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While a link between inflammation and the development of neuropsychiatric disorders, 
including major depressive disorder (MDD) is supported by a growing body of evidence, 
little is known about the contribution of aberrant adaptive immunity in this context. Here, 
we conducted in-depth characterization of T cell phenotype and T cell receptor (TCR) 
repertoire in MDD. For this cross-sectional case–control study, we recruited antidepres-
sant-free patients with MDD without any somatic or psychiatric comorbidities (n = 20), 
who were individually matched for sex, age, body mass index, and smoking status to a 
non-depressed control subject (n = 20). T cell phenotype and repertoire were interrogated 
using a combination of flow cytometry, gene expression analysis, and next generation 
sequencing. T cells from MDD patients showed significantly lower surface expression 
of the chemokine receptors CXCR3 and CCR6, which are known to be central to T cell 
differentiation and trafficking. In addition, we observed a shift within the CD4+ T  cell 
compartment characterized by a higher frequency of CD4+CD25highCD127low/− cells and 
higher FOXP3 mRNA expression in purified CD4+ T cells obtained from patients with 
MDD. Finally, flow cytometry-based TCR Vβ repertoire analysis indicated a less diverse 
CD4+ T cell repertoire in MDD, which was corroborated by next generation sequencing 
of the TCR β chain CDR3 region. Overall, these results suggest that T cell phenotype 
and TCR utilization are skewed on several levels in patients with MDD. Our study iden-
tifies putative cellular and molecular signatures of dysregulated adaptive immunity and 
reinforces the notion that T cells are a pathophysiologically relevant cell population in this 
disorder.

Keywords: adaptive immunity, major depressive disorder, chemokine receptors, regulatory T cells, T cell receptor 
repertoire

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.00291&domain=pdf&date_stamp=2018-02-20
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.00291
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:stefan.gold@charite.de
https://doi.org/10.3389/fimmu.2018.00291
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00291/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00291/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00291/full
http://loop.frontiersin.org/people/520147
http://loop.frontiersin.org/people/516684
http://loop.frontiersin.org/people/492599
https://loop.frontiersin.org/people/525463
https://loop.frontiersin.org/people/525453
http://loop.frontiersin.org/people/503081
http://loop.frontiersin.org/people/109113
http://loop.frontiersin.org/people/256027
http://loop.frontiersin.org/people/495396
http://loop.frontiersin.org/people/225221


2

Patas et al. T Cell Phenotype and Repertoire in MDD

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 291

inTrODUcTiOn

Major depressive disorder (MDD) affects approximately 15% 
of adults over their lifespan (1) and is among the top two 
leading causes of years lived with disability worldwide (2). 
The etiopathogenesis of MDD is multifactorial and many 
neurobiological systems have been implicated (3, 4). Despite 
advanced understanding of the pathophysiology, approximately 
30% of patients do not respond—even after several treatment 
attempts—to current antidepressants, which mainly target 
monoaminergic neurotransmission (5, 6). This underlines the 
need for approaches that target mechanisms beyond monoamine 
modulation (7).

Recently, accumulating experimental animal and human 
data have highlighted the importance of aberrant immunity in 
the development of depression (8). Similarly, epidemiological 
data have linked infections and autoimmunity to the risk of the 
disorder (9, 10). Exploring immune alterations in MDD may, 
thus, have the potential to open new avenues for treatment, since 
the immune system could be more amendable by therapeutic 
modulation than targets in the central nervous system (CNS).

Much of the research on immune dysfunction in MDD has 
focused on activation of the innate immune system (8). However, 
intriguing new evidence suggests that the different branches of 
the immune system might be differentially affected in MDD with 
relative impairment of adaptive immune responses (11), although 
this has not yet been explored in a targeted way on a cellular level. 
Moreover, preclinical studies have implicated the presence of a 
co-evolutionary link between T cell responses and CNS function 
(12, 13) and it is now increasingly recognized that the T  cell 
compartment regulates cognition and mood-related behaviors in 
experimental animals (14, 15). Along similar lines, aberrant T cell 
differentiation and attenuated reactivity to CNS-derived antigens 
were hypothesized to play a role in MDD pathophysiology (8, 
16). In view of these putative “antigen selection” pressures (i.e., 
infections and skewed specificity), we hypothesized that periph-
eral blood T cells from MDD patients would exhibit an altered 
phenotype as well as a biased profile in the T cell receptor (TCR) 
repertoire compared to non-depressed controls.

