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Currently, a marked number of clinical trials on cancer treatment have revealed the 
success of immunomodulatory therapies based on immune checkpoint inhibitors that 
activate tumor-specific T  cells. However, the therapeutic efficacy of cancer immuno-
therapies is only restricted to a small fraction of patients. A deeper understanding of key 
mechanisms generating an immunosuppressive tumor microenvironment (TME) remains 
a major challenge for more effective antitumor immunity. There is a growing evidence that 
the TME supports inappropriate metabolic reprogramming that dampens T cell function, 
and therefore impacts the antitumor immune response and tumor progression. Notably, 
the immunosuppressive TME is characterized by a lack of crucial carbon sources critical 
for T cell function and increased inhibitory signals. Here, we summarize the basics of 
intrinsic and extrinsic metabolic remodeling and metabolic checkpoints underlying the 
competition between cancer and infiltrating immune cells for nutrients and metabolites. 
Intriguingly, the upregulation of tumor programmed death-L1 and cytotoxic T lymphocyte- 
associated antigen 4 alters the metabolic programme of T cells and drives their exhaus-
tion. In this context, targeting both tumor and T cell metabolism can beneficially enhance 
or temper immunity in an inhospitable microenvironment and markedly improve the 
success of immunotherapies.

Keywords: T-lymphocyte metabolism, tumor cell metabolism, tumor microenvironment, immunotherapy, immune 
checkpoints, metabolic checkpoints

iNTRODUCTiON

Over the past decades, huge efforts have focused on refinement of conventional cancer therapeutic 
strategies of chemotherapy, radiation, surgery, or targeted therapies. Although all these advances 
have displayed clear improvement of clinical outcomes for many types of cancers (1–3), their 
therapeutic efficacy remains unsatisfactory. Since the cells and the molecules of the immune system 

Abbreviations: 2DG, 2-deoxyglucose; ACT, adoptive cell transfer; AMPK, AMP-activated protein kinase; ATP, adenosine 
triphosphate; CAR, chimeric-antigen receptor; CTLs, cytolytic T cells; CTLA-4, cytotoxic T-lymphocyte antigen; FAO, fatty 
acid oxidation; HIF, hypoxia-inducible factor; IDO, indoleamine 2,3-dioxygenase; IFN-γ, interferon-γ; LDH, lactate dehydro-
genase; MCT, monocarboxylate transporter; mTOR, mammalian target of rapamycin; OXPHOS, oxidative phosphorylation; 
PD-1, programmed death-1; PD-L1, programmed death ligand-1; PI3K, phosphatidylinositol-3 kinase; PPP, pentose phosphate 
pathway; TCA, tricarboxylic acid; Teff, effector T cells; Th, helper T cells; TIL, tumor-infiltrating lymphocytes; TME, Tumor 
microenvironment; Treg, regulatory T cells.
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are a fundamental component of the tumor microenvironment 
(TME), cancer immunotherapy has emerged as a powerful new 
therapeutic approach to boost antitumor immunity response 
(4). Collectively, the immunotherapy principle consists in the 
modulation of the immune cells activity, predominantly T cells, 
using adoptive cell transfer, chimeric-antigen receptor T-cells, or 
monoclonal antibodies (mAbs) (5, 6). The “Checkpoint blockade” 
that utilizes mAbs specific to cytotoxic T lymphocyte-associated 
antigen 4 (CTLA-4) and the programmed cell death protein 1 
pathway (PD-1/PD-L1), is arising as a newer strategy used to 
fight cancer and one of the most promising immunotherapies 
(7, 8). Indeed, encouraging results demonstrate unprecedented 
responses in patients with several types of metastatic tumors that 
were previously resistant to available treatment options (9–11). 
While these clinical successes have dramatically harnessed host 
antitumor immunity and clinical outcomes for patients, there are 
several limitations for immunotherapy (12). In fact, this approach 
is confronting a highly immunosuppressive TME and low immu-
nogenicity of cancer cells (13). Moreover, despite the success of 
immunotherapy, mechanisms that govern anticancer immunity 
and their relevant biomarkers are still being elucidated. Therefore, 
the development of new methods to overcome such challenge and 
to improve the efficacy of this therapy is needed in cancer therapy.

