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Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory 
infection in humans and animals worldwide. Upon detection of IAV infection, host 
immune system aims to defend against and clear the viral infection. Innate immune 
system is comprised of physical barriers (mucus and collectins), various phagocytic 
cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide 
first line of defense against IAV infection. The adaptive immunity is mediated by B cells 
and T cells, characterized with antigen-specific memory cells, capturing and neutralizing 
the pathogen. The humoral immune response functions through hemagglutinin-specific 
circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of 
infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement 
activation. Although there are neutralizing antibodies against the virus, cellular immunity 
also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed 
multiple strategies to escape from host immune surveillance for successful replication. 
In this review, we discuss how immune system, especially innate immune system and 
critical molecules are involved in the antiviral defense against IAVs. In addition, we high-
light how IAVs antagonize different immune responses to achieve a successful infection.
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iNTRODUCTiON

Influenza viruses belong to the Orthomyxoviridae family, which is characterized by a segmented, 
negative sense, and single-stranded RNA (ssRNA) genome (1). They are categorized into four 
genera (type A, B, C, and D), among which influenza A virus (IAV) can infect a wide spectrum of 
animal species (2, 3). The IAV genome is about 13,500 bases long and composed of eight ribonucleo-
protein (RNP) units that encode at least 17 distinct proteins, including recently identified NS3, M42, 
PA-N182, and PA-N155 (4–6). IAVs can be further classified on the basis of the molecular structure 
and genetic characteristics of hemagglutinin (HA) and neuraminidase (NA) proteins. To date, 16 
HA subtypes and 9 NA subtypes have been identified to be circulating in animals and humans (7). 
Besides, two HA- and NA-like subtypes designating IAV-like viruses (H17N10 and H18N11) have 
recently been discovered in bats (8). Co-infection with multiple virus strains in individuals can 
result in re-assortment (antigenic shift) of genes to produce novel subtypes that could give rise to 
a global influenza outbreak (9). There are approximately 5 million clinical infection cases caused 
by influenza viruses every year and 250,000–500,000 deaths resulted from the annual epidemics 
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around the globe, particularly in people over 65 years old who 
account for 90% of all influenza-associated deaths in the USA 
(10). Moreover, in March 2013, residents in China exhibiting 
signs of respiratory infection were first reported to be infected 
by a novel re-assorted IAV of avian-origin, which was isolated 
from infected patients and identified as H7N9 (11).

There are several important IAV-encoded proteins that have 
been reported to be associated with the virus pathogenesis 
and host immune response to the viral infection. It has been 
revealed that changes at amino acid level in the viral proteins 
are related to increased disease severity and immune evasion 
in humans or avian caused by IAVs. For example, HA is the 
most abundant surface glycoprotein of the virus that has the 
ability to attach the host cell, causing cellular fusion and viral 
entry (12). In addition, HA contains epitopes which are key 
to trigger the production of neutralizing antibodies by B cells. 
Thus, the epitopes of HA are the dominant determinants that 
affect viral mutation and recombination mechanisms (13). 
The high variability of HA allows IAVs to escape from host 
immune surveillance and results in influenza seasonal epidem-
ics. NA, the second most abundant glycoprotein, cleaves sialic 
acid (SA) moieties, promotes the release of nascent virions, 
and facilitates IAV dispersion (14). NA also plays crucial roles 
in the viral infection and HA-mediated membrane fusion by 
binding to SA receptors (15, 16). Respiratory epithelial cells 
constitutively expressed mucin glycoproteins at their surface 
that include MUC5AC, MUC5B, and MUC1, which play 
an important role in restricting IAV infection (17–19). For 
example, these mucin glycoproteins are rich in SA, which act 
as viral receptor decoys and prevent the viral binding to the 
target cells (19–21). However, NA can degrade these mucins 
and thus attenuate their action (21, 22). Moreover, it is shown 
that amino acid residues 147 and 151 in NA protein are critical 
for its interaction with SA. For example, D151G mutation in 
NA is responsible for its binding to avian α2-3 and human 
α2-6 SA, promoting the association of H3N2 virus with SA 
receptors. However, this mutation decreases the enzymatic 
activity of NA needed to detach the HA from its receptors 
(22, 23).

Nonstructural protein-1 (NS1), a multiple function protein, 
contains two functional domains (N-terminal RNA-binding 
domain and C-terminal effector domain). NS1 is a major inhibi-
tor of host innate immune response. For example, it suppresses 
the production and signaling of type I interferons (IFNs) (24). 
In addition, NS1 can trigger the apoptosis of human airway 
epithelial cells via a caspase-dependent mechanism during the 
IAV infection (25). Matrix protein 2 (M2) forms tetrameric 
proton channels that are responsible to maintain pH across the 
viral envelope following the viral endocytosis, and help to release 
the uncoated viral RNP into the cytoplasm and nuclear import 
to start viral replication. M2 helps to hold the optimum high 
pH of the trans-Golgi network for HA-induced fusion and pre-
vents premature conformational changes of HA (26). PB1-F2 is 
encoded by the alternate open reading frame of PB1 gene of IAV. 
PB1-F2 with N66S mutation binds with mitochondrial antiviral 
signaling protein (MAVS) and inhibits the initiation of IFNs. 
The 1918 deadly influenza strain H1N1 and H5N1 with N66S 

mutation increase the production of pro-inflammatory cytokines 
and enhance viral replication in the lung (27, 28).