MaTerials anD MeThODs

subjects
We enrolled antidepressant-free patients with MDD but no other 
psychiatric comorbidities as well as non-depressed volunteers, 
matched pairwise for sex, age, current smoking status (yes/no), 
and BMI. All participants were of European descent.

Inclusion criteria for MDD patients: (a) psychiatrist-confirmed 
diagnosis of MDD, single or recurrent, according to DSM-IV cri-
teria; (b) a minimum score of 18 points on the Hamilton Rating 
Scale for Depression (HRSD); (c) age 18–65  years; (d) at least 
8 weeks free of any psychiatric medication (e.g., antidepressants, 
antipsychotics, and mood stabilizers).

Inclusion criteria for non-depressed controls: (a) no current or 
lifetime mood disorder diagnosis and (b) a score ≤5 on the Quick 
Inventory of Depressive Symptoms-Self Report (QIDS-SR).

Exclusion criteria for all participants: (a) past or present 
self-reported diagnosis of a major medical condition, including 
chronic or acute inflammatory, metabolic, and neurological 
disorders; (b) Axes I or II comorbidities; (c) regular use of either 
prescribed, over-the-counter medication or illicit drugs; thus, any 
subject on anti-inflammatory drugs, cholesterol-reducing drugs, 
and other possibly immune-modifying agents was excluded (see 
Table S1 in Supplementary Material); (d) drinking of more than 
100 g of alcohol per week; (e) basic blood laboratory test values 
deviating significantly from the normal range; (f) current adverse 
life events (e.g., divorce, loss of job, and illness in the family); (g) 
pregnancy or nursing; and (h) recent vaccination (within the past 
month). Hypothyroidism in euthyroid state through hormonal 
substitution and hypertension in normotensive state through 
antihypertensive medication did not represent exclusion criteria 
(see Table S1 in Supplementary Material).

Patients were recruited through our specialized depression 
out-patient clinic program at the Department of Psychiatry and 
Psychotherapy, University Medical Center Hamburg-Eppendorf. 
Non-depressed controls were recruited from the same geo-
graphical region through advertisements and from the staff of 
the University Medical Center Hamburg-Eppendorf. All par-
ticipants provided written informed consent before enrollment 
in the study. This study has been approved by the appropriate 
Ethics Review Committee (Ethik-Kommission der Ärztekammer 
Hamburg, Ethikvotum PV4161 and PV4719).

clinical assessments
All subjects underwent detailed clinical assessments, including 
medical history, current medication, and psychiatric comorbidities. 
Diagnosis was established with the Structured Clinical Interview for 
the DSM-IV-TR Axis I Disorders (SCID-I) and depression sever-
ity was assessed using the HDRS by experienced board-certified 
psychiatrists (Cüneyt Demiralay and Agorastos Agorastos).

Peripheral Blood Mononuclear cells 
(PBMc) isolation and Biobanking
We obtained approximately 30 ml of blood in S-Monovette K3 
EDTA tubes and 7 ml in S-Monovette Serum-Gel tubes (Sarstedt). 
All samples were collected in the morning (8:00 a.m.). PBMCs 
were then isolated using a Ficoll–Hypaque gradient as described 
(17), aliquoted in RPMI containing 10% DMSO and 25% FCS at 
1 × 107 cells/ml, gradually cooled down to −80°C in a Mr. Frosty 
for 18  h and stored in liquid nitrogen until assayed. A small 
amount of whole blood (50 µl) was used for total and differential 
leukocyte counts using a Coulter Ac·T Diff hematology analyzer 
(Beckman Coulter). All other assays were performed using cryo-
preserved PBMCs or serum with one subject from each group 
run in parallel to control systematic variation in reagents used.