Tumor-infiltrating lymphocytes (TIL) reflect tumor biology 
and prognostic significance. However, they are challenged with 
a hostile microenvironment that dampens their function and 
produces antitumor effects (14). Nevertheless, in the setting of 
malignancy, multiple mechanisms of immune suppression may 
exist that prevent effective antitumor immunity (15, 16). Along 
with negative immunologic regulators called “immune check-
points,” TIL function is also negatively impacted by a variety of 
“metabolic checkpoints” (17). Increasing evidence suggests that 
the deregulation of energy metabolism plays a pivotal role in 
the inhibition of the antitumor immune response and thereby 
in tumor progression and metastasis (18). Under a suppressive 
microenvironment, TIL operate with a metabolic disadvantage 
since they are subjected to a lack of crucial carbon sources and 
increased inhibitory signals (19). This may be mainly due to the 
competition between T  cells and tumor cells with deregulated 
metabolic activities, for limiting nutrients (20). Rapidly dividing 
tumor cells exhibit complex and dynamic metabolic reprogram-
ming and highly glycolytic level, a phenomenon called the 
“Warburg effect” and recognized as one of the hallmarks of cancer 
(21, 22). Thus, tumor cells impede T cell access to nutrients neces-
sary for their activation and generate high levels of lactate. The 
resulting nutrient scarceness and metabolic waste products accu-
mulation in the TME lead to TIL metabolic switch that impairs 
their appropriate proliferation and function (23).

Collectively, the cancer cell energetics dictates the metabolic 
landscape of the TME. Abnormal metabolic activities of cancer 
cells lead to intratumoral heterogeneity and immunosuppres-
sion that could be responsible for the failure of immunotherapy  
(24, 25). Therefore, a deeper understanding of the metabolic chal-
lenges within the TME and their impacts on metabolic fitness of 
immune cells might contribute the discovery of novel promising 
approaches to rewire metabolic fitness of TILs that boost existing 
immunotherapies.

OveRLAPPiNG MeTABOLiC PROFiLeS OF 
CANCeR CeLLS AND T LYMPHOCYTeS

Metabolism impacts T Cell Fate and 
Activation
T cells fate and activation is closely linked to metabolic repro-
gramming to acquire effector functions (26). Briefly, Naive 
CD4+ T cells can differentiate into T helper (Th) subsets or into 
regulatory T  cells Treg, while CD8+ T  cells differentiate into 
effector cytotoxic T lymphocytes (CTLs). Importantly, each T cell 
functional subset utilizes a distinct metabolic program (27, 28).

Highly proliferative cells increase glucose uptake and undergo 
upregulated aerobic glycolysis, a critical metabolic pathway for 
activated T cells (29). In parallel to glucose metabolism, T cell 
activation also enhances mitochondrial biogenesis and oxida-
tive phosphorylation (OXPHOS) and drives mitochondrial 
membrane hyperpolarization, amino acid uptake, and glutami-
nolysis (30). There are several signaling pathways that govern 
the metabolic reprogramming of activated T  cells. The critical 
checkpoint pathways known to regulate the metabolic switch are 
mammalian target of rapamycin (mTOR) (31) and adenosine 
monophosphate-activated protein (AMPK) pathways (32). The 
phosphoinositide-3-kinase (PI3-kinase)-Akt-mTOR pathway is a 
central integrator of T cell metabolism to sense and require nutri-
ent availability in order to support high glycolytic rate in pro-
liferating T cells (33). Notably, both activated mTOR complexes 
mTORC1 and mTORC2 play a role in driving glycolysis (34). 
Additionally, glycolysis activation is concomitant with the pentose 
phosphate pathway (PPP) upregulation, necessary to build-up 
of biochemical intermediates that are necessary for nucleotide, 
amino acid and fatty acid synthesis. Hypoxia-inducible factor-1α 
(HIF1α) is a master transcription factor enhanced by mTORC 
activity, which is monitoring and promoting glycolytic enzymes  
expression (35).

