there is a persistent M1 activation contributing to severe 

anemia and tissue injury (see Figures 1 and 3). It was shown 
that the TNFfamily members [TNFα and lymphotoxinalpha 
(LTα)] play a key role in chronic/progressive anemia develop
ment by signaling via their dedicated receptors [TNFR1 or p55 
(CD120a), TNFR2, or p75 (CD120b)] (see Table 1) (118). Thus, 
TNFαdeficient (TNFα−/−) or TNFR2deficient (TNFR2−/−) 
mice exhibited greatly reduced chronic anemia compared with 
WT or TNFR1deficient (TNFR1−/−) mice (41, 59), suggesting 
that TNFR2 signaling mediates infectionassociated pathol
ogy, whereas TNFR1 signaling has little or no impact on the  
T. brucei infection. Moreover, the serum levels of soluble TNF
R2 after shedding, which impaired TNFαsignaling pathways 
in myeloid cells, correlated with the inhibition of TNFmediated 
immunopathology. Moreover, the low ratio of total TNFα to 
soluble TNFR2 observed in BALB/c mice may account for 
the lack of TNFmediated pathology, whereas an increased 
ratio in C57BL/6 mice coincided with the severe pathology/
anemia. Using LTα−/− mice, it was shown that the TIP sequence  
(i.e., lectinlike domain) of TNFα does not seem to play a role 
in anemia development (118). Importantly, TNFα and LTα 
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have high amino acid sequence homology and both bind to the 
TNFα p55 and p75 receptors (TNFR1 and R2, respectively) 
as soluble homotrimers (119), yet they exhibit alterations in the 
TIP sequences (120). For example, TNFα exerts a lectinlike 
affinity for several carbohydrate sequences while LTα does not 
(121). These LTα−/− mice were shown to exhibit during the 
middle stage of infection (days 10–28) a greatly reduced anemia 
compared with WT mice, which coincided with reduced TNFα 
induction in LTα−/− mice during this stage. However, during 
the final stage of infection, serum TNFα reaches the same 
levels in both LTα−/− and WT mice, concomitant with similar 
anemia levels in both mice groups. A possible explanation for 
this might be that TNFα is also an important negative regula
tor of erythropoiesis and this aspect might predominate at later 
stages of infection (51, 122). Hence, strategies to reduce TNF 
signaling or allowing switching from M1 toward M2 might also 
be valuable to alleviate chronic anemia development. Different 
factors were found to contribute to the ability of the host to 
switch from M1 to M2 and the ability to maintain/trigger IL10 
during the later stages was shown to be detrimental to attenuate 
anemia.

Collectively, it seems that the mechanisms underlying  
trypa nosomiasisassociated anemia are multifactorial and the 
relative contribution of each mechanism will differ according 
to the host–parasite model, the phase of anemia development 
and the severity of infection and is probably caused by massive 
extravascular erythrophagocytosis by an expanded MPS in con
cert with an inadequate erythropoiesis.

POTeNTiAL iNTeRveNTiON STRATeGieS 
TO ALLeviATe AT-ASSOCiATeD ANeMiA

The Parasite Strain Used Determines  
the MPS Activation State and Anemia 
Development
Typically, in the experimental T. brucei C57BL/6 model, the 
myeloid cells are polarized into an M1 state, which is pro
moted due to the inability of the host to sustain a strong anti 
inflammatory immune response. By contrast, in the less aggres
sive model experimental PLC−/− T. brucei C57BL/6 model, there 
is a switch from M1 toward M2 mediated via IL10, coinciding 
with reduced pathology (anemia/tissue injury) and prolonged 
survival. A possible explanation for this switch toward M2 in 
the PLC−/− T. brucei model and not in the WT T. brucei model 
might rely in the fact that the PLC is required to sustain M1 
by (i) allowing the release of GPIanchored proteins (encom
passing the GIP) to stimulate macrophages to secrete pro
inflammatory molecules (TNFα, IL1, IL6, and NO) and/or 
(ii) trigger CD1drestricted NKT cells to secrete IFNγ thereby 
triggering a very strong type 1 immune response (60, 123).  
Indeed, it was shown that in the PLC−/− T. brucei C57BL/6 
model the lower parasitemia coincided with reduced early 
IFNγ production and subsequent attenuated MPSderived 
proinflammatory cytokine production, reflecting a reduced 
type 1 immune response mounted (124–126). The crucial role 
of IFNγ and IL10 during infection was further substantiated 

