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Experimental evidence indicates that mesenchymal stromal cells (MSCs) may regulate 
tumor microenvironment (TME). It is conceivable that the interaction with MSC can 
influence neoplastic cell functional behavior, remodeling TME and generating a tumor 
cell niche that supports tissue neovascularization, tumor invasion and metastasization. 
In addition, MSC can release transforming growth factor-beta that is involved in the 
epithelial–mesenchymal transition of carcinoma cells; this transition is essential to give 
rise to aggressive tumor cells and favor cancer progression. Also, MSC can both affect 
the anti-tumor immune response and limit drug availability surrounding tumor cells, thus 
creating a sort of barrier. This mechanism, in principle, should limit tumor expansion 
but, on the contrary, often leads to the impairment of the immune system-mediated 
recognition of tumor cells. Furthermore, the cross-talk between MSC and anti-tumor 
lymphocytes of the innate and adaptive arms of the immune system strongly drives TME 
to become immunosuppressive. Indeed, MSC can trigger the generation of several types 
of regulatory cells which block immune response and eventually impair the elimination 
of tumor cells. Based on these considerations, it should be possible to favor the anti- 
tumor immune response acting on TME. First, we will review the molecular mechanisms 
involved in MSC-mediated regulation of immune response. Second, we will focus on the 
experimental data supporting that it is possible to convert TME from immunosuppressive 
to immunostimulant, specifically targeting MSC.

Keywords: mesenchymal stromal cells, carcinoma-associated fibroblast, tumor-associated fibroblast, tumor 
microenvironment, immunosuppression

iNTRODUCTiON

Mesenchymal stromal cells (MSCs) are a key component of solid tumor microenvironment (TME) 
(1–4). They include fibroblasts, myofibroblasts, pericytes, vascular or lymphatic endothelial cells, 
and undifferentiated mesenchymal stem cells. These cells produce the large part of the extracellular 
matrix and are involved in the homeostasis of tissues in different organs. There is experimental 
evidence that MSC can be influenced by tumor cells and, in turn, regulate tumor cell growth and 
expansion (1–4). In many instances, MSCs are driven by tumor cells to modify the extracellular matrix 
components, allowing tumor cell adaptation to the surrounding microenvironment and eventually 
metastasization (1–4). In healthy tissues, MSCs represent the network on which epithelial cells, 
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FigURe 1 | Mesenchymal stromal cell (MSC) plasticity. MSCs are present  
in every tissue, where they represent a key component characterized by  
the ability to differentiate into several types of mesodermal cells, including 
osteocytes, adipocytes, chondrocytes, endothelial cells, pericytes, and 
fibroblasts (red arrows). It is not clear whether all these kinds of cells can in 
turn de-differentiate back to MSC (green dotted arrows). The function of 
these cells is to maintain the homeostasis of the tissue/organ where they are 
present, regulating the production of the extracellular matrix components. 
Upon stimulation with physical, chemical, or biological stimuli, they participate 
in the reconstitution of the equilibrium among cellular and matrix components 
of a given tissue, leading to damage repair. They can be considered as 
sensor of the tissue conditions which can coordinate the molecular 
mechanisms that maintain tissue integrity. Upon influence of 
microenvironment, fibroblasts can lead to tumor-associated/carcinoma-
associated fibroblasts (TAF/CAF), activated fibroblast and fibroblast involved 
in repair of the tissue.
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blood, and lymphatic vasculature are organized and polarized. 
After receiving a danger signal, induced by biological, chemical, 
or physical injury, MSCs respond to maintain tissue homeostasis, 
favoring the repair of the tissue and reconstituting the healthy 
condition. During this process, MSCs come across the innate and 
adaptive arms of the immune system. This interaction should be 
highly regulated to avoid, on one hand, uncomplete repair and, 
on the other hand, an inefficient shut down of immune response 
leading to chronic inflammation (1–4). During this process, 
microenvironment is plenty of stimuli that, when out of control, 
can favor the overwhelming growth of epithelial cells with genetic 
alterations that are the basis of oncogenesis (1–4). Thus, the 
generation of a neoplasia can be dependent on the response of 
MSC to pathogenetic signals and to the cross-talk with immune 
and epithelial cells. Indeed, MSC can show immunosuppressive 
properties that are necessary during wound healing and repair 
process, but this feature is a drawback when a tumor is growing 
within the damaged tissue (1–4). Herein, we will briefly review 
the main features of MSC, from phenotype to functional proper-
ties, to clarify the molecular mechanisms whereby these cells can 
become immunosuppressive. Then, we will focus on the possible 
ways to modify MSC behavior and commute the TME from 
immunosuppressive to immunostimulant.

MSC: PHeNOTYPiC AND FUNCTiONAL 
CHARACTeRiSTiCS

To talk about a cell type and its functional features, it is important 
to define their phenotypic and functional characteristics to avoid 
confusion among the different reports found in the literature 
(1–4). To simplify, a very comprehensive definition of MSC is 
that they are cells of mesodermal origin that are neither epithelial 
cells nor leukocytes (1–4). The term “MSCs” have been coined 
by the Mesenchymal and Tissue Stem Cell Committee of the 
International Society for Cellular Therapy (5, 6). These “MSCs” 
are defined as multipotent mesenchymal cells that can be found 
in several different tissues (1–6) and can differentiate, under 
appropriate culture conditions, into adipocytes, osteoblasts, and 
chondrocytes (5–10). It has been shown that adipocytes and 
osteoblasts can be obtained from cultures of fibroblast-like cells 
from skin biopsies (11). Thus, it is possible that the cultures set up 
to select fibroblasts contain residual stem cells that in turn differ-
entiate to other stromal cells, such as adipocytes, chondrocytes, 
and osteoblasts (5–11). This implies that MSC is not a synonym 
of mesenchymal stem cell. Also, MSC can include fibroblasts, 
endothelial cells, pericytes, and mesenchymal stem cells (1–4); 
in turn, mesenchymal stem cells are precursors of osteoblasts, 
chondrocytes, and adipocytes, which can be considered as MSC. 
On this basis, the different cell types can be distinguished for 
their differentiation potential and preferential production of a 
given component of extracellular matrix, related to the grade of 
differentiation (1, 3). It is not clear whether all these kinds of cells 
can de-differentiate to give rise to different members of MSC, in 
other words, what is the degree of plasticity of a differentiated 
MSC (Figure 1). It is conceivable that the tissue microenviron-
ment of a given organ leads a stem cell to differentiate into a given 