Also, in response to metabolic stress, AMPK inhibits mTOR 
signaling and increases catabolic metabolism (36). This results in 
glycolysis suppression and upregulation of oxidative metabolism 
and mitochondrial complex 1 activity. AMPK activation promotes 
generation of Treg, Th1, and Th17 subsets (37).

Metabolism impacts Tumor Proliferation 
and Progression
Cancer progression has been recognized for a long time as con-
sequence of multiple genetic events that imply activation of 
oncogenes and function loss of specific tumor suppressor genes 
(38, 39). Increasing data point out that this is directly linked to 
an altered tumor metabolism. Cancer cells exhibit increased gly-
colysis despite the presence of oxygen, because they must divide 
rapidly to ensure malignant transformation and tumor develop-
ment (40, 41). This phenomenon of metabolic reprogramming 
called “the Warburg effect,” has been recognized as one of the 10 
hallmarks of cancer (42). The rate of glycolysis is largely faster 
than OXPHOS, providing competitive advantages to cancer cells 
to consume more glucose than surrounding slow-dividing cells 
and to grow under hypoxia and nutrient deprivation conditions 
over the TME (43, 44).
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Furthermore, glycolysis is an effective metabolic pathway for 
highly proliferative cancer cells to supply nucleotide, lipid, and 
amino acid synthesis (45). For instance, increased levels of the 
glycolysis intermediates provide essential precursors for pivotal 
anabolic pathways such as the PPP and the serine pathway (46).

It is well established that hypoxia is as a key process supporting 
glycolysis in tumorigenesis (47). HIF-1α, a transcription factor 
induced by hypoxia, induces glucose transport by increasing 
expression of glucose transporters 1–3 along with the tran-
scription of pyruvate dehydrogenase kinase (48). As a result, 
the tricarboxylic acid cycle is inhibited and several glycolytic 
enzymes activities are enhanced, including hexokinase 2 (HK2) 
(49) and lactate dehydrogenase A that converts pyruvate to lactate  
(50, 51). Therefore, intensive aerobic glycolysis generates high 
rate of lactate. For instance, the accumulation of lactate in TME 
results in acidic pH that promotes tumor progression and metas-
tasis and contributes to cancer therapy resistance (52).

While aerobic glycolysis is considered as a key feature in 
cancer metabolism, clear evidence suggest that mitochondrial 
metabolism remains functional in most glycolytic cancer cells.

Although most cancer cells rely on aerobic glycolysis, it is clear 
that a tumor displays considerable heterogeneity in metabolic 
phenotypes (53). Such intratumorally metabolic heterogeneity 
may be critical for the failure of therapeutic effects. In fact, recent 
data has shown that cancer stem-like cells (CSCs) exhibit a distinct 
metabolism from the rest of tumor cells (54). This CSC metabo-
lism depends on mitochondria function (55, 56). Moreover, the 
particular metabolic phenotype of CSCs may probably render 
them resistant to conventional antitumor therapies and explain 
minimal residual disease (57). Interestingly, encouraging results 
showed that targeting CSC metabolism (by inhibiting mitochon-
drial biogenesis) could be an attractive approach to reduce drug 
resistance (58, 59).

T CeLL iMPAiReD FUNCTiON UNDeR 
HOSTiLe TMe

Metabolic interplay between Cancer Cells 
and TiL in TMe
The tumor tissue consists of complex sets of cell populations 
including tumor cells, endothelial cells, T cells, natural killer (NK) 
cells, macrophages, dendritic cells, fibroblasts, and adipocytes. 
Regarding its genetic and metabolic diversity, this intricate net-
work of cells contributes to the intratumoral heterogeneity. Tumors 
exhibit a metabolic shift and shape the TME in such a way to sup-
port cancer proliferation and metastasis (17, 60). Yet, this milieu is 
very hostile for T cells to mediate their antitumor effects because of 
hypoxia, reduced pH and acidosis, inhibitory signals, competition 
for nutrients, and waste products accumulation (61, 62).