using genedeficient mice, where the absence of IL10 coin
cided with high pathology and early mortality. Although the 
source of IL10 was not thoroughly investigated within the 
PLC−/− T. brucei model, some data suggest the involvement of 
CD4+ T cells (124). Interestingly, infections of PLC−/− T. brucei 
parasites using C57BL/6 x BALB/c (B6BF1) mice were found 
to exhibit striking similarities with that of the trypanotolerant 
N’Dama cattle naturally infected with T. congolense. These 
latter include (i) lower parasitemia, (ii) prolonged survival,  
(iii) increased type II and decreased type I immune responses, 
and (iv) reduced pathology and minimal clinical symptoms 
during the course of infection (127, 128). Therefore, PLC−/−  
T. bruceiinfected B6BF1 mice represent a suitable model to 
study the immune responses during bovine T. congolense infec
tions. Within the T. congolense model in C57BL/6 mice, it was 
shown that spleen and liver regulatory T cells (Foxp3+ Tregs) 
were an important source of IL10, thereby limiting the produc
tion of early IFNγ by T cells and in that way lowering patho
logy. Besides Tregs, also myeloidderived IL10 was shown to 
play an important role in limiting the production of pathogenic 
TNFα by M1 cells (characterized as CD11b+Ly6C+) through 
induction of nuclear translocation of the NFκB p50 member 
(129). However, it cannot be excluded that other hematopoietic 
and nonhematopoietic cells can be potential sources of IL10 
during the course of T. congolense infection (Figure 3).

iL-10-inducing Strategies to Modulate  
the MPS Activation State and Anemia 
Development
As mentioned before, the capacity of the host to induce IL10 
immediately after the induction of a prominent proinflammatory 
immune response mediated via M1 cells determines whether 
pathology/anemia develops/is alleviated or not. This opens per
spectives for potential IL10 triggering/promoting intervention 
strategies aiming at triggering an M1 toward M2 switch, thereby 
reducing pathology development. So far, several strategies have 
been used to demonstrate/strengthen the pivotal role of IL10 
in reducing trypanosomiasisassociated pathogenicity using the 
susceptible T. brucei model. For instance, transient antiCD28 
superagonist antibody treatment (inducing regulatory T cells and 
M2) in the T. brucei model attenuated acute anemia development 
(130). Given that this treatment was not continued during the 
chronic phase of infection its effects during this stage remain 
to be determined. Alternatively, adenoviral delivery of IL10 
in the T. brucei model coincided with an alleviated pathology/
anemia development (131), during the chronic phase of infection 
(see Table  1). Also a GPIbased treatment strategy, where the 
parasitederived GPI moiety (i.e., most potent parasitederived 
TNFinducing molecule involved in M1 triggering) was used 
to reprogram macrophages toward an antiinflammatory state 
(i.e., reflected by a reduced inflammatory cytokine production 
and increased IL10 production), was shown to alleviate anemia 
in both clonal as well as natural/nonclonal T. brucei infections 
(132). This strategy allowed reducing RBC destruction, normal
izing iron homeostasis (i.e., a shift in increased liver expres
sion of iron storage toward iron export genes) and restoring 
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erythropoiesis [i.e., increased erythropoiesis in the bone marrow 
and extramedullary sites (spleen)] (95). Interestingly, this GPI
based treatment also alleviated “chronic” anemia development 
during experimental T. congolense as well as T. evansi infections 
suggesting a wide applicability.

M1-Promoting Factors Are Prime Targets 
to Attenuate Anemia
Given that M1 cells are major contributors to anemia develop
ment, identification of M1derived pathological factors might 
open perspectives to attenuate the pathology. An approach to 
identify potential M1derived pathology inducing/promot
ing factors consisted of scrutinizing a GPIbased strategy, 
which enabled a straightforward comparison between tryp
anotolerance and trypanosusceptibility in T. bruceiinfected 
C57BL/6 mice, independent of the genetic background of the 
host (95). A resulting comparative gene expression analysis  
of M1polarizing molecules and/or molecules involved in 
enhancing erythrophagocytosis identified galectin3 (Gal3) 
and macrophage migration inhibitory factor (MIF) as potential 
candidates. Both molecules were indeed found to contribute to 
anemia development during T. brucei infections by affecting/
regulating different aspects of the host’s immune response. As 
far as Gal3 (i.e., a family member of betagalactosidebinding 
animal lectins) is concerned, it was shown that Gal-3−/− mice 
manifested higher IL10 levels that can exert an influence on 
iron uptake and counteract the effects of IFNγ (133). Hence, 
Gal3 can promote persistence of M1 and regulate the expres
sion of ironhomeostasis genes, favoring iron storage, which 
ultimately culminates in iron shortage for erythropoiesis and 
exacerbate inflammationassociated anemia development 
(Figures 2 and 3) (133, 134). In addition, given the negative 
effect of Gal3 on the induction of IL10, a persistent inflam
matory response is ensured in presence of Gal3. As far as MIF 
is concerned, this “early response” cytokine is expressed by 
numerous cell types, including myeloid cells, plays a key role 
in innate and adaptive immunity and was shown to be involved 
in many protozoan infections (135–137). Using Mif−/− mice it 
was shown that this upstream regulator of the inflammatory 
cascade contributed to inflammationassociated pathogenicity 
by (i) sustaining a persistent proinflammatory type I immune 
response (impairing IL10 production) and (ii) maintaining/
enhancing the recruitment of pathogenic monocytic cells and 
neutrophils in the liver whereby neutrophilderived MIF con
tributed significantly to enhanced TNF production and liver 
damage (Figures 2 and 3) (93). The pivotal role of MIF within 
the African trypanosomiasis model regarding the persistence 
of inflammation might be multifactorial. For instance, endoge
nous MIF has been shown to (i) promote macrophagemediated 
inflammatory responses via induction of CC chemokine ligand 
2 expression, thereby promoting the recruitment of monocytes 
into affected areas and (ii) exert a regulatory role in cellular 
responsiveness to key proinflammatory cytokines TNF and 
IL1 via upregulation of cytokine receptordependent MAPK 
signaling (i.e., upregulation of TNFR1 and IL1R expression, 
respectively) independent of NFκB (138, 139). Hence, by 