MSC with peculiar functional properties (1–4). If this is the case, 
any kind of cell derived from mesenchymal stem cells should 
share some phenotypic and functional characteristics (Figure 1). 
Although several phenotypic characteristics and functional 
activities of MSC have been well reviewed recently (1–10), we 
will briefly summarize the most relevant phenotypes, found in 
MSC cultured in vitro, related to their function in TME.

Collectively, MSC can be identified as cells that grow adher-
ent to plastic, with elongated-diamond (fibroblast-like) shape, 
expressing a definite set of markers, including CD73, CD90, and 
CD105, but lacking the typical hematopoietic lineage and non-
lineage-specific markers, such as CD34, CD45, CD14, CD11b, 
CD31, CD79, CD19, and HLA-DR (2–4). In some instances, 
some MSC cultures show peculiar markers, such as the fibroblast 
activation protein (FAP) found in tumor-associated fibroblasts 
(1–3), but it is hard to identify subpopulations of MSC on the 
basis of the bimodal expression of a given antigen. In other 
words, it is difficult to define a MSC-specific marker, as occurs 
in the case of CD4+ or CD8+ lymphocytes. Indeed, although dis-
tinct fibroblast subpopulations have been reported, based on the 
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different intensity of expression of some cell surface molecules 
(1–4), it is not easy to distinguish these markers by immunofluo-
rescence. In addition, MSC can produce a variety of cytokines, 
chemokines, and factors, such as basic fibroblast growth factor, 
heparin epidermal growth factor, insulin-like growth factor (IGF) 
1, keratinocyte growth factor, platelet-derived growth factor-β 
chain (PDGF-β), vascular endothelial growth factor (VEGF), 
and angiopoietins, involved in tissue repair (1–3). Indeed, the 
main function of MSC is thought to be the repair of injuries: this 
process is triggered by both differentiation of MSC in specialized 
tissue elements, producing peculiar extracellular matrix proteins, 
and regeneration of the tissue and vessel architecture (1–4). In this 
context, the immunosuppressive properties of MSC have been 
demonstrated for differentiated mesenchymal stem cells (12–15) 
and fibroblasts (11). Unfortunately, several MSC properties have 
been discovered after ex vivo expansion upon culture in vitro, so 
that the resulting cell population may represent a selected subset 
of MSC. This can also explain why findings reported from dif-
ferent laboratories may be conflicting (16, 17). Another relevant 
point to be considered is the culture ratio between MSC and 
tumor cells or leukocytes. Several reports have shown that the 
maximal inhibiting effect exerted by MSC on lymphocyte func-
tions is achieved at MSC-lymphocyte ratios ranging from 1:1 to 
1:10 (16–28). While it is possible that these ratios can be found 
also in situ, it is evident that in ex vivo conventional cultures the 
microenvironment does not dynamically change as it occurs 
in vivo. Indeed, in the large majority of reports, the time points 
chosen to analyze an inhibiting effect were set up after several 
days of co-culture (16–30). This implies that the vitro culture 
microenvironment is composed of metabolites and factors not 
necessarily present in situ; indeed, in vivo, blood and lymphatic 
vessels are involved in the clearance and renewal of the tissue 
milieu (31). Experimental evidence has been reported to sup-
port that MSC can display immunosuppressive behavior in vivo 
(32–38). However, a direct demonstration of the immunosup-
pression exerted by MSC is far from to be demonstrated and even 
the potential relevance of these cells for regenerative medicine is 
not unequivocally proven (32).

To summarize, MSCs are present in both healthy and neo-
plastic tissues as undifferentiated and differentiated cells that 
maintain the homeostasis with a strong relevance in regulating 
epithelial cells growth and immune response.

MSC AND CARCiNOMA-ASSOCiATeD 
FiBROBLASTS

Mesenchymal stromal cells present in solid tumors are fibroblasts 
that are called carcinoma (or tumor)-associated fibroblasts (CAF 
or TAF) (1–4). These cells display characteristics different from 
MSC of healthy tissues, conceivably related to the surrounding 
milieu (1–4). Several factors produced by MSC, such as hepato-
cyte growth factor (HGF), IGF1, and FGF, in TME can interact 
with surface receptors on tumor cells influencing their growth 
(1–4). In addition, pro-angiogenic factors, such as VEGF and 
PDGF, produced by MSC can favor tumor cell growth indirectly, 
promoting the tumor niche neovascularization (1–4). Thus, 

it is evident the possibility of blocking tumor cell growth by 
inhibiting the VEGF and/or the PDGF signaling axis (39–41). 
Of course, also tumor and immune cells, including tumor-
associated macrophages and tumor-infiltrating lymphocytes (of 
both the innate and the adaptive arm of the immune system) 
can produce these factors; thus, the block of angiogenesis can 
hit several components of the TME, besides MSC. MSCs are also 
able to release TGF-β; this cytokine can exert several opposite 
effects on tumor cells, depending on the type and stage of tumor 
(42). Indeed, TGF-β can act as a tumor promoter as well as a 
tumor suppressor (42); furthermore, this cytokine is a relevant 
factor in epithelial–mesenchymal transition (EMT), a phase of 
tumor life which is considered essential for the generation of 
cancer metastasis (42). Recently, molecular mechanisms under-
lining the cross-talk between MSC and carcinoma cells have 
been deeply reviewed (1–4, 43–47). It is of note that, besides 
the direct MSC–tumor cell interactions, exosomes released by 
MSC can contain factors, such as micro RNA (47–56), that may 
drive either solid tumor cell apoptosis or tumor growth and 
spreading.