It is well known that tumor cells like effector T  cells (Teff), 
exhibit intensive aerobic glycolysis that improve their metabolic 
fitness and provide cell-extrinsic advantage, resulting in com-
petition for vital metabolites such as glucose and amino acids. 
Therefore, tumor-infiltrating T  cells are exposed to nutrient 
depletion in TME and become dysfunctional (62, 63). Nutrient 
competition has emerged as one of the major axis of tumor 

immunosuppression due to the anergy and exhaustion of TILs. 
Indeed, resources scarceness alters T cell activation and antitu-
mor effector functions tumors through several ways (64). Rapidly 
dividing tumor cells impede T cell access to glucose essential for 
T cell metabolic switch and activation. Therefore, glucose deple-
tion enhances AMPK pathways and decreases mTORC1 activity, 
glycolytic capacity, interferon-γ (IFN-γ) production, and cytolytic 
activity of T cells (65). This may favor Treg subsets instead of Teff 
and promote tumor progression. Furthermore, decreased levels 
of amino acids critical for efficient T cell activation and prolif-
erative responses, can modulate the activity of TILs. Glutamine, 
arginine, and tryptophan deficiency in TME is immunosuppres-
sive and dampens the proliferation of Teff subset (66).

Moreover, it has been recognized that in addition to consump-
tion of key nutrients, tumors produce large amounts of waste 
products: lactate, arginine and tryptophan by-products, and phos-
phoenolpyruvate, that impair T cell metabolism and function and 
confer worse prognosis for patients (67, 68).

Lactate accumulation due to the use of aerobic glycolysis by 
cancer cells has been described in TME, accompanied by conse-
quent low pH and acidification of the milieu. In mouse models, 
lactate levels negatively correlate with markers of T cell activation 
in melanoma (69). The tumor-derived lactate has positive effects 
on promoting survival, migration and invasion of cancer cells 
(70). However, lactate negatively impacts T-cell proliferation and 
function (71). Such acidic condition increases the expression of 
proangiogenic factors IL-8 and VEGF, both important involved in 
cancer metastasis (72). Yet, lactate inhibits the phosphatidylino-
sitol-3 kinase (PI3K)/Akt/mTOR pathway and thus glycolytic 
metabolism in T  cells by abolishing their cytokine production 
(73). Lactate also impairs the migration of T cells by reducing the 
chemokine receptors expression. Added to that, lactate has been 
demonstrated to be preferentially utilized by Tregs since they pre-
fer oxidative metabolism, resulting in T-cell polarization toward a 
Treg phenotype. Excess of lactate may also regulate macrophage 
polarization and represses NK cells functions through a restric-
tion of IFN-γ, IL-10, and TGF-beta (74, 75). Hence, the acidic 
TME has been contemplated as an attractive target for cancer 
therapy. Interesting results showed that buffering the tumor pH 
with bicarbonate improved immunotherapy outcomes.

Proliferative cancer cells create a state of tryptophan depriva-
tion in the TME because of their increased demand for tryptophan 
(76). Indoleamine 2,3-dioxygenase (IDO) is a pivotal enzyme 
involved in tryptophan catabolism. IDO is also the first enzyme 
involved in the production of nicotinamid adenine nucleotide. 
Upregulation of IDO has been demonstrated to be correlated with 
an increased malignancy (77). In such context, cancer cells express 
high levels of IDO that deplete tryptophan availability in the TME 
and consequently impede T cell responses. In addition to its role 
in cancer cells, expression of IDO has been shown in other cells: 
endothelial, tumor-associated macrophages, and dendritic cells 
and was associated with suppression of antitumor Teff response. 
IDO contributes to tryptophan deprivation and degradation to 
kynurenine (78). Accumulation of kynurenine in TME has been 
described in several tumors leading to immunosuppression (79). 
Moreover, kynurenine is endogenously able to promote Treg cells 
and to reduce proliferation of Teff (40). Currently, several trials 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Kouidhi et al. TME Metabolism and Immunotherapy

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 353

targeting IDO in combination with checkpoint inhibition are 
under investigation (80).

