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Over the last decade, C-type lectin-like receptors (CTLRs), expressed mostly by myeloid 
cells, have gained increasing attention for their role in the fine tuning of both innate 
and adaptive immunity. Not only CTLRs recognize pathogen-derived ligands to protect 
against infection but also endogenous ligands such as self-carbohydrates, proteins, or 
lipids to control homeostasis and tissue injury. Interestingly, CTLRs act as antigen-uptake 
receptors via their carbohydrate-recognition domain for internalization and subsequent 
presentation to T-cells. Furthermore, CTLRs signal through a complex intracellular net-
work leading to the secretion of a particular set of cytokines that differently polarizes 
downstream effector T-cell responses according to the ligand and pattern recognition 
receptor co-engagement. Thus, by orchestrating the balance between inflammatory 
and resolution pathways, CTLRs are now considered as driving players of sterile 
inflammation whose dysregulation leads to the development of various pathologies such 
as autoimmune diseases, allergy, or cancer. For examples, the macrophage-inducible 
C-type lectin (MINCLE), by sensing glycolipids released during cell-damage, promotes 
skin allergy and the pathogenesis of experimental autoimmune uveoretinitis. Besides, 
recent studies described that tumors use physiological process of the CTLRs’ dendritic 
cell-associated C-type lectin-1 (DECTIN-1) and MINCLE to locally suppress myeloid cell 
activation and promote immune evasion. Therefore, we aim here to overview the current 
knowledge of the pivotal role of CTLRs in sterile inflammation with special attention given 
to the “Dectin-1” and “Dectin-2” families. Moreover, we will discuss the potential of these 
receptors as promising therapeutic targets to treat a wide range of acute and chronic 
diseases.
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inTRODUCTiOn

C-type lectin receptors (CLRs) are a large family of transmembrane and soluble receptors that 
contain one or more carbohydrate-recognition domain able to recognize a wide variety of glycans 
on pathogens or on self-proteins. The hallmark of classical CLRs is the dependence on Ca2+ for 
glycan recognition. However, many other CLRs lack the coordinated Ca2+ ions and are therefore 
referred as C-type lectin-like molecules. These C-type lectin-like receptors (CTLRs) are still able 
to recognize carbohydrates but independently of Ca2+ but also recognize more diverse ligands 
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FigURe 1 | Schematic representation of various C-type lectin-like receptors (CTLRs) and selected endogenous ligands and signals. CTLRs are composed of an 
extracellular C-type lectin-like domain able to recognize various endogenous ligands and signal directly, through integral motifs in their cytoplasmic tails or indirectly 
through association with FcRγ. They can also contain a tri-acidic domain DED or DDD important for phagocytosis. Activation of immune-receptor tyrosine-based 
activation motif (ITAM) leads to the recruitment and activation of SYK family kinases. Subsequent activation of the CARD9–Bcl10–Malt1 complex through PKδ 
induces NF-κB activation and gene transcription of various cytokine and chemokines. Furthermore, SYK induces reactive oxygen species production and 
inflammasome activation via NLRP3 and Caspase 1 leading to IL-1β production. Alternative pathway of signalization independently of SYK has been reported for 
dendritic cell-associated C-type lectin-1 (DECTIN-1) via RAF-1 to finely regulate NF-κB activation. By contrast, activation of immune-receptor tyrosine-based 
inhibition motif (ITIM) induces the recruitment and activation of protein tyrosine phosphatases such as SHP-1 and SHP-2 and the dephosphorylation of motifs to 
inhibit cellular activation mediated by other immunoreceptors.

2

Chiffoleau CTLRs Orchestrate Sterile Inflammation

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 227

such as lipids and proteins (1). Of particular interest for their 
role in coupling both innate and adaptive immunity, are the 
CTLR genes of the “Dectin-1” and “Dectin-2” families local-
ized on the telomeric region of the natural killer cluster of 
genes (2, 3). These two groups of CTLRs are expressed mostly 
by cells of myeloid lineage such as monocytes, macrophages, 
dendritic cells (DCs), and neutrophils. CTLRs not only serve 
as antigen-uptake receptors for internalization and presentation 
to T cells but also trigger multiple signaling pathways leading 
to NF-κB, type I interferon (IFN), and/or inflammasome acti-
vation (1–4). This leads, in turn, to the production of pro- or 
anti-inflammatory cytokines and chemokines, subsequently fine 
tuning adaptive immune responses. CTLRs can signal either 
directly, through integral signaling domains, or indirectly, by 
associating with adaptor molecules. As illustrated in Figure 1, 
activation of immune-receptor tyrosine-based activation motif 
(ITAM) directly or via adaptor proteins such as FcγR, leads to 
the recruitment of SYK family kinases and the formation of the 