MSC AS RegULATORS OF iMMUNe 
ReSPONSe

There is experimental evidence that MSC, mainly the MSC from 
bone marrow, can suppress immune responses in vivo (1–4, 10, 
23, 24). In particular, the ability of MSC to reduce graft-versus-
host disease (GVHD) has been reported (32–38). In vitro experi-
ments have shed a light on which leukocyte populations MSC 
can regulate (1–4). MSC can act on both the innate arm and the 
adaptive arm of the immune system, blocking the expression 
and function of activating surface receptors on effector cells, 
impairing the maturation of antigen-presenting cells (APC) and 
favoring the expansion of regulatory cells (1–4, 12, 26, 57–67). 
This evidence derives from experiments where, in well-defined 
settings, different cells of the immune system are cocultured 
with a feeder layer of MSC and triggered by a given stimulus 
(12, 26, 68–72). Usually, such stimuli can induce proliferation, 
secretion of pro-inflammatory cytokines, or acquisition of a 
potent cytolytic potential. Upon coculture with MSC, both lym-
phocytes and APC are impaired in the acquisition of functional 
features essential to evoke a “normal” immune response (12, 
26). Indeed, APC do not differentiate adequately to permit a full 
response to antigen-dependent or -independent stimuli (12, 26) 
and do not express high amounts of accessory molecules, such as 
CD80 and CD86, essential to deliver an optimal second signal. 
On the other hand, T lymphocytes express low levels of recep-
tors, including CD25, typical of an activation state and do not 
respond to IL2 (12, 22, 23). The generation, in cocultures with 
MSC, of T cells with regulatory activities is an additional mean 
through which MSC can indirectly deliver an inhibiting signal to 
immune response (57, 58). Several papers have pointed out that 
different types of MSC can exert different degrees of inhibition 
of immune responses (1–4). In addition, differentiated MSC can 
still act as potent regulators of immunity (12, 72, 73). However, 
depending on the type of fully differentiated mesenchymal cells, 
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FigURe 2 | Functional behavior of mesenchymal stromal cells (MSCs) 
interacting with cells of the immune system. MSCs display several functional 
abilities during the interaction with cell of the immune system. Resting 
leukocytes are typically supported by MSC through direct cell-to-cell contact 
involving different types of receptor on the leukocyte membrane and the 
corresponding ligands expressed on MSC or on differentiated MSC. Some 
soluble factors and interleukins are also involved, such as stromal-derived 
factor 1, IL-6, and IL-15. Due to this interaction, leukocytes receive an 
anti-apoptotic signal which leads to their survival (A). This effect is also 
involved in the maintenance of the neoplastic counterpart of T, B 
lymphocytes and myeloid cells. After signals inducing proliferation, cytokine 
release, or activation of cytolytic machinery, MSCs exert a potent inhibitory 
effect that reduces leukocyte proliferation and effector functions (B). In 
addition, activated MSCs interfere with the differentiation of monocytes to 
immature DC (iDC) or mature DC (mDC), thus blocking the generation of 
professional antigen-presenting cells (APC) (C). The release via 
microvescicles, exosomes or in soluble form, of decoy molecules such as 
HLA-I, ligands for NKG2D or other activating receptors involved in tumor cell 
recognition and killing, hampers the anti-tumor activity of T and NK 
lymphocytes (D). Furthermore, MSC can release TGF-β, sheddases, such as 
metalloproteinases, and a disintegrin and metalloproteinase members, which 
can induce the release of decoy receptors from MSC, tumor cells, and 
bystander cells in the microenvironment. TGF-β can inhibit tumor cell 
recognition reducing the activation-induced increase of NKG2D expression 
on anti-tumor effector lymphocytes (D). All these events eventually lead to 
the impairment of both innate and adaptive immune responses.
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pro-stimulating or pro-inhibiting effects have been described. 
For instance, it has been shown that mature adipocytes can trig-
ger T cell proliferation and both HLA-DR and HLA-I appeared 
to be involved (74–76). Indeed, mature adipocytes express low 
levels of HLA-G, a surface structure responsible for the MSC-
mediated T  cell inhibition (76). It is of note that the ability 
of adipocytes to stimulate T  cells was related with a stronger 
expression of HLA-DR and of the master transcriptional regula-
tor CIITA factor, compared to de-differentiated adipocytes (76). 
On the other hand, fully differentiated chondrocytes can inhibit 
T cell proliferation triggered through the CD3–CD28 activat-
ing receptors, impairing CD25 expression. More importantly, 
chondrocytes can affect the differentiation of monocytes to 
dendritic cells (12). All these effects can in turn amplify each 
other, thus making the immunoregulatory activity of MSC really 
strong (Figure 2).