cell Purification
For qRT-PCR and TCR sequencing analyses, CD4+ T cells were 
purified using magnetic beads (negative selection by BD IMag 
Human CD4 T Lymphocyte Enrichment Set, BD Biosciences) 
from PBMC aliquots thawed in cell separation buffer (1% human 
serum, 2 mM EDTA in PBS). In our hands, this method typically 
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yields a cell purity of approximately 95% for CD4+ T  cells as 
confirmed by flow cytometry.

Flow cytometry
We used flow cytometry with hierarchical gating strategies adapted 
from established guidelines for analysis of human PBMCs and 
suitable for cryopreserved samples (18, 19). Our panel offered 
survey phenotyping of T cell subsets, including Tregs, as well as 
B cells and NK cells (see Figure S1 in Supplementary Material). 
The following fluorochrome-conjugated monoclonal antibodies 
were used: CD3 BV605 (OKT3, Biolegend), CD4 Alexa 700 
(RPA-T4, Biolegend), CD8α V500 (SK1, BD Biosciences), CCR6 
PE-Cy7 (G034E3, Biolegend), CXCR3 PE (G025H7, Biolegend), 
CD127 APC (A019D5, Biolegend), CD25 BV421 (M-A251, 
Biolegend), CD19 V500 (HIB19, BD Biosciences), CD56 PE-Cy7 
(HCD56, Biolegend), CD20 PE (2H7, BD Biosciences), CD14 
V450 (MFP9, BD Biosciences), and CD16 FITC (3G8, BD 
Biosciences). We also used the commercially available IOTest® 
Beta Mark Kit (Beckman Coulter) for quantitative determina-
tion of the human TCR Vβ repertoire in CD4+ and CD8+ cells 
[nomenclature from Ref. (20)].

Surface Staining
To exclude dead cells from further analyses, we used the LIVE/
DEAD Fixable Near-IR Dead Cell Stain Kit (Life Technologies) 
before applying any surface and intracellular stainings. Up to 
1 × 106 thawed PBMCs were washed with protein-free cold PBS 
(PAA Laboratories) at 485  g for 5  min at 4°C and then resus-
pended in 100 µl cold PBS containing the amine-reactive dye in 
1:1,000 dilution. After light-protected incubation for 20 min at 
4°C, cells were washed with cold PBS and subsequently stained 
for surface antigens, resuspended in 90 µl staining buffer (0.1% 
BSA, 0.02% NaN3 in PBS) and incubated with 0.1 µg/µl human 
IgG (Jackson ImmunoResearch) for 5 min at room temperature. 
Surface staining reactions were performed by light-protected 
incubation with 10 µl of Vβ-specific reagent mixture and/or 10 µl 
of 10× surface antibody cocktails for 30 min at 4°C. After washing 
with staining buffer at 485 g for 5 min at 4°C, cells were either 
resuspended in 250 µl staining buffer for acquisition or fixed for 
intracellular staining.

Intracellular Staining
Surface-stained cells were resuspended in 100 µl fixation buffer 
(Biolegend), incubated for 20 min at room temperature, washed 
twice with 1× permeabilization wash buffer (Biolegend) at 485 g 
for 5  min at 4°C and serially incubated with 0.1  µg/µl human 
IgG (5 min, at room temperature) and anti-CXCR3 antibodies for 
30 min at room temperature. Cells were again washed twice with 
1  ml permeabilization wash buffer and resuspended in 250  µl 
staining buffer for acquisition.