During infection, host innate immunity provides the first 
line of defense and triggers pro-inflammatory responses (29). 
Adaptive immunity also plays a critical role in the clearance of 
viral pathogens during the later stages of infection. Additionally, 
respiratory mucosal immunity is induced in the related mucosal 
tissues during the IAV infection and involved in antiviral defense. 
In spite of several immune mechanisms to neutralize invasive 
pathogens or restrict viral replication, IAVs still have evolved 
diverse strategies to evade host immunity and can establish 
successful infection. Here, we review how host immune system 
responds to IAV infection and how IAVs evade the host immune 
surveillance.

iNNATe iMMUNe ReSPONSe TO  
THe iAv iNFeCTiON

iAvs Target and enter Host Cells
Influenza A viruses primarily target and infect airway and alveo-
lar epithelial cells, which contain the SA glycans as receptors, thus 
causing alveolar epithelial injury and eventually failure of gas 
exchange (30, 31). Hence, human IAV infection may lead to acute 
respiratory distress syndrome (ARDS) and even death (32, 33). 
Various subtypes of IAVs have different abilities to attach human 
upper respiratory tract (URT). For example, H1N1 adsorbs 
abundant ciliated epithelial cells and goblet cells, whereas H5N1 
hardly attaches to these cells in human URT (30). In contrast, 
H5N1 infects alveolar macrophages as well as alveolar epithelial 
cells (34, 35). Additionally, human and avian IAVs could target 
and infect various cells in the lower respiratory tract (LRT). It has 
been observed that H1N1 and H3N2 attach more abundantly to 
human trachea and bronchi and adsorb more cell types than H5N1 
(36). Of note, low pathogenic (LP) avian IAVs generally do not 
cause a severe pneumonia because they bind human submucosal 
gland cells and their mucus which can restrain and remove these 
viruses before approaching LRT (37). However, high pathogenic 
(HP) H5N1 is able to infect type II pneumocytes as these cells 
possess an active metabolism, therefore providing a possibility 
to develop severe pneumonia (35). Moreover, it has been shown 
that H5N1 reduces proliferation of infected endothelial cells and 
causes excessive production of cytokines, leading to the lung 
damage (38, 39).

Hemagglutinin protein on the viral envelope can recognize 
SA receptors on the surface of the host cells, which is the most 
crucial step in the process of IAV invasion into an organism  
(40, 41). Influenza viruses have two common cellular receptors: 
SA α-2,3 galactose (SAα-2,3-Gal) and SA α-2,6 galactose (SAα-
2,6-Gal) (42). It has been found that human influenza strains 
preferentially attach to the SAα-2,6-Gal receptor (43). The 2,6 SA 
receptors are present on respiratory epithelial cells of the human 
URT, while 2,3 SA receptors are found on epithelial cells of the 
birds, pigs, and in the LRT of humans (44). Thus, variation of cell 
surface receptors contributes as a major barrier to cross-species 
and zoonotic transmissions of influenza virus. Hydrolysis of HA0 
precursor gives rise to a dimer HA1–HA2 linked by disulfide 
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FigURe 1 | Schematic diagram for innate immune response against influenza A virus (IAV) infection. Intracellular detection of IAV infection by the host pathogen 
recognition receptors (PRRs) activates transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, interferon regulatory factor 3 (IRF3), and 
IRF7. The PRRs include retinoic acid-inducible gene-I protein, melanoma differentiation-associated gene 5, and toll-like receptors. Then these activated transcription 
factors trigger the expression of type I and type III interferons (IFNs). IFNs secreted by the infected cells interact with their receptors, which results in activation of 
Janus kinase-signal transducer and activator of transcription signaling pathway that governs the expression of various IFN-stimulated genes.
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bonds. HA1 binds to cellular receptors and HA2 facilitates the 
fusion of the virus to cellular membrane (45). It is also found that 
HA of influenza virus binds to C-type lectin as an alternative of 
SA (46). Virus attachment to host cell induces endocytosis using 
the clatherin and clavoline-dependent mechanism. Following 
the endocytosis, release of viral particle is pH-dependent 
physiological event that occurs at late lysosome (47). Low pH 
of endosome opens the M2 proton channel for proton flux into 
the virus and triggers the uncoating and subsequent release of 
viral RNPs (48). The free viral RNA is imported to the nucleus 
by interacting with the cellular importin-α/β for replication  
(49, 50). Although it is recognized that both virus preference 
for SA receptor and host restriction factors are critical for IAV 
binding and entry into host cells, further studies are needed to 
unravel the complicated mechanisms underlying the interaction 
of IAVs with human airway cells.