MOLeCULAR MeCHANiSMS OF THe 
iMMUNORegULATiON MeDiATeD BY 
MSC

Mesenchymal stromal cells regulate immune response by 
different means (1–4), shared with other components of the 
TME, such as myeloid-derived suppressor cells (MDSC), tumor 
cells, and infiltrating Treg lymphocytes (1–4, 77–84). Indeed, 
indoleamine 2,3 dioxygenase (IDO), hemeoxygenase (HO), 
arginase 1 and 2 (ARG1 and ARG2), nitric oxidase synthase 2 
(NOS2), HGF, TGF-β, IL10, prostaglandin E2 (PGE2), and aden-
osine are all factors involved in the MSC-mediated regulation 
of innate and adaptive immunity (1–4, 23, 85–92) (Figure 3). 
It is of note that several of these factors are upregulated by 
inflammatory stimuli, such as IFN-γ (69). IDO and PGE2, are 
strongly induced upon inflammation, conceivably to switch off 
the inflammatory response to danger signals. In the TME, IDO- 
and PGE2-mediated immunosuppression can be the marker of 
a physiological response triggered to favor tissue repair, but 
undesired because it favors also tumor cell growth. Indeed, 
IDO induces kynurenine synthesis that can strongly inhibit 
both the innate and the adaptive immune response (93–98). 
Furthermore, TGF-β is not only relevant for tumor cell growth 
but can also directly inhibit the function of anti-tumor effector 
cells. This cytokine downregulates, at the surface of natural killer 
(NK) cells, CD8+ cytolytic T cells and γδ T cells, the expression 
of the NKG2D activating receptor, which in turn cannot inter-
act with the NKG2D ligands expressed by tumor cells. These 
events would limit the immunosurveillance to stress signals 
mediated by the growing tumor (1–4, 25). In addition, TGF-β 
is a critical factor to generate conventional CD4+CD25high+ 
Treg and regulatory γδ T  cells (42, 99–104). Moreover, TAF 
expressing α-smooth muscle actin (SMA) can convert arginine 
in ornithine through the involvement of ARG2; this leads to 
the inhibition of TIL functional activities, especially in hypoxic 
conditions (88). PGE2 derived from NK–MSC cocultures can 
impair the IL-2-dependent upregulation of activating NK-cell 
receptors, such as members of the natural cytotoxicity receptors 
and DNAM-1, thus inhibiting melanoma cell recognition (20). 

Adenosine is an additional factor involved in MSC-mediated 
immunosuppression. Indeed, the ecto-5′-nucleotidase activity 
of CD73 expressed on MSC can catalyze the hydrolysis of the 
extracellular adenosine monophosphate (AMP) to adenosine. 
This metabolite can influence the activity of adenylyl cyclase, 
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FigURe 3 | Means to enhance the immune response in the tumor 
microenvironment (TME). To counteract the mesenchymal stromal cell 
(MSC)-mediated downregulation of immune response, two main approaches 
can be utilized: (A) blocking of immunosuppressive effect; (B) triggering MSC 
to be immunostimulant rather than immunosuppressive. (A) MSC can 
downregulate immune response through several soluble factors such as 
indoleamine 2,3 dioxygenase (IDO) prostaglandin E2 and TGF-β. In turn, 
TGF-β from MSC, tumor cells, and bystander cells in TME can support tumor 
cell growth and dissemination. This latter event is linked to epithelial–
mesenchymal transition (EMT) that triggers the generation of metastasis. The 
blockade of MSC immunosuppression can be obtained by several means: (a) 
drugs that inhibit the activity or the generation of molecules involved in 
immunosuppression such as inhibitors of IDO, HO, TGF-β, hepatocyte 
growth factor (HGF), PGE2, NOS, and ARGI–II; (b) antibodies directed either 
to MSC growth receptors, as the epidermal growth factor and platelet-
derived growth factor (PDGF) or to the fibroblast activation protein (FAP). It is 
of note that some of these receptors are shared by tumor cells; thus, human 
or humanized antibodies-based therapy can target both MSC and cancer 
cells. These antibodies act inhibiting the effect of a given growth factor but 
also impairing the function of the target molecule. In addition, they trigger 
complement-dependent cytotoxicity and antibody-dependent cellular 
cytotoxicity (ADCC) elicited by Fcγ receptor-expressing cells, including natural 
killer (NK) cells and γδ T cells. These antibodies can be a portion of 
antibody–drug conjugates (ADC), which join the antibody-mediated effect to 
that of a cytotoxic drug, leading to a strong inhibition of tumor cell growth or 
MSC-mediated functions. (c) cytotoxic T cells equipped with chimeric antigen 
receptors (CARs) specific for FAP (FAP-CAR T cells) that can recognize FAP+ 
cells; (d) drugs affecting the mevalonate pathway that is essential for both 
MSC and tumor cell metabolism; unfortunately, mevalonate is relevant also 
for the development of an optimal immune response; they should therefore 
be used carefully; (e) inhibitors of sheddases, as matrix metalloproteinase and 
a disintegrin and metalloproteinases, which can inhibit tumor cell growth 
limiting the generation of growth factors in a suitable form to trigger 
proliferation; furthermore, these inhibitors should impair the generation of 
decoy molecules, reducing the competition between membrane and soluble 
ligands for activating receptors on effector lymphocytes; (f) tyrosine kinase 
inhibitors (TKi) which block the activity of MSC besides hindering tumor cell 
growth. (B) Immunomodulatory drugs (IMiDs), among which thalidomide, 
pomalidomide, lenalidomide, and avadomide can trigger the innate and the 
adaptive immune responses, besides hampering angiogenesis in the tumor. 
Aminobiphosphonates (N-BPs), such as zoledronic acid, can interfere with 
the mevalonate pathway strongly enhancing the production of isopentenyl 
pyrophosphate (IPP) and dimethyl allyl pyrophosphate (DMPP). These small 
pyrophosphates can trigger the expansion of γδ T cells of the Vδ2 subset, a 
cell population with potent anti-tumoral capabilities. Furthermore, Vδ2+ T cells 
express the FcγR involved in ADCC, reinforcing the anti-tumor effect of 
human/humanized antibodies.