Data were acquired using a BD FACS LSR II flow cytometer 
and the FACS Diva v6.2 operating software. At least 1 × 105 live 
lymphocytes were acquired from case–control samples during the 
same session and using the same acquisition settings. Variability 
of instrument performance was normalized by use of Cytometer 
Setup and Tracking beads (BD Biosciences). Data analysis and 
plotting were performed using FlowJo v10.0.8 (Tree Star).

serum immunoassays for cXcl10 and 
cXcl11
CXCL10 and CXCL11 in sera were assayed with a multiplex 
bead-based immunoassay LEGENDplex (Biolegend) according 
to manufacturer’s instructions. For data acquisition and analysis, 
a BD FACS LSR II flow cytometer and the LEGENDplex v7.0 data 
analysis software were used, respectively.

serum radioimmunoassays for  
acTh and cortisol
Stress hormone levels (ACTH and cortisol) were measured in 
sera obtained at 8:00 a.m. with commercially available radioim-
munoassays (IBL IRMA and ICN Biomedicals RIA, respectively), 
according to manufacturer’s instructions.

reverse Transcription and real-Time Pcr
RNA was extracted from purified cell populations using RNeasy 
Plus Universal Mini Kit (Qiagen). 250–500 ng aliquots were used 
for cDNA synthesis by RevertAid H Minus First Strand cDNA 
Synthesis Kit (Thermo Scientific), followed by TaqMan assays 
(FOXP3: Hs01085834_m1, T-bet: Hs00203436_m1, GATA3: 
Hs00231122_m1, RORC: Hs01076122_m1) in ABI Prism 7900 HT 
Fast Real-Time PCR system (Applied Biosystems). All reactions 
were performed in triplicate. The expression levels of the genes 
of interest were calculated as 2−ΔCt relative to the geometric mean 
expression of three housekeeping genes (IPO8: Hs00183533_m1, 
TBP: Hs00427620_m1, RPL13A: Hs04194366_g1), shown to be 
stably expressed in primary human T cells (21).

next generation sequencing of the  
Tcrβ repertoire
For sequencing of the CDR3 region in CD4+ T cell clones, we 
extracted total genomic DNA from negatively purified CD4+ 
T cells using the DNeasy Blood and Tissue Kit (Qiagen), accord-
ing to manufacturer’s instructions. We then amplified and 
sequenced the CDR3 region of rearranged TCRβ genes, which 
were defined according to IMGT (22), using previously described 
immunosequencing protocols [Adaptive Biotechnologies (23)]. 
This provides an unbiased measurement of the frequencies of 
individual T cell clones. Raw sequence data were pre-processed 
by Adaptive Biotechnologies for PCR and sequencing error 
correction (23) and uploaded into the immunoSEQ® Analyzer. 
Post-analysis was conducted using VDJtools v1.0.7 (24). 
Sequencing data are available using the following URL: http://
doi.org/10.21417/B7RG6H.

statistical analyses
All continuous variables are presented as median values with 
interquartile range, unless otherwise specified. Differences 
between patients and matched controls were tested for statisti-
cal significance using the paired Wilcoxon signed-rank test. For 
dichotomous variables, the McNemar’s test was used. Bivariate 
correlation analyses were conducted using Spearman’s rank cor-
relation test. As a measure of Vβ repertoire skewing, we calculated 
the Gini-TCR index, as previously described (25). This index is 
a direct measure of TCR Vβ usage with higher values indicating 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://doi.org/10.21417/B7RG6H
http://doi.org/10.21417/B7RG6H


TaBle 1 | Clinical characteristics.

MDD (n = 20) cTr (n = 20) p-value*

Males/Females (n) 9/11 9/11 >0.99
Age (years), median (IQR) 36.5 (30.5–44) 37 (31–46) 0.28
BMI, median (IQR) 24.1 (20.7–27.8) 24.4 (22.8–27.1) 0.37
% Currently smoking (n) 35 (7) 35 (7) >0.99 
QIDS-SR, median (IQR) 18.5 (16.5–21) 2 (1–3.5) <0.001
HRSD, median (IQR) 21.5 (19.25–24) N/A N/A

MDD, major depressive disorder; CTR, non-depressed controls; BMI, body mass 
index; IQR, interquartile range; QIDS-SR, 16-item Quick Inventory of Depressive 
Symptoms-Self Report; HRSD, 17-item Hamilton Rating Scale for Depression, N/A,  
not applicable.
*Based on the McNemar’s test for dichotomous variables and the Wilcoxon  
signed-rank test for continuous variables.