Activation of innate immune Signaling 
upon intracellular Detection of iAv 
infection
The innate immune response is the first line of defense against 
viral infection which is rapid in response, but nonspecific. 
During the IAV infection, viral conserved components called 
pathogen associated molecular patterns (PAMPs) are recognized 
by host pathogen recognition receptors (PRRs), such as retinoic 
acid-inducible gene-I protein (RIG-I) and toll-like receptor 
(TLR), leading to activation of innate immune signaling that 
finally induces the production of various cytokines and antiviral 

molecules (51, 52). These PAMPs have certain characteristic of 
viral RNA that are not shared by cellular RNAs, such as regions 
of double-stranded RNA (dsRNA) or the presence of a 5’-triphos-
phate group (53, 54).

Pathogen recognition receptors have the ability to distinguish 
self from non-self molecules within the infected cells. RIG-I 
is the main receptor to recognize the intracellular ssRNA and 
transcriptional intermediates of IAVs in the infected host cells 
(Figure 1). Non-self RNA and transcriptional products of IAVs 
in the cytoplasm are also sensed by melanoma differentiation-
associated gene 5 (55). Following the recognition of PAMPs, 
RIG-I is activated and its caspase activation and recruitment 
domains (CARDs) are exposed. Then the CARD is modu-
lated by dephosphorylation or ubiquitination by E3 ligases, 
such as TRIM-containing protein 25 (TRIM25) (56). Thus, 
CARD-dependent association of RIG-I and MAVS trigger the 
downstream transduction signaling at the outer mitochondrial 
membrane (57). Subsequently, the transcription factors, includ-
ing interferon regulatory factor 3 (IRF3) and IRF7, and nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB) 
are activated, causing the expression of a variety of IFNs and 
cytokines (Figure 1) (58).

Toll-like receptors are critical PRRs that sense the pathogen 
outside of cell membrane and internally at endosomes and lys-
osomes (59). TLRs expressed on cell membrane are TLR1, 2, 4, 
5, and 6 that recognize PAMPs derived from bacteria, fungi, and 
protozoa, while TLR3, 7, 8, and 9 are expressed on the surface of 
endosomes and lysosomes and exclusively recognize nucleic acid 
PAMPs derived from various viruses, including IAVs (60–62). 
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TLR3, TLR7, and TLR8 are involved in sensing the IAV com-
ponents in cytoplasmic endosomes during the virus replication. 
It is known that TLR3 recognizes dsRNA in endosomes (63). 
Interestingly, it was shown that TLR3 may recognize recently 
unidentified RNA structures that are present in phagocytosed 
cells infected with IAVs (64). In plasmacytoid dendritic cells 
(pDCs), TLR7 recognizes the ssRNA of the influenza virions that 
are taken up into the endosomes (65). Then downstream signal-
ing of TLR7 is activated via the adaptor protein myeloid differen-
tiation factor 88 in pDCs, which results in the activation of either 
NF-κB or IRF7 to induce the expression of pro-inflammatory 
cytokines and type I IFNs, respectively (65). In macrophages 
and DCs, TLR3 interacts with TIR-domain-containing adapter-
inducing interferon-β. Such interaction results in activation 
of the serine–threonine kinases IκKε (IKKε) and TBK1 that 
phosphorylate IRF3 to regulate the expression of IFN-β (66). 
In human monocytes and macrophages, TLR8 is stimulated by 
its ligand ssRNA, leading to the production of IL-12. However, 
the relationship between TLR8 and IAV infection has not been 
defined (67).

Moreover, some NOD-like receptors, such as NOD-like 
receptor family pyrin domain containing 3 (NLRP3, also known 
as cryopyrin) and NLR apoptosis inhibitory protein 5, have 
been observed to be activated upon cellular infection with IAV 
(68). NLRP3 is expressed by number of cells, including DCs, 
macrophages, neutrophils, monocytes, and human pulmonary 
epithelial cells (69, 70). Three signals are required for activation of 
inflamosome to trigger cytokine production. First, NLRP3 is acti-
vated through pathogen detection, which induces the expression 
of the genes encoding pro-IL-1β, pro-IL-18, and pro-caspase-1 
(71). Second, the IAV-encoded M2 ion channel is required to trig-
ger NLRP3 inflammasome activation and cleavage of pro-IL-1β 
and pro-IL-18 (72). Recently, it was revealed that accumulation 
of IAV PB1-F2 in the lysosome of macrophages acted as the third 
signal leading to activation of the NLRP3 inflammasome (73).