Crosstalk between immunologic 
Checkpoints and T Cell Metabolism
Immune checkpoint regulators are critical to coordinate effective 
and efficient immune response, to maintain self-tolerance and 
to prevent the onset of autoimmunity (81). Nevertheless, T cell 
effector function is correlated with the expression patterns of 
coinhibitory and costimulatory immune checkpoint receptors 
(82). The most described checkpoint proteins playing a central 
role in maintain immune self-tolerance belong to the TNFR 
superfamily (83) and B7 family (84).

Tumors can evade immune surveillance through defective 
immune-checkpoint signaling pathways (81, 85). It is now clear 
that under tumoral context, aberrantly expressed inhibitory 
checkpoint proteins are described to disrupt antitumor immune 
response. CTLA-4 and PD1 are critical coinhibitory receptors 
highly expressed in T  cells under TME (86). Moreover, PD-1 
ligands PD-L1 and PD-L2 are upregulated by cancer cells and thus 
disrupt T cells mediated antitumor response (87). Accordingly, 
immune checkpoints ligand–receptor interactions were proven 
to be effective targets to enhance antitumor immunity moving 
immunotherapy into a new era (88). In fact, immune checkpoints 
blocking antibodies have achieved an outstanding benefit in 
cancer treatment enabling patients to produce an effective and 
durable antitumor response. Currently, three checkpoint inhibi-
tors are approved for the treatment of advanced melanomas: ipili-
mumab, a CTLA-4-specific mAb (89), and pembrolizumab and 
nivolumab, which are PD-1-specific mAbs (11). Furthermore, 
remarkable clinical effectiveness has been reported in other 
cancers such as, ovarian (90) non–small cell lung carcinoma (91), 
breast (92), prostate (93), and lymphoma (94).

Although the effectiveness of the immune checkpoint blockade 
in enhancing antitumor immunity by reducing the number and/
or the suppressive activity of Tregs and by restoring the activity of 
Teff has been reported, little is known about mechanisms under-
lying T-cell activation. Recent evidence suggest that both check-
point ligation and inhibition may directly modify metabolism of 
T cells and cancer cells and alter their metabolic feature. Emerging 
data have shown that PD-1 binding to its ligands impairs the 
metabolic phenotype of TIL, by inhibiting glycolysis and upregu-
lating fatty acid oxidation (FAO) (95, 96). CTLA-4 ligation to B7 
inhibits glycolysis without augmenting FAO, which suggests that 
CTLA-4 would not affect the metabolic profile of non-stimulated 
cells (95). Hence, this abrogation of energy generation impacts 
antitumor response and leads to reduced cytokine secretion and 
Teff exhaustion (97). Moreover, immune checkpoints also have 
an impact on cancer cell metabolic reprogramming. Ligation of 
PD-L1 directly upregulate glycolysis in cancer cells by promoting 
glucose uptake and production of lactate (98). Hence, signaling 
through PD-L1benefits cancer cell metabolism, leading to their 
expansion and survival (61).

Interestingly, the immune checkpoint blockade appears to dif-
ferentially impact the metabolic profile in TME by favoring T cell 
activation and in contrast inhibiting cancer cells. Blocking PD-1 
and PD-L1 may reduce glycolysis level in cancer cells by inhibiting 

mTOR pathway (61). Consequently cancer glucose uptake and 
lactate secretion decrease which restore glucose availability in 
TME. Besides, the immune checkpoint blockade has a benefit on 
T cell metabolism and function. A melanoma mice model study 
showed that tumor treatment with immune checkpoint inhibitors 
increases glucose rates in TME and enhances T-cell glycolysis and 
cytotoxic function (99).

In conclusion, clear evidences demonstrated that tumor cell 
metabolism deeply affects TME differentiation and functions. 
By modulating tumor cell metabolism, one can control nutrient 
availability for T cells, thus promoting either their antitumor or 
immunosuppressive functions.