Card9/Bcl10/Malt1 complex that downstream activates NF-κB 
pathway and various cellular responses. By contrast, activation 
of immune-receptor tyrosine-based inhibition motif (ITIM) 
induces the recruitment and activation of protein tyrosine 
phosphatases such as SHP-1 and SHP-2 and the dephosphoryla-
tion of motifs (1). Consequently, ITIM signaling can inhibit cel-
lular activation mediated by other immunoreceptors to tightly 
regulate immune response. Such checkpoints allow to prevent 
uncontrolled immune responses that may lead to harmful, or 
even fatal, consequences. In addition, some CTLRs were also 
reported to signal via SYK-independent pathway through 
the serine/threonine kinase RAF-1 to drive particular Th dif-
ferentiation (5). Besides, by integrating simultaneous signals 
from other pattern recognition receptors (PRRs), CTLRs can 
exert synergistic or antagonistic response to achieve appropri-
ate biological responses (6). This cross talk is regulated by the 
level and localization of their expression, by their interaction 
and by their collaborative or conflicting signaling (6, 7). To date, 
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CTLRs “Dectin” families were best known for their involvement 
in host defense as referred in these excellent reviews (1–4, 8, 9). 
However, over recent years, these receptors have gained grow-
ing interest for their ability to respond also to a wide variety 
of endogenous ligands (Figure 1). Identification of self-glycans, 
lipids, or proteins expressed or released by modified or damaged 
cells reinforced the hypothesis for their implication in sterile 
inflammation whose dysregulation foster the development of 
wide range of diseases (10). In this mini review, we aim to focus 
on some of the CTLRs of the “Dendritic cell-associated C-type 
lectin (Dectin)” families, discussing the recent discoveries on 
their implication in the control of tissue injury, autoimmune 
diseases, or tumorigenesis. In addition, we will underscore their 
therapeutic potential and impact on human health.

“(DeCTin-1)” FAMiLY

DeCTin-1 (Alias CLeC7A, CLeCSF12, 
CAnDF4, CD369, BgR)
The CTLR, DECTIN-1 has been reported to be enhanced by 
pro-inflammatory conditions (11, 12) and to be a potent inducer 
of Th1 and/or Th17 responses in response to pathogens (2). 
Thereby, pathogenic ligands of DECTIN-1 are currently used 
to bolster immune responses notably in cancer. For example, 
administration of β glucans was shown to inhibit tumor growth 
in murine carcinoma models (13–15), in human melanoma, 
neuroblastoma, mastocytosis, and lymphoma xenograft models 
(16, 17) and in ovarian (18, 19), breast (20), lung (14, 21–23), and 
gastric cancer (19, 24). Mechanistically, β glucans were shown 
to convert immunosuppressive macrophages into an M1-like 
antitumoral phenotype (25), to promote NK (26) and CD8+ T cell 
cytotoxicity (27) as well as a decrease in myeloid-derived sup-
pressor cells and regulatory T cells (13, 28). Interestingly, Zhao 
et al. recently reported that β glucans upregulate particularly the 
expression of TNFSF15 and OX40L in DCs in mice, thus promot-
ing efficient Th9 priming and potent anti-melanoma response 
following vaccination (29). On the contrary, some investigations 
have described an inhibitory function of DECTIN-1 in sterile 
inflammation notably during hepatic fibrosis and hepatocel-
lular carcinoma (30). Authors showed that DECTIN-1 inhibit 
TLR4 signaling and downstream inflammation such as TNFα, 
IL-6, and chemokines secretion (30). Moreover, DECTIN-1 
was reported to be associated with mechanisms of peritumoral 
immune tolerance by programming suppressive macrophages in 
pancreatic ductal adenocarcinoma (31). Strikingly, they showed 
that blockade of DECTIN-1 or its endogenous ligand Galectin-9, 
both strongly expressed on infiltrating myeloid cells and tumor, 
delayed tumor progression and extended mice survival. A similar 
tolerogenic signal of DECTIN-1 has been shown in myeloid cells 
in response to mucus in the intestine through interaction with 
Galectin-3 (32). In addition, DECTIN-1-deficient mice were 
described to exacerbate inflammation in a model of colitis sug-
gesting an important role of DECTIN-1 in gut homeostasis (33). 
Therefore, DECTIN-1 seems to act as double-edged swords on 
the regulation of inflammation. Such discrepancy may depend 
of the type of the response, the nature and the property of the 