Antiviral Molecules involved in innate 
immunity against iAv infection
Activation of specific transcription factors including, NF-κB, 
IRF3, and IRF7 during IAV infection results in translocation of 
these factors into the nucleus where they initiate the transcrip-
tion of genes encoding IFNs and pro-inflammatory cytokines 
(TNF, IL6, IL1β, etc.). It is well known that type I IFNs, such as 
IFN-α and IFN-β, and type III IFNs also known as interferon 
lambdas (IFN-λ1, IFN-λ2, IFN-λ3, IFN-λ4) play important roles 
in antiviral response in both virus-infected and uninfected cells 
(74). Infection with IAV induces robust expression of type I and 
type III IFN genes (75). Following the expression, IFN-α and 
IFN-β interact with IFN-α/β receptors (IFNAR), while IFN-λs 
interact with IFNL receptors (IFNLR) in an autocrine or par-
acrine manner, which activate Janus kinase-signal transducer 
and activator of transcription (JAK-STAT) signaling pathway. 
Phosphorylated STAT1 and STAT2 bind with IRF9 to form a 
complex ISG factor 3 (ISGF3). ISGF3 translocates into nucleus 
and binds with IFN-stimulated response element, which trig-
gers the transcription of numerous IFN-stimulated genes (ISGs) 

(Figure  1) (76). Previous studies suggest that type I and type 
III IFNs provide similar defense against IAV infection in wild-
type mice (77). It was further shown that IAV infection induced 
expression of same type of ISGs in epithelial cells of wild type, 
IFNAR- or IFNLR-deficient mice (78). Only when both IFN-
α/β and IFN-λ receptors in mice were knocked out, the animals 
failed to restrict non-pathogenic influenza virus (77). In spite 
of similar role of IFNα/β and IFN-λs to a certain extent, some 
notable differences exist. For example, it has been observed that 
mice infected with influenza virus showed higher pulmonary 
inflammation and mortality after treatment with IFNα, while 
IFN-λ remained protective (79, 80).

These ISGs target different steps of IAV life cycle. For example, 
viral entry into cells can be restricted by several ISGs, including 
Mx family, interferon-induced transmembrane protein family 
(IFITMs), cholesterol 25-hydroxylase (CH25H), and TRIM 
proteins. Mx family is comprised of MxA and MxB in human, 
Mx1 and Mx2 in mice. Mx proteins are produced by various 
cells, such as hepatocytes, DCs, endothelial cells, and immune 
cells (81). Mx proteins were the first ISGs identified to restrict 
IAV infection of mice (82). Recently, a study showed that MxA 
could retain incoming viral genome in the cytoplasm of human 
cell (83). In addition, nuclear Mx1 in mice impedes the process 
of early transcription of IAV activated by the polymerase in the 
nucleus (84). It is thought that the sensitivity of IAVs to MxA 
depends on their nucleocapsid proteins, and usually avian strains 
of IAVs are more sensitive to MxA than human strains (85, 86). 
However, role of MxB in humans or Mx2 in mice during IAV 
infection is poorly understood (87).

Interferon-induced transmembrane protein families are 
known as new ISGs that restrict early viral entry by altering the 
cellular membrane properties like cell adhesion, fluidity, and 
spontaneous curvatures (88, 89). It has been found that IFITM 
proteins restrict the replication of IAVs by interfering virus–host 
cell fusion following viral attachment and endocytosis (90). 
Another antiviral ISG, CH25H is an integral element of cellular 
membranes and upregulated by IFN signaling. CH25H enzymatic 
activity converts cholesterol to soluble 25-hydroxycholesterol 
(25HC), which is involved in antiviral defense against enveloped 
viruses, including influenza virus through blocking viral fusion. 
Recently, it was suggested that high concentration of 25HC causes 
physical changes of cellular membrane properties to prevent 
viral fusion (91). Moreover, previous studies showed that IFN-
activated STAT1 bound to the promoter proximal region of the 
Ch25h gene to stimulate the production of 25HC that enhanced 
innate immune response against IAV (92, 93). In addition, TRIM 
proteins play multiple roles in antiviral immunity. TRIM25, an 
E3 ubiquitin ligase, is considered to regulate the re-localization 
of RIG-I to mitochondrion and signal transduction to MAVS for 
innate immune response against the viral infection (94). TRIM22 
blocks IAV genome encapsidation and degrades nucleoprotein 
of IAV by polyubiquitination (95). TRIM32 binds with influenza 
PB1 RNA polymerase, reduces the polymerase activity, and thus 
restricts the viral replication (96).