FigUre 1 | Peripheral blood counts and frequencies of major leukocyte subsets. (a) Absolute peripheral blood granulocyte, monocyte, and lymphocyte counts 
were obtained from major depressive disorder (MDD) patients and matched non-depressed controls (CTR) using a Coulter Ac·T Diff hematology analyzer (n = 40). 
(B) Frequencies of total CD3+ lymphocytes (T cells), CD3−CD56−CD19+ B cells and CD3−CD19−CD20−CD14−CD56+ natural killer (NK) cells were obtained by flow 
cytometric analysis of thawed peripheral blood mononuclear cells. (c) T cells were further discriminated into CD4+CD8− and CD8+CD4− subsets. (D) Among 
NK cells, CD56lowCD16+ cytotoxic (NKc) cells and CD56highCD16− regulatory (NKreg) cells were also identified. Graphs depict medians with interquartile ranges. For 
all comparisons, the Wilcoxon signed-rank test was used.
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higher clonality (i.e., less evenly distributed repertoire). All sta-
tistical analyses were performed using SPSS version 19 (IBM). A 
two-tailed p < 0.05 was considered significant and p < 0.10 was 
considered a trend. All graphs were made using GraphPad Prism 
v5.04, except for the pie charts in Figure 6, which were generated 
using the R package ggplot2.

resUlTs

Descriptives
Clinical characteristics of the MDD and control groups can be 
found in Table  1. Patient level clinical characteristics includ-
ing non-psychiatric medication are provided in Table S1 in 

Supplementary Material. Depression severity in the MDD group 
was moderate to severe. 18 MDD patients were antidepressant-
naïve at the time of inclusion.

circulating leukocyte numbers and 
Frequencies
In order to obtain a general overview of immune cell composition 
in the peripheral blood, we first analyzed the absolute counts and 
frequencies of major leukocyte subsets. We observed no signifi-
cant differences in absolute counts of circulating granulocytes, 
monocytes, and lymphocytes (Figure 1A), frequencies of major 
T cell subsets (CD4+ or CD8+) or B cells (Figures 1B,C). In line 
with recent studies (26–28), natural killer (NK) cells showed 
a trend toward lower frequency in MDD patients (p  =  0.062; 
Figure 1B). Here, group differences were mainly driven by the 
putatively regulatory CD56highCD16− NK subset (p  =  0.018; 
Figure 1D).

chemokine receptor expression cXcr3 
and ccr6
To identify possible shifts in T cell phenotype, we next analyzed 
the expression of two chemokine receptors that are characteristic 
of effector T cell differentiation (CXCR3 and CCR6) (18). T cells 
of MDD patients showed significant reductions in the surface 
expression of both CXCR3 (p = 0.001; Figures 2A,B) and CCR6 
(p = 0.033; Figures 2C,D). This was seen in both CD4+ and CD8+ 
T cell subsets for CXCR3 (Figure 2B) and mainly in CD4+ T cells 
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FigUre 2 | CXCR3 and CCR6 expression in T cells of major depressive disorder (MDD) patients and non-depressed controls. (a) CXCR3-expressing T cells were 
identified by flow cytometric analysis of peripheral blood mononuclear cells from MDD patients and matched non-depressed controls (CTR). Displayed values are 
frequencies of CXCR3+ T cells expressed as a percentage of live CD3+ lymphocytes from a representative case–control pair. (B) Percentages of CXCR3-expressing 
total T cells, CD4+, and CD8+ T cells were quantified in our cohort (n = 40). (c,D) Similar analyses were conducted for the surface expression of CCR6 on total 
T cells as well as on the CD4+ and CD8+ T cell subsets. (e) The CXCR3 ligands CXCL10 and CXCL11 were quantified in sera of MDD patients and matched 
controls using a cytometric bead array (n = 38). (F) Surface CD3 MFI levels were measured by flow cytometric analysis of CD4+ and CD8+ T cells from MDD patients 
and matched controls (n = 40). All graphs depict medians with interquartile ranges. For all comparisons, the Wilcoxon signed-rank test was used. SSC-A, side 
scatter-area; CXCR3, CXC-chemokine receptor type 3; CCR6, CC-chemokine receptor type 6; MFI, median fluorescence intensity.
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for CCR6 (Figure 2D). In 17 out of our 20 case–control pairs, 
CXCR3 expression was lower in the MDD subjects.