FigURe 3 | Continued
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TARgeTiNg MSC ANTigeNS TO 
MODULATe TMe

It is now evident that the immune system can have a significant 
role in limiting and controlling tumor cell growth (124–131). 
Indeed, both adoptive and immune check point inhibitor immu-
notherapies are based on the possibility of triggering, either 
passively or actively, the specific anti-tumor immune response 
(124–131). A third possibility of adoptive immunotherapy is the 
administration of tumor vaccines; however, tumor vaccination 
has led to contrasting results in clinical practice (132–138). In 
this setting, it is attractive to target not only tumor cells but also 
different components of the TME (40, 41, 139–162). Indeed, spe-
cific vaccines to tumor endothelial cells or blockers of the VEGF 
signaling have been used in preclinical studies, and clinical trials 

the synthesis of cyclic AMP and the function of PKA exerting 
potent immunosuppressive effects (90–92).

TARgeTiNg MSC wiTH ANTi-TUMOR 
DRUgS

Tyrosine kinase inhibitors (TKi) are recent drugs that block the 
signaling cascade that follows the interaction of a growth factor 
with its specific receptor (105–107). It is not surprising that some 
TKi can affect MSC as well (Figure 3). Indeed, MSCs bear at the 
cell surface several receptors that can be considered as targets for 
tumor cell therapy with TKi. In particular, the expression on MSC 
of PDGFR-β and EGFR is well established; the effects of TKi such 
as imatinib, nilotinib, or gefitinib in vitro have pointed out that 
these drugs can affect both MSC proliferation and differentiation 
(108–122). These effects have been recently reviewed in very detail 
(122). It is clear from all these findings that, as expected, TKi can 
exert a strong inhibition on MSC growth and function, but their 
effects on MSC-mediated immunosuppression have not been 
studied. It is conceivable that the inhibition of MSC proliferation 
leads to the inhibition of MSC responsiveness to TME signals, but 
this is not determined yet. However, it has been recently shown 
that the encapsulated TKi sunitinib can work synergistically with 
vaccine therapy in an advanced mouse melanoma model, lead-
ing to the remodeling of TAF, collagen, and vessels of the tumor. 
Furthermore, TKi can induce a shift from Th2 to Th1 pattern of 
TIL, accompanied by an increment of these lymphocytes and a 
decrease of MDSC (123).
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are ongoing (40, 41). MSC can become a target for anti-tumor 
vaccines as well (141–162). For instance, the strong produc-
tion of collagen type I by MSC can interfere with the uptake of 
anti-tumor drugs (149, 150); thus the targeting of MSC and the 
inhibition of extracellular matrix components can render more 
sensitive tumor cells to chemotherapy. Furthermore, antigens 
shared by tumor cells and TAF can be good targets for a vaccine. 
The fibroblast activation protein (FAP), a member of the serine 
protease family, can be expressed by TAF at higher levels than on 
resident fibroblast of healthy tissue. In addition, FAP can be also 
expressed by tumor cells; this would imply that an immune-based 
therapy focused on FAP can beat both tumor cells and TAF (140, 
143–162). Indeed, it has been shown, in a murine model, that 
FAP+ tumor cells can be used as a vaccine, leading to reduced vas-
cular dissemination and elimination of different tumors. In the 
same model, tumor-infiltrating CD8+ T cells increased and a net 
decrease of intratumor TAF, accompanied by a reduced recruit-
ment of cells with immunosuppressive phenotype, was found in 
treated animals (144). In this context, the use of the humanized 
anti-FAP monoclonal antibody sibrotuzumab has been proposed 
in non-small cell lung and colorectal cancer (CRC), but the pilot 
study in CRC did not reach the minimal requirements for the 
continuation of the trial (163–166). However, FAP has been 
considered as a target for redirected T cells or chimeric antigen 
receptor (CAR) T  cells (158, 159, 162) (Figure  3). It has been 
reported that transfer of murine T  cells transduced with FAP-
CAR construct can affect tumor cell growth increasing the CD8+ 
T cell response. Also, the administration of anti-fibrotic agents, 
in several murine tumor models (E-G7 lymphoma, LLC1 Lewis 
lung cancer, or B16F1 melanoma) induced a strong increment of 
CD8+ T cells, NK activity, and humoral immunity and a sharp 
decrease of MDSC, Treg, stromal-derived factor 1, TGF-β, and 
PGE2 (162).

CAN MSC COUNTeRACT CANCeR 
DeveLOPMeNT AND gROwTH?

Taking together the findings reported, it appears clear that MSC 
as TAF should be a mean by which tumor cells are facilitated in 
their growth and spreading. Thus, the higher is the content of TAF 
in a given tumor, the faster will be the expansion of that tumor. 
TAF elimination leads to an enhancement of immune response 
and, at the same time, to a lower support of tumor cell growth. By 
contrast, recent evidence in pancreatic ductal adenocarcinoma 
(PDAC) indicates, that the depletion of αSMA+ myofibroblast, in a 
murine model can trigger tumor cell expansion and paradoxically 
accelerate disease progression (167). In addition, this depletion 
led to an increment of regulatory T cells without affecting NK cell 
infiltration. This was accompanied by a strong remodeling of the 
extracellular matrix composition and the therapy with CTLA-4 
immune check point inhibitors could rescue the detrimental effect 
due to myofibroblast depletion. Furthermore, it appeared that the 
lower was the number of αSMA+ myofibroblast in human PDAC, 
the worse was the prognosis of patients (167). How to explain this 
unexpected effect? The simplest explanation is that the reaction 
due to αSMA+ myofibroblast represents a tool by which healthy 

MSC try to repair tissue and limit the expansion of PDAC, as 
suggested for other malign tumors (168–183). This phenomenon 
is known as desmoplastic reaction, which serves to repair tissue 
injury (175–182). It is conceivable that, at the onset of tumor 
growth, fibroblasts may function also as a physical barrier to 
tumor expansion. During tumor growth, due to the presence of 
subclones and/or cancer stem cells, this barrier can be modified 
by reciprocal cross-talk between tumor components and MSC. 
An additional explanation is that within αSMA+ myofibroblast 
are present subsets of cells with different functional behaviors, 
with either positive or negative effects on tumor cell growth. After 
depletion of all αSMA+ myofibroblast, these populations are lost 
and PDAC can grow without any brake (168, 173, 175, 177, 183). 
In such TME, immune system can receive misleading informa-
tion with conflicting, undesired outcomes. Recently, it has been 
shown that NK cells can recognize and eliminate pancreatic stel-
late cells, bona fide myofibroblasts (171); this would suggest that 
innate immunity, in this case, can favor rather than inhibit tumor 
cell expansion by limiting stromal reaction.