There are increasing number of ISGs that regulate viral 
mRNA expression and protein translation. For example, zinc 
finger antiviral protein (ZAP), oligoadenylate synthase and 
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ribonuclease L (OAS-RNase L), PKR, and ISG15 are involved in 
the regulation of IAV mRNA levels and protein synthesis. ZAPs 
inhibit the expression of IAV PB2 and PA proteins by reducing 
the viral mRNA expression and blocking its translation (97, 98). 
OAS-RNase L can destroy viral RNA in the cytosol of host cells 
and finally halt the protein synthesis process and viral replica-
tion. Mice with reduced expression of RNase L are more prone to 
influenza virus infection (99). PKR is expressed by all kind of cells 
and upregulated by type I and type III IFNs (100). PKR expressed 
in inactive form is activated by influenza virus infection. PKR is a 
known anti-IAV factor that binds to viral dsRNA and suppresses 
viral protein synthesis. Genetically deficient PKR mice are highly 
susceptible to influenza virus (101). ISG15 is an ubiquitin-like 
protein and restrict viral replication by interfering with virus 
release and translation of viral proteins (102).

In addition, many other ISGs are also involved in innate 
immunity against IAV infection. These include viperin, tetherin, 
and so on (103, 104). It has been shown that overexpression of 
viperin (also known as RSAD2) restricts the release of influenza 
virus by affecting the formation of lipid rafts specific micro-
domains that are particular budding sites of the virus (105). 
Tetherin is another potential host antiviral factor. In 2008, it 
was reported that tetherin inhibited retrovirus release (106). 
Tetherin appeared to limit cellular export of viral progenies by 
internalizing and degrading them exported to the surface of 
infected cells (107). It was also found that tetherin restrained 
the influenza virus by tethering and degrading newly budded 
viral particles (108). Recently, it has been known that tetherin 
was able to suppress the budding of several laboratory oriented 
and seasonal influenza strains, but unable to restrict pandemic 
influenza A/Hamburg/4/2009 and wild-type influenza virus 
particles (103, 104, 108).

Cells involved in innate immunity  
against the iAv infection
Airway epithelial cells are the first target of IAVs. These cells pro-
duce antiviral and chemotactic molecules that initiate immune 
responses by rapid recruitment of innate effector cells, such as 
NK cells, monocytes, and neutrophils. All cell types have their 
own unique mechanisms to interact with virus-infected cells to 
limit viral replication, and also prime adaptive immune cells for 
antigen-specific immunity and memory. Tumor necrosis factor 
alpha (TNF-α) and IL-1 induce endothelial adhesion molecules, 
which trigger the migration of innate immune cells, such as 
macrophages, blood borne DCs, and natural killer (NK) cells to 
the site of infection.

Alveolar macrophages are critical for limiting viral spread. 
Activated macrophages phagocytose IAV-infected cells and thus 
limit viral spread and regulate the following adaptive immune 
response (109). Monocytes derived from bone marrow precur-
sors circulate in bloodstream. During IAV infection, MCP-1 
(CCL-2) produced by infected epithelial cells attracts alveolar 
macrophages and monocytes via their CCR2 receptors (110). 
NK cells are important cytotoxic lymphocytes of innate immune 
system to eliminate IAV infection. It has been revealed that lysis 
of IAV-infected cells is mediated by the binding of IAV-HA with 

the cytotoxicity NKp44 and NKp46 receptors (111). Expression 
of IAV-HA on the surface of infected cells is recognition signal 
for NK cells, and thereby NK cells target and lyse the infected 
cells (112, 113).

Dendritic cells, the specialized antigen-presenting cells, 
bridge up the innate and adaptive immune responses during 
the IAV infection. Adaptive immune response begins when 
naïve and memory T lymphocytes recognize viral antigens pre-
sented by DCs. In the naïve steady state, DCs are orchestrated 
underneath the respiratory tract, including the airway epithelial 
tissue, lung parenchyma, and the alveolar spaces of the lungs  
(114, 115), where they constantly monitor for invading pathogens 
by their dendrites that are extended to airway lumen through 
the tight junctions of epithelial cells. Upon infection with IAV, 
the conventional DCs (cDCs) migrate from lungs to lymph 
nodes through interaction between CCR7 and its ligand CCL19 
and CCL21 (116). In the lymph nodes, cDCs present antigens 
derived from IAV to T lymphocytes (117, 118). The self-infected 
DCs degrade the viral protein into immune peptides. Immune 
peptides (epitopes) in the cytosol are exported to the endoplas-
matic reticulum, where they bind with major histocompatibility 
complex (MHC) class I molecule. Following the binding with 
epitopes, MHC class I is transported to the cell membrane via the 
Golgi complex for recognition by virus-specific CD8+ cytotoxic 
T cells (CTL). However, viral proteins degraded in endosomes/
lysosomes are associated with MHC class II molecule. These 
complexes are presented on the cell membrane for recognition 
by CD4+ T helper (Th) cells. This process may lead to B  cell 
proliferation and maturation to antibody producing plasma cells 
(119). In addition, DCs can exert cytolytic activity and contribute 
to the formation of bronchus-associated lymphoid tissue (BALT) 
during the IAV infection (120).