TARGeTiNG MeTABOLiSM FOR 
eFFiCieNT iMMUNOTHeRAPY

Targeting Glucose Metabolism
In tumors, T cell activation and proliferation could be impaired 
by metabolic disruption, therefore cell metabolism becomes an 
attractive target to restore anti tumor immunity and to develop 
anticancer therapy (100). However, in tumoral context, it is wise 
to consider the overlapping metabolic requirements of tumor and 
immune cells.

Several drugs have been proposed to target tumor glucose 
metabolism for cancer treatment. For instance, inhibition of glyco-
lytic enzymes that catalyze several steps of glucose metabolism has 
been known to support anticancer effects (101). 2-Deoxyglucose 
(2DG) is a non-metabolizable glucose analog and inhibitor of HK 
used to shut down glycolysis since the first steps. Despite the safety 
of this drug in cancer patients and its efficiency beyond glycolysis 
inhibition in cancer cells (102–104), 2DG has also been shown 
to impair the metabolism of T cells, which results in decreased 
secretion of cytokines and reduced T cell antitumor function that 
may be critical for therapeutic success (105). Dichloroacetate 
(DCA) is another drug targeting cancer cell metabolism which 
showed conflicting results. DCA is a metabolic disruptor induc-
ing a shift from glycolysis to OXPHOS and inhibiting growth of 
tumor cells in vitro (106, 107) and in mouse models (108). Similar 
to 2DG, DCA is not specific to tumor cell metabolism, therefore, 
it mediates the same metabolic shift in T  cells, favoring Treg  
formation (109).

The TME is particularly immunosuppressive because of lactic 
acid production in the extracellular milieu that may stand against 
the therapeutic efficacy (110). To overcome the “Warburg effect” 
in cancer cells, some therapeutic approaches target lactate with 
lactate dehydrogenase (LDH) and monocarboxylate transporter 
(MCT) inhibitors or oral bicarbonate supplementation to tamper 
the acidic microenvironment (111). Importantly, the inhibition of 
LDH, the enzyme that catalyzes the conversion of pyruvate into 
lactate, shows impaired glycolysis and growth arrest in cancer 
cells (51, 112). Moreover, lactate blockade improves the response 
to 5-fluorouracil treatment in colorectal cancer (113). However, 
LDH inhibition demonstrates contradictory results in proliferat-
ing T cells response. While it has been reported that deletion of 
LDH using small-molecule FX11 or Galloflavin ameliorates lactate 
levels (114, 115), other studies demonstrate that such inhibition 
leads to a decrease in T cells IFN-γ production (116). Therefore, 
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the differential impact of LDH inhibitors on cancer and immune 
cells should be considered when administrated for tumor therapy.

Beside the inhibition of the enzyme LDH, the lactate transport-
ers MCT-1–4 may also be targeted to avoid acidic milieu (117). 
MCT of the SLC16A gene family influences substrate availability, 
the metabolic path of lactate and pH balance within the tumor 
(118). Recent studies have described new MCT disruptors, thalid-
omide, lenalidomide, and pomalidomide that act on cancer cells 
to impair the CD147–MCT-1 ligation (119, 120). In addition, the 
treatment with lenalidomide has been reported to enhance IL-2 
and IFN-γ secretion in T cells (121), suggesting that lenalidomide 
could suppress tumor cell proliferation while favoring T cells acti-
vation. Although these drugs cause a loss of cell surface expression 
of MCT-1, the efficacy may be limited as cancer cells express not 
only MCT-1 but also MCT-4. Further, AZD3965 another lactate 
transporter inhibitor, is currently in phase I clinical trials for 
advanced solid tumors and diffuse large B cell lymphomas (http://
www.clinicaltrials. gov/ct2/show/NCT01791595). AZD3965 is 
targeting MCT-1/MCT-2. Yet, the inhibitory effect has also been 
observed in T cells (122). Recently, the effect of diclofenac, a non-
steroidal anti-inflammatory drug, has been investigated on lactate 
transport and secretion. Diclofenac has been reported to reduce 
tumor growth, the number of infiltrating Tregs and the lactate rate 
in the microenvironment in glioma model (123, 124). Therefore, 
this result raises the possibility that the application of diclofenac 
should be feasible to improve the efficacy of immunotherapies.