ReSeARCH gAPS AND FUTURe 
DeveLOPMeNTS

At present, targeting MSC is complicated by the fact that a specific 
marker of these cells is missing (1–4). Indeed, MSCs have the 
property to differentiate and it is not clear whether there is also 
an intrinsic de-differentiation potential (1–4); these functional/
plastic properties can impair the efficacy of a drug specific for 
a given MSC subpopulation. In addition, from data obtained in 
PDAC, it is clear that MSC can aid the host against cancer evolu-
tion. Finally, MSCs are present in each tissue and represent the 
key cell involved in the maintenance of the structural architecture 
of the whole body. Thus, therapeutic targeting of MSC should  
be made very carefully.

Targeting MSC with Antibodies
All the above reported matters render the targeting of MSC not 
as specific as desired and possibly accompanied by relevant draw-
backs. By contrast, tumor cell targeting can be more specific, since 
the marker used as target is more expressed in tumor cells than 
in their healthy counterpart. For instance, in Hodgkin lymphoma 
and non-Hodgkin lymphomas (NHL), tumor targeting can be 
really efficient (184–187). Indeed, in these instances, administra-
tion of therapeutic antibodies to CD30 or CD20 molecules can 
spare the healthy counterpart of B cells, because the target antigen 
is not expressed or is expressed at low levels. Also, B lymphocyte 
precursors can substitute the bystander healthy B cells damaged 
by target therapy (184–187). An additional relevant question 
is whether therapies aimed to eliminate cancer cells have also 
an effect on MSC. Indeed, humanized monoclonal antibodies 
(huAb), directed to receptors involved in the proliferation of 
tumor cells, including EGFR or Her2b, may hit MSCs that share 
these molecules at the cell surface (Figure  3). MSC targeting 
might be useful, on the one hand, but the availability of the 
therapeutic huAb can be reduced. Moreover, it is conceivable that 
anti-EGFR and/or anti-HerB2 huAb can affect MSC-tumor cell 
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cross-talk due to the signal delivered upon huAb/receptor inter-
action (188, 189). The study of this interaction can shed new light 
on the reported unexpected effects observed with huAb therapy 
in some type of cancers, among which is CRC (190–193). As 
reported above, targeting FAP+ TAF, or αSMA+ myofibroblast has 
elicited unexpected drawbacks, since these cells can also function 
as negative regulators of cancer cell growth (167). The definition 
of subsets of MSC, myofibroblasts and even TAF, using a specific 
marker is a prerequisite to selectively hit the population that can 
favor the tumor cell growth and inhibit anti-tumor immune cell 
response. In this context, besides FAP, CD73, and CD105 (90, 
91, 141–162), the finding that fibroblasts present in scar tissue 
and basal cell carcinoma express gremlin1, the secreted bone 
morphogenetic protein antagonist, would suggest that this can 
be a specific molecular target to distinguish TAF from healthy 
fibroblasts (194).

interference with eMT and Role of MSC
It is well known that EMT is a key step of the spreading of cancer 
cells far from the primary tumor (100, 101, 104, 195) (Figure 3). 
TGF-β plays a relevant role in EMT (101, 104, 194, 196–204); 
thus, it is conceivable that the blockade of TGF-β production 
by MSC can impair EMT (197). Some evidence is reported on 
the prometastatic effect of CAF in different types of cancer (198, 
199, 202, 203). It is of note that EMT can be also triggered by 
anti-EGFR huAb therapy in squamous cell carcinoma of the 
head and neck. Indeed, it has been reported that cetuximab 
therapy can induce modifications in the expression of genes and 
proteins implicated both in EMT and in the extracellular matrix 
production by CAF (201). Importantly, upregulation of CXCL12, 
ASPN, and OLFM3, factors secreted by CAF, has been observed; 
CXCL12, through the interaction with its receptor CXCR4, can 
lead to CXCL12 and TGFβ production and concur to myelofibro-
sis (205). One can speculate that EGFR signaling can drive TME 
to generate therapy resistance involving CAF. Targeting CAF to 
reduce production and release of TGFβ, CXCL12, and matrix 
metalloproteinases (MPP) can limit cancer cell spreading favored 
by TGFβ and MPP and the anti-apoptotic effect of CXCL12 on 
tumor cells. Unfortunately, the clinical use of inhibitors of TGFβ 
and MPP is far from to be well established, although the interfer-
ence with CXCR4/CXCL12 axis, using AMD3100 or huAb, is 
already applied in several clinical trials (204–210).