both attracting and activating monocyte/macrophages, MIF 
may contribute to the initiation and perpetuation of detri
mental inflammation associated with diseases such as African 
trypanosomiasis. In addition, MIF importantly contributed 
to anemia development by (i) promoting iron accumulation 
in liver myeloid cells, (ii) enhancing RBC clearance, and  
(iii) suppressing erythropoiesis at later stages of erythroblast 
differentiation (Figure  3) (93). Interestingly, MIF was also 
shown to be a potential pathogenic molecule playing a key role 
in chronic anemia development during T. congolense infections 
by (i) promoting erythrophagocytosis, (ii) blocking extramed
ullary erythropoiesis and RBC maturation, and (iii) triggering  
hemodilution (Figure 3) (94).

Overall, it seems that during murine T. brucei and T. congolense 
infections anemia is mainly due to enhanced erythrophagocy
tosis combined with enhanced but inadequate extramedullary 
erythropoiesis. Yet, during T. congolense but not T. brucei infec
tions, hemodilution (involving massive hepatosplenomegaly) 
seems to be an additional factor contributing to chronic anemia 
development (93, 94). However, it might be that within the 
T. brucei model the contribution of hepatosplenomegaly to 
hemodilution is minor or not reached within this “short” time 
period. This notion is strengthened by the fact that there was 
no correlation between anemia and hemodilution (involving 
hepatosplenomegaly) in T. brucei and T. congolenseinfected 
rats within the same time window (92). However, a different  
T. brucei parasite strain (TREU 667 strain) causing a more 
chronic infection involving also revealed that the hepatosple
nomegaly could contribute to hemodilution (140). Of note, also 
in HAT patients exhibiting anemia during later stages of the 
disease, hepatosplenomegaly has been recorded and this might 
therefore contribute to the observed “apparent” anemia (28). In 
this particular model, it seems that the virulence of the parasites 
determines whether hemodilution occurs. Interestingly, these 
observations correlate nicely with experimental T. brucei and 
T. congolense infections in domestic animals (cattle and sheep, 
respectively) (141, 142). Importantly, it was shown that MIF 
can also be present in erythrocytes and upon (hemo)lysis, due 
to oxidative stress, this factor can be released to further fuel 
inflammation (143). Given that hemolysis was shown to occur 
during T. congolense infections (40, 144), the increased levels of 
MIF observed during both the acute and chronic stage might 
mainly be due to parasiteinflicted rather that hostmediated 
damage of RBCs, which could also fuel a chronic (lowgrade) 
anemia profile. Therefore, MIF might be an “important” player 
(upstream regulator) in African trypanosomiasisassociated 
anemia, mainly during the chronic stage of anemia development 
by fueling/promoting pathogenic M1 and could be considered 
as a prime antidisease target.

GeNeRAL CONCLUSiON AND 
PeRSPeCTiveS

African trypanosomes are very proficient in sculpturing a 
temporal environment to allow a gradual parasite establish
ment (27). Hereby, the host’s response at different stages of the 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