ligands, and of the complex signal network that integrates diverse 
engaged PRRs.

LOX-1 (Alias OLR-1, CLeC8A)
The CTLR lectin-like oxidized low-density lipoprotein receptor-1 
(LOX-1) is particularly expressed by endothelial cells and platelets 
and is upregulated during inflammatory and pathological condi-
tions (34–36). By recognizing oxidized and acetylated low-density 
lipoproteins, LOX-1 is largely described to play critical functions 
in vascular diseases, including atherosclerosis (37). However, 
recent investigations have revealed that LOX-1 is also expressed 
by human macrophages (38) and DCs (39), and its triggering 
increases secretion of IL-6 to potentiate B-cell class-switch (39). 
Moreover, LOX-1 enhances CCR10, APRIL, and BAFF secretion 
for plasma cell differentiation and migration to mucosal site. In 
line with these findings, targeting influenza histocompatibility 
antigen-1 to LOX-1 elicits antigen-specific protective antibody 
response to virus in macaques suggesting a good candidate for 
vaccine development (39). Besides, several studies have reported 
a high expression of LOX-1 in various tumors including gastric 
(40), colorectal (41), and prostate (42) cancers, which correlates 
with a poor prognosis in patients (40). Functionally, LOX-1 was 
shown to promote tumor angiogenesis (42), metastasis (43), and 
the migration and invasion of gastric cancer cells by notably 
driving epithelial–mesenchymal transition (40). Interestingly, 
LOX-1 was recently identified to be particularly expressed by 
potent polymorphonuclear myeloid-derived suppressor cells 
from blood and tumor of patients with non-small cell lung or 
head neck cancer and to be associated with worse survival (44). 
 In fact, LOX-1 expression seems to be upregulated following 
endoplasmic reticulum stress that occurs during hypoxia or 
nutrient deprivation inside tumors. These data render this marker 
an attractive therapeutic target as well as a diagnostic tool for 
cancer screening (41).

CLeC-1 (Alias CLeC1, CLeC1A)
Although the C-type lectin-like receptor-1 (CLEC-1) was identi-
fied a long time ago (45, 46), the downstream signaling and 
ligand(s) remain uncharacterized (8, 47). We and others described 
CLEC-1 expression in human and rodent by myeloid cells such as 
monocytes, DC, and macrophages but also by endothelial cells (8, 
9, 46, 48). CLEC-1 expression is decreased by pro-inflammatory 
stimuli and is enhanced by TGFβ (8, 9, 48). Interestingly, CLEC-1 
was found to be expressed mostly intracellular particularly in 
human endothelial cells and neutrophils (8, 9), suggesting the 
requirement of particular conditions for cell-surface expres-
sion or for recycling from intracellular pools (7). Alternatively, 
CLEC-1 may play a role in intracellular organelles. Using CLEC-
1-deficient rodents, we showed that disruption of CLEC-1 signal-
ing enhances Il12p40 subunit expression in DCs and accordingly 
exacerbates downstream CD4+ Th1 and Th17 responses following 
in vivo immunization with exogeneous antigens (9, 48).