Targeting immunosuppressive Molecular 
Mechanisms of MSC with inhibitory Drugs
The interference with MSC-mediated immunosuppressive 
molecular mechanisms, obtained using specific inhibitory 
drugs, is an additional mean by which the immune escape 
favored by tumor MSC can be avoided (1–4). In this context, 
all the inhibitors already used in therapeutic schemes to block 
IDO, HO, ARGI and II, NOS2, PGE2, and TGF-β activity can 
be employed to reduce MSC influence on tumor cell growth 
(211–217) (Figure 3). In this context, the immune check point 
inhibitors anti-PD1 and/or PDL-1 huAb can have an important 
role (132, 137, 218–220). Indeed, it has been shown that PD1 is 
involved in MSC immunoregulation of T and B cell proliferation 

(18, 221, 222). The striking therapeutic effect observed upon 
blockade of PD1–PDL-1 with huAb can be dependent not only 
on the direct effect on tumor cell–effector lymphocyte interac-
tion, but also on the switch off of the inhibiting signal elicited 
by PD1–PDL-1 binding during lymphocyte–MSC interaction. 
PDL-1 expression is upregulated on MSC by IFNγ and this 
cytokine can upregulate IDO as well (223); this suggests that the 
combination of IDO and immune check point inhibitors can con-
cur to overcome TME immunosuppression (224). Some drugs, 
such as hydroxy-methyl-glutaryl-coenzyme A (HMG-CoA) 
reductase inhibitors, can influence both immunosuppressive 
effects and cancer pro-survival signals delivered by MSC (28, 225) 
(Figure 3). Furthermore, it is clear that mevalonate, the metabolic 
product of the HMG-CoA reductase activity, is a key molecule for 
tumor cell fate (226). However, limiting mevalonate production 
can influence the functional behavior of macrophages and lead 
to regulatory T cell expansion, thus favoring tumor cell spread-
ing (227). In addition, anti-tumor effector cell-mediated lytic 
activity is strongly reduced by HMG-CoA reductase inhibition 
(228–232). This can be related to the decrease of cholesterol con-
tent in lymphocyte membrane that limits the formation of rafts; 
these rafts are essential in the delivery of the activating signals 
that lead to granzyme and perforin release, upon effector–target 
interaction (232, 233), and consequent target cell killing. Thus, it 
is relevant to design inhibitors of mevalonate pathway that can be 
delivered specifically to MSC in order to limit tumor cell growth 
sparing immune surveillance.

Drugs to Transform MSC from 
immunosuppressive to immunostimulant
Another approach to downregulate the inhibitory effect of MSC 
on immune system is to convert their behavior from immunosup-
pressive to immunostimulant. Recently, it has been demonstrated, 
both in NHL and CRC, that priming of MSC, derived from lymph 
nodes or colon mucosa, with the aminobisphosphonate (N-BP) 
zoledronic acid can trigger Vδ2 T cell proliferation (25, 234, 235). 
In NHL, zoledronate-pulsed MSC are impaired in the secretion of 
TGF-β, whereas there is an increment in the production of IL-15 
(234) (N-BPs in Figure 3). It should be defined whether priming 
with zoledronate can favor the expansion of other anti-tumor 
effector cells that are inhibited by MSC and whether MSC can 
become a target of Vδ2 T  cells. If this is the case, the specific 
delivery of zoledronic acid to the lymph node TME would trigger 
anti-tumor immunity. It is well known that N-BPs have a strong 
tropism to bone (236); for this reason they are commonly used to 
treat neoplasias primarily localized in the bone, such as multiple 
myeloma, or bone metastases of different carcinomas (237–239). 
In these instances, N-BPs have a dual effect: support the deposi-
tion of bone matrix to repair the osteolytic damage induced by 
tumor cells and trigger γδ T cell-mediated anti-tumor immune 
response (237–241). When tumors are localized in other tissues, a 
major issue for the administration of N-BPs is to efficiently target 
the tumor outside the bone. It can be hypothesized that the gen-
eration of antibody–drug conjugates (ADC) (242), made of huAb 
linked to N-BPs, can be a good tool to deliver N-BPs to a specific 
tumor site. So far, ADC have been developed with huAb specific 
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for a tumor marker linked to cytotoxic drugs, the specificity of 
the antibody being the key parameter to maximize anti-tumor 
effect. It is conceivable that also the linkage of immunostimulant 
drugs to huAb specific for tumor cells and MSC can combine the 
specifity for the target with the triggering of anti-tumor γδ T cell 
immune response.

Immunomodulatory drugs (IMiDs), from the first described 
thalidomide to the recent reported avadomide (CC-122) 
(Figure  3), can affect both directly and indirectly tumor cell 
growth (243–251). Indeed, it has been reported that IMiDs can 
impair cereblon, a ubiquitin ligase constitutive in every cell type 
but crucial for cancer cell survival, causing mis-regulation of 
developmental signaling molecules and generation of reactive 
oxygen species, which in turn kill tumor cells. Furthermore, 
IMiDs inhibit tumor neoangiogenesis leading to the reduction 
of tumor cell growth. IMiDs can also modulate NK cell number 
and function, besides co-stimulate T  cell proliferation; these 
effects have led to their use in multiple myeloma and several 
types of lymphomas. IMiDs administration has been proven to 
be effective in clinical trials, because these compounds can hit 
different components of the TME, including MSC (124, 139, 239, 
243–248). It is conceivable that a progressively larger application 
to several kinds of solid tumors, since these drugs have shown 
remarkable effects in CRC and sarcomas (249–272). Importantly, 
in the bone marrow microenvironment, IMiDs inhibit the pro-
duction of IL-6, essential for myeloma cell growth, by regulating 
SOCS1 (273). In addition, these compounds affect osteoblast 
differentiation, indicating that bone anabolic therapeutics are 
needed in myeloma to counteract the negative effect on bone 
metabolism of IMiD exposure. In this instance, the use of N-BPs 
can favor the deposition of bone matrix, thus limiting the damage 
induced by IMiDs.