Lower surface CXCR3 expression was not T  cell-specific, 
as the percentage of CXCR3-expressing CD3− lymphocytes 
(non-T cells) was also found to be significantly lower in MDD 
patients (p = 0.001; Figure 3A). However, lower surface expres-
sion of CCR6 was confined to T cells, as we detected no difference 
in the frequency of CCR6-expressing CD3− lymphocytes between 
patients and controls (p = 0.60; Figure 3A).

Next, we conducted several analyses to explore potential 
mechanisms that could underlie the extensive loss of surface 
CXCR3 expression in MDD. We found no differences in total 
cellular levels of CXCR3 (i.e., surface and intracellular combined) 

in T  cells and non-T  cells (Figures  3B,C), suggesting different 
receptor turnover at the cell membrane in MDD.

T cells rapidly internalize CXCR3 when exposed to CXCL10 
and CXCL11 (29) and there is evidence to suggest that CXCL10 
is elevated in MDD (30). In our sample, serum CXCL10 tended 
to be higher in MDD, although this difference reached only a 
trend (p  =  0.091; Figure  2E). Descriptively, CXCL11 was also 
elevated but this did not reach statistical significance (Figure 2E). 
However, the intercorrelation between the two chemokines was 
robust (Spearman’s rho = 0.862, p < 0.001).

CD3 stimulation can be an alternative mechanism account-
ing for downregulation of both CXCR3 and CCR6 from the cell 
surface (31). In line with this hypothesis, we observed higher 
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FigUre 3 | Surface and intracellular staining of CXCR3. (a) Percentages of CXCR3- and CCR6-expressing CD3− lymphocytes (non-T cells) were quantified in major 
depressive disorder (MDD) patients and matched non-depressed controls (CTR) (n = 40). (B) A representative plot shows fluorescence intensity of CXCR3 
expression in intact (surface CXCR3; light gray-shaded curve) relative to fixed and permeabilized T cells (total cellular CXCR3; dark gray-shaded curve). Isotype-
matched negative controls were used at the same concentration before fixation (black-dashed curve) and after fixation-permeabilization (gray-dashed curve) and 
showed no positive staining for CXCR3. (c) Total cellular CXCR3 MFI levels were measured by flow cytometric analysis of fixed and permeabilized peripheral blood 
mononuclear cells (PBMCs) from MDD patients and matched controls (n = 36). Stained PBMCs were gated on live CD3+ lymphocytes (T cells), CD4+ and CD8+ 
T cell subsets as well as CD3− lymphocytes (non-T cells). Graphs depict medians with interquartile ranges. For all comparisons, the Wilcoxon signed-rank test was 
used. CXCR3: CXC-chemokine receptor type 3; CCR6: CC-chemokine receptor type 6; MFI: median fluorescence intensity.
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median fluorescence intensity of CD3 expression in T  cells of 
MDD patients (p  =  0.001; Figure  2F). It has been previously 
described that upregulation of surface CD3 is associated with 
prolonged TCR engagement (32), which provided further 
rationale for our hypothesis that MDD patients may bear TCR 
repertoires of biased clonal composition (see T  cell repertoire 
analyses).