ADAPTive iMMUNiTY AgAiNST  
THe iAv iNFeCTiON

T cells and B cells play key roles in adaptive immunity against 
the IAV infection. T cells are mainly known as CD4+ T and CD8+ 
T cells. CD8+ T cells differentiate into cytotoxic T lymphocytes 
(CTLs), which produce cytokines and effector molecules to 
restrict viral replication and kill virus-infected cells. Therefore, 
T cells are crucial for the restriction of viral infection. Upon infec-
tion with IAV, naïve CD8+ T cells are activated by DCs migrated 
from lungs to T-cell zone of the draining lymph nodes, leading 
to T-cell proliferation and differentiation into CTLs (121, 122). 
Moreover, type I IFNs, IFN-γ, IL-2, and IL-12 also help CD8+ 
T  cells to differentiate into CTLs (123, 124). IFN-λs were also 
shown to enhance the T-cell proliferation during influenza virus 
vaccination (125). CTLs decrease the expression of CCR7 and 
upregulate the expression of CXCR3 and CCR4, which enables 
their migration from lymph nodes to the lungs where they kill 
IAV-infected cells.

Mechanism by which CTLs function is well understood. 
Upon targeting the virus-infected cells, CTLs produce cytotoxic 
granules that contain molecules like perforin and granzymes  
(e.g., GrA and GrB). Perforin binds target cells to form pores on 
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the cell membrane that promote passive diffusion of granzymes 
to induce apoptosis. It has also been found that GrA can restrict 
virus replication via cleavage of viral and host cell proteins that 
are involved in protein synthesis (126, 127). In addition, CTLs 
have the ability to induce apoptosis by expressing cytokines, 
such as TNF, FASL, and TRAIL, which recruit death receptors in 
IAV-infected cells (128). Post-infection virus-specific CTLs and 
DCs circulate in blood, lymphoid organs, and the site of infec-
tion (117, 129). These memory CTL cells are quick in response to 
secondary IAV infection, and the activation and differentiation 
process received during first infection affects their proficiency and 
efficiency during a secondary infection (130). Although neutral-
izing antibodies protected from second infection with the same 
serotype of IAV, CTLs are specific for epitopes in conserved IAV 
proteins, such as NP, M1, and PA. Therefore, the CTL response is 
heterosubtypic in nature (131).

Studies have shown that IAV-specific CD8+ T  cells can last 
for 2  years in murine models (132). The cytotoxicity of the 
memory CD8+ T  cells decreases significantly, which is related 
to their declined target competence and reduced cytolytic 
molecule expression (131). Autophagy plays a critical role in the 
establishment of memory CD8+ T cells, as Atg7-deficient mice 
are unable to form CD8+ T cell memory against IAV infection 
(133). Notably, IAV-specific memory CD8+ T cells in the nasal 
epithelia prevent the spread of the virus from the URT to the 
lung, thus blocking the development of pulmonary disease (134). 
Besides, lung-resident memory CD8+ T cells can defend against 
heterologous IAV infection, via restraining viral replication and 
facilitating viral elimination (135). Additionally, lung-resident 
monocytes support to establish lung-resident CD8+ T cell during 
IAV infection (136).

CD4+ T cell is another important type of immune cells that is 
involved in adaptive immunity against the IAV infection. CD4+ 
T cells can also target IAV-infected epithelial cells through MHC 
class II and induce MHC class II expression in epithelial cells 
in murine models (137, 138). Multiple co-stimulatory ligands 
expressed by CD4+ T  cells contribute to B  cell activation and 
antibody production, among which CD40 ligand (CD40L) is 
noteworthy (139). CD40L has been shown to enhance immune 
response against the highly mutated HA protein of IAV (140). 
Similar to CD8+ T cells, CD4+ T cells are activated by DCs that 
migrate from the lung to the draining lymph nodes during the IAV 
infection (141, 142). CD4+ T cells differentiate into Th1 cells in 
response to IAV infection, according to their stimulators, includ-
ing antigen, co-stimulatory molecules, and cytokines secreted 
by DCs, epithelial cells, and inflammatory cells (143, 144). Th1 
effector CD4+ T cells express antiviral cytokine, such as IFN-γ, 
TNF, and IL-2 (145), and activate alveolar macrophages (146). 
The IL-2 and IFN-γ produced by Th1 cells regulate CD8+ T-cell 
differentiation to clear the viral infection (147, 148). CD4+ T cells 
are also able to differentiate into Th2, Th17, regulatory T  cells 
(Treg cells), follicular helper T cells, and sometimes as killer cells 
(149). Th2 cells bind to virus-derived MHC class II-associated 
peptides by antigen-presenting cells and produce IL-4 and IL-13 
to promote B  cell responses predominantly (150). It has been 
observed that Th17 and Treg cells are involved in regulating cel-
lular immunity against IAV infection (151). Although it is known 

that CD4+ T cells can direct CD8+ T cell responses by secreting 
various cytokines, the precise roles of CD4+ T cells to facilitate 
and regulate CD8+ T cell responses to IAV infection remain elu-
sive, because primary CD8+ T cell response against IAV infection 
could be initiated independently of CD4+ T cells in mice (152).