11

Stijlemans et al. MPS and Trypanosomiasis-Associated Anemia

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 218

infection determines whether pathogenicity/anemia develops. 
The mechanisms underlying African trypanosomiasisassociated 
anemia are multifactorial, whereby various molecules influ
ence differentially the progression/development of anemia at 
distinct stages of infection. Initially, acute anemia seems to 
develop as part of the innate immune response upon infec
tion, where parasitederived factors, such as parasitederived 
EVs, as well as hostderived (parasiteinduced) IFNγ trigger  
M1 cell differentiation that in turn produce proinflammatory 
molecules to control the infection. In this context, IFNγ 
produced at the acute stage is the driving factor leading to 
acute/hemophagocytic anemia (30). In addition, the release 
of parasitederived EVs in concert with hostderived TNFα 
affect RBC survival and thereby fuels RBC elimination trough 
erythrophagocytosis (Figure  2). This is followed by a partial 
recovery, mediated most likely via extramedullary erythropoie
sis, as a homeostatic reaction and a transient IL10 production 
to dampen the pathogenic effects of the M1. Depending on the 
level of insult (i.e., M1induced damage) and the capacity of the 
host to trigger and subsequently maintain IL10 production, 
anemia is either alleviated (i.e., trypanotolerant animals) or 
sustained (i.e., trypanosusceptible animals). At this stage, MIF 
is an important hostderived factor determining/regulating 
the progression of anemia by promoting a persistent pro 
inflammatory immune response and suppressing erythro
poiesis. In addition, IFNγ, TNFα, and MIF are important 
molecules exerting a negative effect on erythropoiesis and at 
the same time at promoting erythrophagocytosis. By contrast, 
IL10 was shown to positively affect erythropoiesis by down
regulating the effects of the proinflammatory cytokines (145). 
Therefore, the balance between these pro and antiinflam
matory cytokines during the course of infection determines 
the course of anemia development (51). In other words, the 
ability of the host to mount an efficient erythropoietic response 
(stressinduced response) to compensate for the enhanced 
erythrophagocytosis determines whether anemia persists. In 
the murine model, but also in cattle, the erythropoietic poten
tial determines the level of anemia (33, 40, 94, 122). However, 
it seems that chronic anemia is most likely hostinflicted and 
due to a disproportional immune response (30). In summary, 
the mechanisms underlying/promoting chronic anemia deve
lopment during T. brucei and T. congolense infections seem to 
be different. In the T. brucei infection model the main driving 
forces for anemia development are (i) the persistence of M1 
that promote enhanced RBC elimination and iron retention 
and (ii) an insufficient erythropoiesis due to iron deprivation 
and the presence of proinflammatory cytokines that suppress 
RBC differentiation/maturation (Figure  3). By contrast, in 
the T. congolense infection model these aspects seem to play a 
main role only during the acute stage, as once M2 are induced 
and expanding they can in concert with IL10 dampen to a 
certain extent the pathogenic effects of the M1. Given that 
T. congolenseinfected animals still exhibited chronic anemia 
despite the presence of M2 and IL10 suggests that the under
lying mechanisms of chronic anemia in this model might be 
different and might rely on the hematopoietic potential of the 
animals (40). It was proposed that the monthlasting lowgrade 

inflammatory response can also drive erythrophagocytosis, 
where the ensuing catabolism of hemoglobin resulted in iron 
accumulation mainly in the spleen and is followed by the 
enhanced release of bilirubin in the blood circulation (94). The 
resulting hyperbilirubinemia could favor the externalization 
of phosphatidylserine on RBCs and thus further contribute 
to erythrophagocytosis or eryptosis during T. congolense 
infection (146). However, at this stage the persistence of IL10 
might be a doubleedged sword by on one hand dampening 
tissue injury and reduce the suppression on erythropoiesis 
mediated by the M1released proinflammatory mediators 
and on the other promoting (i) ferritin expression thereby 
indirectly affecting iron availability, (ii) thrombocytopenia, 
and (iii) splenomegaly, leading to hemodilution (147, 148). The 
latter might in turn culminate into the occurrence of appar
ent anemia development, despite an enhanced erythropoiesis 
activity. In this context, it was shown that sustained secretion 
of IL10 from transduced muscle leads to thrombocytopenia 
and splenomegaly in mice injected with rAAV1IL10 (147). 
Interestingly, thrombocytopenia was also documented for 
T. congolenseinfected animals (149, 150). The splenomegaly 
observed in both susceptible and tolerant animals is required 
to accommodate the increased demand for erythropoiesis 
(93–95). However, it seems that this excessive accumulation of 
immature RBCs is most likely due to an inefficient erythropoi
etic potential (e.g., iron retention or unresponsiveness toward 
EPO or inefficient functioning of erythroblastic islands). 
Indeed, it was shown that most genes involved in erythropoiesis 
were found to be significantly modulated during the course of 
both T. brucei and T. congolense infection (40, 93, 94). However, 
so far information regarding erythropoiesis during African 
trypanosomiasis is limited and requires more attention. Also, 
a possible involvement of macrophages (functionality) within 
erythroblastic islands requires consideration. Within the era 
of genomics/proteomics (151–154), we can assume that novel 
pathways, mechanisms and molecular target molecules will be 
identified in various mouse models (155, 156). These discover
ies will help us to refine our understanding of the mechanisms 
underlying anemia development and could even pave the way 
to develop new intervention strategies to alleviate it.
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