cD4+ T cell subsets and Transcription of 
Master regulators of T cell Differentiation
Shifts in CD4+ T  cell subsets could indicate another aspect of 
skewed T cell differentiation in MDD (16). Indeed, we observed 
that MDD patients exhibited significantly higher frequency of 
CD25highCD127low/− T cells (p = 0.048; Figures 4A,B), a surface 
phenotype associated with regulatory T (Treg) cells in humans 
(19, 33). In addition, in a subset of 10 case–control pairs with suf-
ficient biomaterial available, we observed increased mRNA levels 
of the Treg transcription factor FOXP3 (p  =  0.007), while no 

significant changes were observed in the levels of mRNA for tran-
scription factors linked to differentiation of the Th1 (T-bet), Th2 
(GATA3), or Th17 (RORC) lineages (Figure 4C). Corroborating 
a relative shift toward a Treg-associated phenotype at the expense 
of Th1 differentiation, FOXP3 mRNA expression was significantly 
and positively correlated with CD25highCD127low/− frequency 
(Spearman’s rho = 0.583, p = 0.007; Figure 4D) but negatively 
correlated with the frequency of CXCR3-expressing CD4+ T cells 
(Spearman’s rho = − 0.555, p = 0.011). No correlation was found 
for CCR6-expressing CD4+ T  cells (Spearman’s rho  =  −0.194, 
p = 0.41).

T cell repertoire analysis
In order to explore whether a skewed T cell phenotype in MDD 
is paralleled by a biased TCR expression profile, we examined 
TCR Vβ family distribution by flow cytometry-based analysis of 
the entire cohort (n = 40). Overall, the T cell repertoire of MDD 
patients showed a trend for higher Gini-TCR indices in CD4+ 
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cells (p = 0.057; Figure 5A), indicating that the CD4+ TCR rep-
ertoire might be less evenly distributed in MDD. By contrast, no 
evidence for skewing of the CD8+ T cell repertoire was observed 
(p = 0.36; data not shown).

Among CD4+ T cells, we found significantly higher usage 
of the Vβ families 5.1 and 22 (unadjusted p  =  0.003 and 
p = 0.040, respectively; Figure 5A) and lower usage of Vβ 11 
(unadjusted p =  0.015; Figure 5A). Next, we sought to con-
firm these observations by using next-generation sequencing 
in a subgroup of five case–control pairs, which were chosen 
in a manner blind to chemokine receptor expression and 

Gini-TCR index differences (see Table S1 in Supplementary 
Material). Sequencing of the beta chain CDR3 region in 
purified CD4+ T  cells confirmed the increased usage of Vβ 
5.1 (TCRBV05-01) in the MDD group as compared to the 
control group (p  =  0.040, one-tailed planned comparison; 
Figure 5B). Differences regarding Vβ 11 (TCRBV25-01) and 
Vβ 22 (TCRBV02-01) showed the same pattern as the flow 
cytometry analysis in the whole cohort but did not reach 
statistical significance (Figure 5B). The top five Vβ 5.1 T cell 
clones for each subject, which were all “private” clones, are 
displayed in Figure 6.
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distribution analysis was performed by means of flow cytometric interrogation of CD4+ T cells from MDD patients and matched non-depressed controls (CTR) 
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association between immune and 
neuroendocrine Variables
In order to explore whether T cell alterations are associated with 
neuroendocrine dysregulation in MDD patients (34), we con-
ducted correlation analyses between cellular immune measures 
found to differ between the MDD and control groups and serum 
levels of stress hormones (ACTH and cortisol). We found no 
associations of ACTH or cortisol levels with our T cell phenotype 
and TCR repertoire outcomes (all p > 0.15, data not shown).

DiscUssiOn

Here, we provide converging evidence from several cellular and 
molecular approaches that antidepressant-free MDD patients 
display biased T cell phenotype and TCR repertoire as compared 
to closely matched, non-depressed controls. Peripheral blood 
T cells from MDD patients showed a shift in the CD4+ T compart-
ment toward Treg cells, paralleled by lower surface expression of 
the T helper differentiation-related chemokine receptors CXCR3 
and CCR6. In addition, a less diverse TCR utilization profile was 
seen within the CD4+ but not the CD8+ T cell subset.