B  cells are indispensable for priming the defense against 
infection with heterosubtypic influenza virus strains. In coop-
eration with memory T  cells, naïve B  cells reduce morbidity 
and promote recovery upon heterosubtypic infection (153).  
At the same time, non-neutralizing antibodies generated by 
B  cells facilitate viral elimination and accelerate memory 
CD8+ T  cell expansion after heterosubtypic infection (153). 
In addition, IAV-specific antibody-dependent cell-mediated 
cytotoxicity (ADCC) also plays a role in the cross-reaction 
against diverse HA subtypes (154). Though IgA is important 
in the protection against IAV infection in the respiratory tract, 
IgG is the dominant antibody in this process. Additionally, 
some studies have implied that IgG could inhibit pathogenesis 
involving influenza, while IgA is more crucial for the inhibition 
of transmission of IAVs (155).

Till now, the lifespan and response speed of both memory 
B cells and plasma cells are foremost in the induction of protec-
tive antibody response by IAV vaccines. However, in the elderly, 
the memory B cells are maintained, but the antibody response 
is not maintained even upon multiple IAV immunizations. This 
suggests a potential defect with aging in the development of 
plasma cells (156). A study has shown that autophagy is involved 
in maintaining memory B cells to counteract IAV infection; Atg7-
deficient mice exhibits loss of memory B cells, causing reduced 
secondary antibody response to IAV infection and displaying 
severe lung damage (157).

ReSPiRATORY MUCOSAL iMMUNiTY 
AgAiNST THe iAv iNFeCTiON

Lymphoid Tissues and immunoglobins  
in the Respiratory Tract involved in 
immunity against the iAv infection
The nasal openings and URT are the main entry sites for IAVs 
and mucosal immune system also acts as the first line to limit the 
IAV infection apart from innate immunity. Secretory IgA (s-IgA) 
and IgM are the major neutralizing antibodies present on mucosa 
to prevent viral entry. Nasal secretions contain IgA which can 
neutralize HA and NA of IAVs (129, 158). During primary infec-
tion with IAVs, all three major immunoglobulin classes (IgG, IgA, 
and IgM) are present in mucosal secretion to limit the infection, 
though IgA and IgM are higher in concentration than IgG (159). 
It is thought that IgM response is dominant during primary 
infection, whereas during secondary infection IgG response is 
dominant for immunoglobin secretion (2, 119, 121). In the URT, 
mucosal response is induced in the nasopharyngeal-associated 
lymphoid tissues (NALT) (160–162). When antigens are pino-
cytosed or phagocytosed by macrophages present on the NALT, 
they interact with local T and B cells, resulting in development 
of a large number of IgA Ab-forming cell (IgA-AFC) precursors 
(163, 164). The primed T and B cells migrate from NALT to the 
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lungs via general circulation, where they differentiate into specific 
IgA-AFC to secrete antiviral antibodies. Thus, NALT appears to 
be initial inductive site for secretion of s-IgA against IAV infec-
tion. In the LRT, mucosal immune responses occur in the BALT 
(165). BALT is the site for AFC development and production of 
mucosal s-IgA against IAV infection (166).

Role of s-igA Antibody in Defense against 
the iAv infection
Secretory IgA is the primary isotype detected at the mucosal 
surface (167), which contributes to mucosal protection through 
its distinct ability to remove an agent before it traverses the 
mucosal barrier and infects the cell (168). By covering the viral 
surface, s-IgA prevents the influenza virions from adhering to 
the susceptible cells, and thus inhibits their invading host cells 
and neutralizes the viruses without complement participation. 
Investigations have been demonstrated that s-IgA plays vital 
roles both in protection against homologous IAV infection and in 
cross-protection against URT infection by the viral variants (169). 
Generally, parenteral administration of IAV vaccine leads to the 
generation of serum IgG, but not s-IgA, while s-IgA and IgG are 
both induced by intranasal administration (168, 170). Further, 
polymeric s-IgA is involved in defending against influenza in 
humans. Moreover, the quaternary structure of the polymeric 
s-IgA seems to play a key role in protecting human URT from 
influenza, and have more neutralizing capacity against IAVs than 
dimeric s-IgA (171).

eSCAPe OF iAvs FROM HOST iMMUNe 
SURveiLLANCe

To establish a successful infection, IAVs have evolved multiple 
strategies to circumvent the host immunity. For example, it is 
well known that IAV infection triggers robust production of IFNs 
that induce the expression of numerous antiviral molecules or 
ISGs. Although IFNs have a strong antiviral activity, they cannot 
fully control IAV infection due to the virus-mediated suppres-
sion of IFNs signaling. The mechanisms by which IAVs escape 
from host antiviral immune responses are discussed here.