CLeC-2 (Alias CLeC2, CLeC2B, CLeC1B)
C-type lectin-like receptor 2 (CLEC-2) is found on platelets 
and DCs and is largely described for its interaction with its 
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endogeneous ligand podoplanin expressed by lymphatic 
endothelial cells, myeloid cells, and fibroblast reticular cells 
(2). The CLEC-2/Podoplanin axis was shown to be critical in 
platelet activation (49), lymph node microarchitecture (50, 
51), reticular network (52), and vascular integrity. Besides, this 
interaction promotes tumor cell-induced platelet aggregation, 
tumor growth, and metastasis (53–56) in various types of 
cancer including brain, lung, and larynx (57–60). Furthermore, 
CLEC-2 is enhanced by inflammation, promotes DC migration 
(61) and together with LPS enhances the production of the 
anti-inflammatory cytokine IL-10 suggesting also a role in the 
resolution of inflammation (62).

MiCL (Alias CLeC12A, DCAL-2, CLL1, 
CLL-1, KLRL1)
Myeloid inhibitory C-type lectin-like receptor (MICL) is 
expressed predominantly by granulocytes and monocytes, and 
its expression is downregulated by pro-inflammatory stimuli 
(63–65). MICL recruits inhibitory phosphatases and again seems 
to differently shape T-cell responses according to the cross talk 
with simultaneous PRR signals. Chen and colleges demonstrated 
that co-engagement of MICL with TLR4 suppress IL-12 expres-
sion in human DCs and downstream Th1 polarization whereas 
co-engagement with CD40 does the opposite (66). Interestingly, 
putative endogenous ligands of MICL were identified on various 
mouse tissues in steady-state conditions, proposing a role for 
MICL in the control of homeostasis and self-tolerance (65). 
Corroborating this notion, an inhibitory function for MICL 
has been put in light in an in vivo model of induced rheumatoid 
arthritis (67). In an original way, MICL was proposed to modulate 
myeloid cell activation threshold by acting as an autoantigen dur-
ing arthritis development (67).

CLeC9A (Alias DngR1, DngR-1, CD370)
CLEC9A is selectively expressed on the mouse subsets of CD8α+ 
and CD103+ DCs, and on their human BDCA3+ DCs counter-
parts (68). CLEC9A expression is lost further TLR-induced 
maturation. Importantly, CLEC9A by recognizing F-actin 
released by necrotic cells is capable of internalizing bound dead 
cell-associated antigens for cross-presentation to CD8+ T  cells 
(69–71). Thereby, CLEC9A has been demonstrated to be a 
powerful target for peptide vaccination to boost antitumor 
immunity (72, 73). Interestingly, it has recently been shown 
that necrotic debris that accumulated during atherosclerosis 
development, trigger through CLEC9A, the downregulation of 
the anti-inflammatory cytokine IL-10 and the disease progres-
sion (74).

“DeCTin-2” FAMiLY

DCiR (Alias CLeC4A, CLeCSF6, CD367, 
LLiR)
DC immunoreceptor (DCIR) is expressed on monocytes, neutro-
phils, DC, and plasmacytoid DCs, and its expression is decreased 
by pro-inflammatory stimuli (75). The human genome encodes 
only a single DCIR gene, whereas the mouse genome presents 

four DCIR-like genes (DCIR1–4) (76). DCIR via its canonical 
ITIM domain is largely recognized to exert inhibitory cross talk 
with other PRRs to maintain immune homeostasis and prevent 
excessive detrimental inflammation and immunopathogenesis 
(77–79). DCIR inhibits TLR8-induced IL-12 and TNFα produc-
tion in human moDCs following cross-linking with monoclonal 
antibody (79). Furthermore, DCIR1 KO mice develop a late spon-
taneous autoimmune disease associated with elevated levels of 
autoantibodies, are more susceptible to collagen-induced arthri-
tis, and aggravated experimental autoimmune encephalomyelitis 
(80, 81). These effects were described to be mediated at least by 
unrestrained growth of DC population in these mice. However, 
in support for a role of DCIR in tempering DC activation, a 
recent study demonstrated that DCIR2 selectively expressed by 
mouse CD8α− DCs, strongly moderates pro-inflammatory and 
downstream T-cell responses (82). In vivo, DCIR2-deficient 
mice are more susceptible to endotoxic shock and aggravate 
experimental autoimmune encephalomyelitis development by 
increasing both Th1 and Th17 differentiation. Authors demon-
strated that putative endogeneous ligands of DCIR are expressed 
also on cell surface of DCs. In line with these data, DCIR2 was 
described in DCs to sustain STAT-1 type I IFN signaling leading 
to a reduction of IL-12p70 production and Th1 differentiation in 
response to endogeneous ligand(s) released during cell culture 
(83). Therefore, by regulating also the IFN responses, DCIR may 
be a critical player in the control of a number of inflammatory 
diseases. Interestingly, DCIR was also reported to bind to com-
mensal intestinal microbes (84). However, DCIR-deficient mice 
only exhibit a slightly increased severity of colitis in a dextran 
sulfate sodium model (84).