Our cellular immune markers did not show any significant 
associations with circulating stress hormone levels (ACTH, cor-
tisol); therefore, changes in T cell phenotype and TCR repertoire 
are unlikely to simply represent an epiphenomenon of neuroen-
docrine dysregulation in MDD (34). Furthermore, given the range 
of group differences in surface chemokine receptor expression as 
well as shifts in CD4+ T cell phenotype, our observations probably 
reflect a skewing in T cell differentiation, rather than implicating 
single molecules in MDD pathophysiology. Nevertheless, it is 
worthwhile to consider the potential functional implications of 
some of the candidate markers we identify in this study.

CXCR3 is a chemokine receptor that is highly expressed 
on effector CD4+ and CD8+ T cells and grants them entry into 
otherwise restricted sites of Th1-type inflammation and infection 

(35). Although we have not tested the functional consequences 
of lower surface CXCR3 in MDD directly, it has been previously 
shown that ligand-induced internalization of this receptor is 
associated with abolished migratory capacity of both CD4+ and 
CD8+ human T cells toward a cognate ligand (36). Furthermore, 
animal studies have shown that CXCR3 enhances the ability of 
T cells to safeguard against infections (37–39). Whether or not 
T cells from patients with MDD have a functional impairment 
with regard to their ability to respond to and clear infections 
should be, thus, investigated in future studies.

Intriguingly, animal models have shown that virus-induced 
“sickness-behavior,” which bears symptomatic and immunologi-
cal similarities to MDD (40, 41), depends on the CXCL10-CXCR3 
axis (42). Therefore, lower expression of CXCR3 as reported here 
might directly be involved in MDD pathophysiology. Along 
similar lines, a post mortem study showed that CXCR3+ T cells 
can be found in the human CNS, hinting at a potential role of 
these cells for maintenance and/or immune surveillance in the 
brain (43). Whether or not lower surface expression of CXCR3 
in peripheral blood T cells might interfere with these functions, 
however, remains speculative. Ideally, this should further be 
explored in appropriate animal models, where immune cell 
trafficking into the CNS as well as peripheral tissues can be 
monitored.

Another functional implication of our findings could be overly 
suppressed host T cell responses in MDD owing to a bias toward 
Treg differentiation. It is worth noting that similar phenomena 
have been observed in chronic viral infections (44) as well as in 
animal models of neuropsychiatric disorders (45, 46).

Strengths of our study include the detailed clinical charac-
terization and homogeneity of our patient cohort with moderate 
to severe MDD but no other psychiatric diagnoses or major 
somatic comorbidities. Further minimizing potential confounds, 
our study used close pairwise matching of cases and controls for 
variables that likely have an impact on immune function, such as 
sex, age, BMI, and smoking status. Moreover, all participants were 
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non/mild drinkers and we only included currently unmedicated 
and mostly antidepressant-naïve MDD patients, using a clear 
cut-off in depression severity (HDRS score of 18 or more).

However, some limitations of our study have to be considered. 
First, no data were available for other clinical variables that may 
have influenced immune function, e.g., physical activity and nutri-
tion (47). All MDD subjects were untreated with antidepressants 
and only four participants (n = 2 in the MDD group and n = 2 

in the control group) were receiving non-psychiatric medications 
that were allowed in the study. Having said that, it is not possible 
to assess and control all potential additional factors that might 
be associated with MDD in cross-sectional case–control studies 
in humans. Thus, future longitudinal studies will be required to 
better understand the factors linked to the immune abnormalities 
observed herein. Second, the strict matching and the additional 
exclusion criteria applied increased the clinical homogeneity 

FigUre 6 | Top Vβ 5.1-expressing clones. Relative frequencies of top five clones expressing Vβ 5.1 (TCRBV05-01) and their CDR3 amino acid sequence in patients 
with major depressive disorder (MDD) and matched non-depressed controls (CTR) (n = 10).
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