Drugs to interfere with the generation of 
Decoy Receptors from MSC and Tumor 
Cells
MSC can release the MHC-class-I related molecules MIC-A, 
MIC-B, and the UL16-binding proteins (ULBPs) into TME, 
through the enzymatic activity of members of the a disintegrin 
and metalloproteinases (ADAMs) family (274–279). These 
released NKG2D-L can function as decoy ligands blocking the 
NKG2D-mediated recognition of cancer cells that usually express 
them on the cell membrane (277–281) (Figure 3). It is reasonable 
that ADAM10 and ADAM17 in MSC can act on such stressed 
molecules expressed not only by MSC but also by other cells pre-
sent in TME. In addition, ADAMs can be released in exosomes 
and microvescicles by MSC, thus spreading their enzymatic 
activity. This would imply that ADAMs inhibitors can reduce the 
MSC-mediated release of stress molecules, allowing cancer cell 
recognition by immune cells and eventually leading to an incre-
ment of tumor cell killing (280). In this context, it is becoming 
evident that the analysis of MSC secretome is highly relevant to 
understand the physiological and pathological behavior of these 
cells (282). The targeting of ADAMs inhibitors to TME could be 
achieved again, using ADC which recognize MSC and/or tumor 
cells. Importantly, the delivery to MSC of drugs, such as N-BPs 

and ADAMs inhibitors, either alone or in combination with 
huAb as ADC, can take advantage of nanotechnology (283–285). 
Nanovectors can be artificially built with different morphology 
and physico-chemical properties (283–285). The choice of these 
parameters is relevant to design the optimal combination and 
obtain the maximal effect (283–285).

The New Frontier of Three-Dimensional 
(3D) Models: To Study the interactions 
among MSC, Tumor Cell, and the immune 
System
The study of the functional cross-talk among MSC, tumor cells, 
and the immune system can be more reliable using 3D models 
instead of classical in vitro culture systems (272, 286–299). Indeed, 
in these 3D models, the control of cell culture conditions and the 
regulation of biomechanical stimuli can give relevant insight on 
how biophysical cues can influence stromal cell phenotype and 
function; this can clarify how these modifications impact on 
tumor drug sensitivity. In addition, the cross-talk of tumor and 
stromal cells with immune cells can be studied in detail, varying 
the experimental conditions in a setting that reproduces tissue 
architecture; this can spare time, limit the costs of animal experi-
mentation and reduce the environmental impact of animal breed-
ing farms (290, 295, 297, 299). These culture systems, validated 
by the EU Reference Laboratories (EURL-ECVAM) as preclinical 
models, are reproducible 3D culture microenvironments useful 
for studying pharmaceuticals or biological pathways (300, 301). 
Among them, the hydrogels of matrix components, such as col-
lagen, fibronectin, or cell derivates such as Matrigel or amorphic 
scaffold have been used (286, 293, 295). More recently, in multiple 
myeloma a model that recapitulates the interactions among 
MSC, myeloma cells, endothelial cells, and bone remodeling 
has been set up in order to analyze dynamically the cross-talk 
among all these cell populations (273). Indeed, this 3D model 
uses silk protein-based scaffolds that allow active cell attachment 
and growth on the scaffolds, rather than passive encapsulation 
in 3D hydrogel cultures. This represents a unique model to 
analyze under mechanical stress, similar to the bone tissue, the 
interactions of cancer cells and bone in a 3D microenvironment. 
The interaction among tumor cells, anti-tumor lymphocytes and 
MSC can be achieved in different 3D experimental setting as 
tumor spheroids, organoids and 3D on-chip cell cultures (291, 
297, 301, 302). The 3D models where metabolic microenviron-
ment is dynamically changed are essential to confirm the findings 
obtained in the murine system regarding the role of PDL-1 block-
ing in tumor metabolism (303, 304). Infact, in a mouse sarcoma 
model, it has been shown that glucose consumption by tumors 
can metabollically inhibit T cell responses, impairing glycolytic 
activity and IFNγ production. More importantly, anti-PDL-1 
antibodies can block tumor glucose utilization favoring T  cell 
glycolysis and IFNγ release (304). To validate these findings and 
further analyze the mechanisms of regulation of metabolism of 
immune cells humanized mice can be employed (305). However, 
these mice are engrafted with human hematopoietic stem cells 
and, for this reason, should be immunodeficient. Although this 
model can aid in mimicking the pathophysiological conditions 
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of human beings, it is evident that the large majority of TME is 
composed of murine cells. On the contrary, organoids of tumors 
from patients’ specimens can be obtained and analyzed in detail 
(306–309). For instance, it has been recently shown that human 
intestinal organoids can be generated and used, not only for 
research purposes but even to treat intestinal injury (310). In 
addition, bioprinting techniques have led to the biofabrication of 
accurate models that can recreate the biophysical and biochemi-
cal characteristics of a given tissue (292). Thus, in the near future, 
the cross-talk among the different components of the TME will be 
analyzed using more and more precise 3D models and organoids 
from a given patient to test the sensitivity to selected targeted 
therapy (289, 294, 302, 306, 311–313).

CONCLUDiNg ReMARKS

It is now clear that MSC represent a key player in regulating 
TME through direct cell-to-cell interactions, producing several 
cytokines and releasing exosomes (314–322). The secretome of 
MSC can play an important role in immunosuppression (319, 
320): its modification with drugs can represent a new tool for drug 
delivery and cell-free regeneration after tumor injury (314–318, 
321, 322). Because of the lack of specific markers that identify 
subsets of MSC, the specific targeting of these cells appears to be 
difficult, to achieve selective inhibition of immunosuppression. 
Furthermore, it is still to be elucidated whether different subsets 

of MSC, due to their plasticity, can represent functional subsets 
of cancer-associated fibroblasts (323–328). This would imply that 
a specific marker for the immunosuppressive MSC will be still 
elusive for a long time. Nevertheless, it is conceivable that drug 
combination therapies of cancer, which limit, on the one hand, 
tumor cell proliferation and, on the other hand, trigger immune 
responses, which already involve MSC. The in  situ analysis of 
MSC functional features, together with their study in 3D tumor 
culture systems, would allow to clarify the existence in humans of 
MSC subsets and to assess the effects of drug treatment in order 
to choose the right combination of therapeutic means for each 
patient.
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