DeCTin-2 (Alias CLeC6A, CLeC4n, 
CLeCSF10)
Several studies suggest a role for DC-associated C-type lec-
tin-2 (DECTIN-2) in the inhibition of sterile inflammation. 
DECTIN-2 is enhanced in pro-inflammatory conditions and 
was shown notably to bind to a putative ligand on regulatory 
CD4+CD25+ T  cells to mediate ultraviolet radiation-induced 
tolerance (85, 86). In addition, DECTIN-2 recognizes glycan 
mannose on the lysosomal enzyme β-glucuronidase, known to 
moderate arthritis pathogenesis by preventing accumulation of 
pro-inflammatory glycosaminoglycans within inflamed joint 
tissue (87–90). Thus, β-glucuronidase released by dead myeloid 
cells following tissue damage may act via DECTIN-2 as an 
inhibitory loop in DCs to temper inflammation (91). Besides, 
polymorphism of this enzyme was reported to be associated with 
mucopolysaccharidoses characterized by a pro-inflammatory 
response (92). In addition, a role for DECTIN-2 in suppres-
sion of liver metastasis has been highlighted by its ability to 
phagocytose cancer cells via CD11b F4/80 Kupffer cells during 
extravasation step (93).

BDCA-2 (Alias CLeC4C, BDCA2, CD303, 
CLeCSF11, CLeCSF7)
Interestingly, blood DC antigen-2 (BDCA-2) is the most specific 
marker for human plasmacytoid DC but intriguingly is not 
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FigURe 2 | Dual role of macrophage-inducible C-type lectin (MINCLE) in 
disease pathogenesis. Recognition of cholesterol sulfate by MINCLE whose 
expression is increased in plasmacytoid dendritic cells (DC) following skin 
damage, induces IL-1 α and β secretion, and promotes skin allergy and 
allergic contact dermatitis. By contrast, MINCLE recognition of spliceosome-
associated protein 130 (SAP130) released by necrotic cancer cells leads to 
tolerogenic tumor-infiltrating macrophage reprogramming in pancreatic ductal 
adenocarcinoma.
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expressed in mice (94). Expression of BDCA-2 is downregulated 
following maturation (95). Surprisingly, unlike many other 
ITAM-coupled receptors, signaling through BDCA-2 inhibits 
activation of the NF-κB pathway and the production of type I 
IFNs and cytokines in response to TLR9 ligands or following 
recognition of galactose terminal residues notably expressed on 
tumor cells (94, 96, 97). BDCA-2 engagement was also shown 
to block TRAIL-mediated cytotoxic activity (98). In an interest-
ingly way, BDCA-2 was suggested to function as an Fc receptor 
by binding glycans on immunoglobulins G (99) and thus, damp-
ens down inflammation in response to rising levels of serum  
immunoglobulins G.

MinCLe (Alias CLeC4e, CLeCSF9)
Macrophage-inducible C-type lectin (MINCLE) is an ITAM-
coupled CTLR that forms a heterodimer with the macrophage 
C-type lectin (MCL). MINCLE expression is enhanced after 
exposure to pro-inflammatory stimuli or cellular stresses and 
is translocated to the cell surface via interaction with the stalk 
region of MCL (100–104). MINCLE was shown to activate in 
DCs both NF-κB and inflammasome to greatly enhance IL-1β 
expression in synergy with TLR7/8 (R848) or following in vivo 
immunization with Freund adjuvant (105, 106). MINCLE 
senses self-damage by recognizing “unfamiliar” glycolipids 
that are not present in the extracellular milieu under normal, 
healthy conditions. For example, MINCLE was reported to 
bind crystalline cholesterol present in atheriosclerotic plaques 
that are associated with inflammation and macrophage infil-
trates (107). Likewise, as depicted in Figure  2, MINCLE is 
enhanced on plasmacytoid DCs following skin damage and by 
recognizing cholesterol sulfate, induces IL-1 α and β secretion, 
and promotes skin allergy and allergic contact dermatitis (108). 
Moreover, MINCLE was also reported to bind to the ubiquitous 