The Antagonism of Major iAv Proteins
Hemagglutinin of IAVs has been shown to facilitate IFNAR 
ubiquitination and degradation, reducing the levels of IFNAR, 
and thus suppressing the expression of IFN-stimulated antiviral 
proteins (172). It has been described that two discrete antigenic 
sites, H9-A and H9-B, may provide a novel mechanism for H9N2 
virus to counteract humoral immunity (173). In addition, a study 
has shown that the escape of H5N1 from vaccine-mediated 
immunity is caused by the addition of N-glycosylation sites on 
the globular head of HA (174). In contrast, antibody response 
against NA of IAV cannot inhibit viral infection, but restrain its 
diffusion, thus lowering the severity of influenza. IAVs employ 
NA protein to block the recognition of HA by natural cytotoxicity 
receptors, NKp46, and NKp44 receptors and evade the NKp46-
mediated elimination, leading to minimized clearance of infected 
cells by NK cells (175).

Nonstructural protein-1 of IAVs is the most important IFNs 
antagonist protein, acting on multiple targets and suppress-
ing the host IFN response. Viral RNA invading the host cell 
causes RIG-I ubiquitination by a RING-finger E3 ubiquitin 
ligase named as TRIM25, which is essential for RIG-I signaling 
pathway to trigger host antiviral innate immunity (94, 176).  
However, NS1 protein can inhibit the TRIM25-mediated 
RIG-I ubiquitination, thereby blocking RIG-I activation (177). 
Moreover, NS1 has an inhibitory effect on protein kinase RNA-
activated (also known as protein kinase R, PKR), but the effect 
relies on the induced expression of vault RNAs (a kind of small 
non-coding RNA with approximately 100 bases). They are 
initially described as fornix RNP complex components (178). 
Through NS1 protein, influenza virus induces the expression 
of vault RNA that inhibits the activation of PKR and the pro-
duction of IFNs and ultimately promotes the replication of the 
virus. In a recent reverse genetic investigation, it was found 
that after interfering with NS1, the phosphorylation level of 
PKR dramatically increased, which was attenuated by forced 
expression of vault RNAs (179). These data indicate that IAV 
has evolved a critical mechanism by which NS1-mediated 
PKR inhibition is mediated by upregulation of the host factor 
vault RNAs that inactivates PKR and blocks the production of 
downstream effector molecules of IFNs.

In addition, studies have shown that through the interaction 
with IκB kinases (IKK) α and β, two important kinases in NF-κB 
pathway, NS1 protein can block the phosphorylation of these 
kinases and eventually destroy the NF-κB complex predominat-
ing in nucleus as well as the expression of downstream genes 
(180, 181). Also, through the JAK-STAT pathway, NS1 protein 
can block IFN-mediated downstream signaling pathway and 
weaken the antiviral effect mediated by the downstream effec-
tor molecules induced by IFNs. Specifically, NS1 acts mainly 
by lowering the phosphorylation levels of STAT1, STAT2, and 
STAT3, preventing STAT2 from entering into the nucleus to 
bind to the DNA sequence of ISGs promoter region, leading 
to reduced expression of ISGs (182). Importantly, NS1 is not 
only involved in host innate immunity, but also affects adaptive 
immunity via modulating the maturation and the capacity of 
DCs to induce T cell responses (183). Evidence also indicates 
that influenza virus NS1 can bind to cellular double-stranded 
DNA (dsDNA), counteract the recruitment of RNA polymerase 
II (Pol II) to DNA, and finally block the transcription of IFNs 
and ISGs (184).

The Antagonism of Other iAv Proteins
Studies have found that PB1-F2 protein has a mitochondrial 
positioning signal, via interacting with MAVS, to counteract 
RLR-mediated activation of IFN signaling pathway (185). 
Investigation on the interaction between the virus and host 
by systematic biology analysis has revealed that PB2 protein, a 
member of the viral polymerase complex, also plays roles in IFN 
antagonism (186). Furthermore, PB2 interacts with the MAVS 
to evade from the host IFN antiviral response, which is similar 
to the action mode of PB1-F2 protein (187). Recently, viral M2 
protein has been found to interfere with the host autophagy  
(188, 189). These studies have suggested that viral M2 may inhibit 
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the activation of TLR pathway and the generation of IFNs via 
blocking the host autophagy.

CONCLUSiON

It is well known that host immune response to IAV infection 
comprises multiple intricate processes that coordinate together 
to play significant roles in the protection of host. Given the high 
mutation rate of IAVs, it is necessary to have effective vaccination 
strategies that can induce robust production of specific antibodies 
and long-lived T cell response to defend against the viral infection. 
Since host innate immunity is also critical for anti-IAV infection, 
further efforts are needed to utilize the current knowledge and 
technology to enhance the host innate immunity for control of 
the disease. While our understanding of the IAV-host interaction 
has increased profoundly, extensive studies are required to better 
understand the dynamics of host immune system upon detec-
tion of the evolved IAVs. Bridging these gaps will pave the way 

not only for designing better vaccines and effective vaccination 
strategies but also for developing novel antiviral agents.
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