Further, lactic acid production and resulting low-pH TME 
are shown to dampen CTLs proliferation and cytotoxic response 
(125–127). Hence, neutralization of TME may have a meaningful 
impact on improving the efficacy and outcomes of anticancer 
immunotherapy therapeutics (128). Emerging data show that 
buffering lactic acid with bicarbonate or proton pump inhibitor, 
Esomeprazole improves the pH of TME (129, 130). More impor-
tantly, neutralization of TME pH improves outcomes in CTLs and 
in NK cell mediated anticancer as well. Notably, buffering TME 
with oral bicarbonate inhibits tumor growth when combined with 
anti-PD-1 immunotherapy in a melanoma model, and improves 
survival when combined with adoptive T-cell transfer (131). 
Altogether, these data indicate that targeting TME acidification by 
buffering provide a new perspective for immunotherapy outcomes.

The PI3K-AKT-mTOR is an important pathway well known 
to play a critical role in cancer and immune cell metabolism  
(31, 132). Further, this pathway has been extensively studied in vari-
ous cancers showing inappropriate activation supporting tumor 
growth and survival. Over the last decades, several therapies were 
developed against mTOR signaling in several solid malignancies 
(133, 134). Analogs of rapamycin, a drug that inhibits the mTOR 
signaling, have been approved for the treatment of breast (135), 
renal (136), and pancreatic cancers (137). An increasing number 
of studies have reported that inhibition of the mTOR pathway 
suppresses the glycolytic metabolism and sensitizes tumor cells to 
chemotherapy (138, 139). Yet, it has been reported that rapamy-
cin can mediate opposite effects on T cells since it broadens Tregs 
and cytotoxic memory T  cells but at the same time decreases 
Teff proliferation (140). Interestingly, recent evidence suggest 
that treatment with rapamycin combined with immunotherapy 
augments cytotoxic and memory T-cell functions in glioblastoma  

cancer (141). Therefore, rapamycin could be an attractive adju-
vant to be used in combination with immunotherapy.

Besides glycolysis, OXPHOS is also a possible target structure 
in cancer cells. Several reports have described the potential effects 
of metformin, which is commonly used to treat type II diabetes, 
as an anticancer drug. Indeed, a large number of retrospective 
clinical studies and randomized control trials show that met-
formin prevents tumor growth and improves clinical prognosis 
in various cancers including lung and prostate cancers (142, 143).

Interestingly, those effects seem to be partially immune-
mediated as metformin improved T cell function in vivo (144). 
Further, metformin has been proposed as a treatment for melano-
mas due to the limitations of current therapies (145). Metformin 
is known to target the mitochondrial respiratory complex I and 
to activate AMPK pathway signal transduction (146, 147). Several 
reports have demonstrated that AMPK plays pleiotropic and con-
flicting effects at the interface of cellular metabolism and function 
(37). In fact, activated AMPK may engender both antitumor and 
protumor effects in a manner not yet understood (148, 149). 
Notably, activated AMPK pathway impedes mTOR signaling, and 
shuts down glycolytic gene expression leading to antiproliferative  
effects in cancer (150, 151). However, AMPK activation on another 
side helps cancer cells accommodation to metabolic stresses, 
which raises their survival (152). Metformin’s AMPK activating 
effects could also impact T cells behavior mainly by enhancing 
memory T cells (105, 153) and Treg expansion (154). Therefore, 
metformin treatment may improve secondary responses. Yet it 
could favor immunosuppressive Treg cells in TME.