intracellular metabolite β-glucosylceramide released by dam-
aged cells to promote production of pro-inflammatory cytokines 
by myeloid cells (109). In an opposite way, recent investigations 
have revealed that MINCLE rather than purely inducing pro-
inflammatory responses can also promote the expression of the 
anti-inflammatory cytokines IL-10 (110). In addition, MINCLE 
was reported to counter regulate pro-inflammatory signaling 
pathways mediated by DECTIN-1 to temper IL12p35 produc-
tion (6, 111). Therefore, MINCLE seems to also exert opposite 
role on immune responses depending of the ligands and PRR 
interference. This dual effect is illustrated by the recognition by 
MINCLE of the spliceosome-associated protein 130 (SAP130), a 
component of small nuclear ribonucleoprotein released during 
non homeostatic cell death. On one hand, MINCLE/SAP130 
axis was shown to be involved in the pathogenesis of inflam-
mation during tissue damages (112) or ischemia/reperfusion  
(113, 114) and to contribute to the development of experimen-
tal autoimmune uveoretinitis (115). This pro-inflammatory 
side of MINCLE is supported by a high expression of MINCLE 
in patients with rheumatoid arthritis (116) and by the link to 
arthritis of the rat chromosome 4q42 encoding Mincle (117). 
On the other hand, in the context of cancer, MINCLE/SAP130 
axis was reported to be pro-tumorigenic in mouse and human 
pancreatic ductal adenocarcinoma (118). Both MINCLE and 
SAP130 released by programmed necrosis are highly expressed 
in mouse and human carcinoma and as depicted in Figure 2, 
this interaction leads to an immunosuppressive reprogramming 
of infiltrating myeloid cells (118). Future research is required 
to provide insight as to how MINCLE needs to integrate with 
other PRR signals to differently define the type of immune 
response.

THeRAPeUTiC POTenTiAL OF CTLRs

Therefore, by their capacity to present antigen and ensure the 
balance between cellular activation and suppression, CTLRs 
have emerged as challenging pharmacological targets to treat a 
wide variety of diseases governed by sterile inflammation includ-
ing cancers, autoimmune diseases or allergy (1, 119). Ligands 
such as carbohydrate structures, antibodies, or mimetic peptides 
could be therapeutically exploited as agonists or antagonists 
of CTLR signaling. As previously mentioned, the DECTIN-1 
agonist β-glucans is used to elicit of potent antitumor immune 
responses in various types of cancer (14, 16–24). Furthermore, 
CTLRs such as DEC-205 (120, 121) or CLEC9A (71) have been 
exploited for the in vivo delivery target of vaccine antigens in 
cancer (122). In addition, synthetic ligands of MINCLE were 
generated to specifically enhance immune response (102). 
Besides, several specific antibodies generated against cancer-
specific highly glycosylated podoplanin were shown to efficiently 
block the CLEC-2/Podoplanin interaction, subsequent platelet 
aggregation and tumor metastasis (123–128). Importantly, a 
particular antibody that reacts with podoplanin-expressing 
cancer cells but not with the one from normal cells has been 
successfully generated and will be useful for molecular targeting 
therapy against podoplanin-expressing cancer cells only (126). 
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However, since CTLRs have overlapping ligands that induce 
distinct and even contrasting immune responses, antibodies 
targeting specific CTLRs could be more appropriate. Also, 
inhibitors such as recombinant peptide spanning the CTLR 
binding region and modulating the receptor–ligand interaction 
could be considered. Only a few drug-like molecules have been 
developed for the CTLR family (129) but studies indicate high 
in silico druggability scores as well as high experimental hit rates 
from peptide fragment screenings (130, 131).

To conclude, CTLR modulation seems to represent promising 
strategy for disease management although attempts at identifying 
endogenous ligands as well as efforts to elucidate their role in 
sterile inflammation are still warrant.
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