Targeting Amino Acid Catabolism
In the context of the TME, cancer cells require a continuous and 
high rate of supply of energy to take advantage of their metabolic 
reprogramming and to avoid immune surveillance. In fact, can-
cer cells create a state of nutrient deprivation for the T cells and 
redirect glucose and amino acids for their own advantage. It is 
well known that l-arginine, tryptophan and glutamine are funda-
mental in tumor progression and immunity (155). Therefore, tar-
geting theses amino acids in cancer therapy becomes a promising 
strategy for the development of novel therapeutic agents (156). In 
fact, many clinical trials are actually testing specific drugs inhibit-
ing amino acid metabolism in cancer cells. Depletion of arginine 
was assessed using ADI-PEG20 inhibitor (157). It can inhibit cell 
proliferation in vitro and tumor growth in vivo and decrease Treg 
accumulation (158). However, it would be more pertinent to pre-
vent amino acid depletion by tumor cells or myeloid cells rather 
than decreasing amino acid rates in the TME. This approach is 
currently tested in a clinical trial with CB-1158, an ARG inhibitor, 
in combination with checkpoint therapy (159).

Furthermore, increasing evidence suggest that tryptophan is 
critical in supporting oncogenic signature and in maintaining 
the immunosuppressive phenotype in several cancers (160). 
Interestingly, it has been reported that the silencing of IDO 
boosted antitumor immunity in metastatic liver tumor model 
(161), improved cytotoxic T  cell function and decreased Treg 
numbers (162). Accordingly, it is well established that IDO is a 
key target of drug discovery in cancer immunotherapy (80, 163).  
Imatinib is another drug displaying improved anti tumor 
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immunity by activating T effector cells and suppressing Tregs, in 
a manner dependent on IDO pathway (164). For instance, a cur-
rent clinical trial is assessing the combination between imatinib 
and anti-CTLA4 approach in GIST (165).

Glutamine is considered as a critical amino acid for cancer cell 
metabolism as well as for rapidly dividing T cells. To overcome 
the high glutamine consumption rates of cancer cells, several 
therapeutic agents targeting glutamine metabolism have been 
explored in preclinical studies (166). Three compounds were 
assessed as glutamine analogs, 6-diazo-5-oxo-L-norleucine, 
azaserine, and acivicin. These agents showed impaired activity of 
enzymes utilizing glutamine in many tumor models (167, 168). 
Moreover, testing glutamine transporter inhibitors gamma-l-
glutamyl-p-nitroanilide and benzylserine [H-Ser(Bzl)-OH], 
showed reduced glutamine uptake and cell growth in lung and 
prostate cancers (169, 170). Yet, glutamine plays also a key role in 
normal Teff. Therefore, it is conceivable to consider better tumor-
targeting options under the TME.

CONCLUDiNG ReMARKS

Cancer immunotherapy provides successful and powerful 
opportunity in cancer treatment. However, it is important to get 

comprehensive understanding of mechanisms leading to reduced 
antitumor immunity under hostile TME. Importantly, TILs have 
to surpass not only immune checkpoints but also a wide range of 
metabolic checkpoints that fate their energetic behavior defects 
and dampen their function. In fact, cancer cells upregulate 
nutrients uptake and waste metabolites production to generate an 
immunosuppressive TME that allows their evasion and growth, 
and that dictates immune cell fate (Figure 1A). Increasing emerg-
ing data point out the modulation of cellular metabolism, using 
combinational approaches of metabolic disruptors with immune 
checkpoint blockade (Figure  1B). However, a special attention 
should be devoted to target specific tumor site, in order to avoid 
systemic toxicity and innumerable other side effects. In summary, 
by operating through distinct and complementary mechanisms, 
these new therapeutic strategies might reinvigorate TILs by 
restoring their metabolic properties and improving the efficacy 
of immunotherapies.
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FiGURe 1 | Therapeutic targeting cell metabolism in the tumor microenvironment (TME). (A) Tumor cells create a hostile TME that affects metabolic fitness of T cells 
through multiple ways. T cells are challenged by different immunologic and metabolic checkpoints: Glucose and amino acid depletion, high acidity and lactate, and 
upregulation of immune checkpoints influence T cell metabolism to suppress glycolysis thereby reducing their activation and proliferation. (B) Currently, several novel 
promising approaches are proposed to rewire metabolic fitness of T cells in the TME and to boost existing immunotherapies.
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