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Systemic lupus erythematosus (SLE) is a progressive autoimmune disease character-
ized by increased sensitivity to self-antigens, auto-antibody production, and systemic 
inflammation. B cells have been implicated in disease progression and as such represent 
an attractive therapeutic target. Lyn is a Src family tyrosine kinase that plays a major 
role in regulating signaling pathways within B cells as well as other hematopoietic cells. 
Its role in initiating negative signaling cascades is especially critical as exemplified by 
Lyn−/− mice developing an SLE-like disease with plasma cell hyperplasia, underscoring 
the importance of tightly regulating signaling within B cells. This review highlights recent 
advances in our understanding of the function of the Src family tyrosine kinase Lyn in 
B lymphocytes and its contribution to positive and negative signaling pathways that are 
dysregulated in autoimmunity.
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SYSTeMiC LUPUS eRYTHeMATOSUS (SLe)

Systemic lupus erythematosus is a heterogeneous autoimmune disease with multiple clinical 
manifestations including auto-antibodies, dermatological rashes and ulcers, inflammatory markers, 
hematological deficiencies, arthritis, renal dysfunction, and neurological disorders (1). The incidence 
of SLE is approximately 1:1,500; however, the prevalence varies significantly with gender, ethnic-
ity, and age (2). The progression of SLE symptoms is mediated by a dysregulation of innate (e.g., 
dendritic cells, mast cells, and macrophages) and adaptive immune cells (i.e., B and T lymphocytes) 
(3). Accumulating evidence emphasizes the contribution of B cells in mediating the development 
of autoimmunity, particularly through the breakdown in tolerance to self-antigens, the secretion 
of inflammatory cytokines, and the generation of auto-reactive antibodies that result in immune 
complex deposition in organs such as the kidneys (4–6). In keeping with this, numerous mutations 
affecting tyrosine kinases have been implicated in autoimmune disease progression (7), highlighting 
a critical requirement for the stringent regulation of intracellular signaling cascades in immune cells.

This review will focus on intracellular signaling within B cells, specifically on the role of Lyn in 
regulating these pathways and its contribution to the progression of autoimmune disease.

Lyn: SRC FAMiLY TYROSiNe KiNASe

Lyn (Lck/yes-related novel tyrosine kinase) is a Src family, non-receptor tyrosine kinase found 
predominantly in myeloid cells and B lymphocytes (8), but it is also detectable in cell types outside 
of the hematopoietic compartment (9). Lyn is located on chromosome 4 A1 in mice and 8q12 in 
humans (9). In mice, an additional lyn gene encoding exons 1–10 is present within the genome but 
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is not transcribed (10). Alternate splicing of exon 2 results in the 
translation of two different isoforms of Lyn, annotated as Lyn A 
(56 kDa) and Lyn B (53 kDa), that differ by an insertion within the 
N-terminal variable domain (11, 12). Functional analysis of the 
individual isoforms indicates a similar capacity to phosphorylate 
substrate proteins (12–14); however, both isoforms are required 
for normal activation and regulation of internal signaling (13, 14).

Structural/Functional Regulation of Lyn
Lyn shares architectural and sequence homology with the other 
SFK members present in hematopoietic cells (e.g., Src, Fyn, Yes, 
Blk, and Hck) (15). The conserved domain organization of SFK 
members includes an N-terminal/unique domain, Src homology 
(SH) 3, SH2 and the catalytic/kinase domain. The N-terminal 
unique domain (SH4) contains sites for myristoylation and 
palmitoylation that promote localization and interaction with 
the cellular membrane and also integration into lipid rafts 
(16–18). Downstream of the N-terminus, SH3 and SH2 domains 
regulate the conformational and functional state of Lyn (19). 
Phosphorylation of the inhibitory tyrosine (Y529 in murine Src, 
Y508 in Lyn) on the C-terminus leads to a closed and inactive 
conformation via the binding and “latching” of the SH2 domain, 
which is further stabilized by the interaction with the SH3 domain 
(20, 21).

Dephosphorylation of the C-terminal tyrosine by phos-
phatases or competitive binding for the SH2 domain by an 
interacting protein relieves the inhibitory conformation imposed 
by SH3/2 domains, which then promotes phosphorylation of the 
activating tyrosine (Y416 in Src, Y397 in Lyn) within the kinase 
domain (19, 21, 22). Phosphorylation of Y397, either in cis or in 
trans, changes the conformation of the activation loop, permit-
ting substrate binding and kinase activity (19, 22, 23). Kinase 
activity is mediated by interactions between the ATP binding 
loop (G loop) and the ATP hydrolyzing loop (catalytic loop) that 
facilitate optimal positioning and hydrolysis of the λ-phosphate 
group from ATP, respectively (20, 24, 25). The λ-phosphate 
group is then transferred to a protein substrate that is positioned 
adjacent to the catalytic loop (25). Dephosphorylation of the 
activating tyrosine or phosphorylation of the inhibitory tyrosine 
by Csk (c-Src kinase) decreases the kinase activity of Lyn and 
other SFKs (26).

Lyn ReGULATeS POSiTive AND 
NeGATive PATHwAYS iN B CeLLS

Activation of Lyn relies on membrane-bound receptor-type 
phosphatases such as CD45 and CD148 to dephosphorylate the 
C-terminal inhibitory tyrosine (27–29). After activation, Lyn 
binds and phosphorylates substrate proteins that possess tyros-
ine residues flanked predominantly by acidic residues (30–32). 
The affinity for particular substrates is further regulated by the 
phosphorylation of the SH2 domain (33). Key substrates of Lyn 
include proximal membrane-bound cellular surface receptors 
containing immunoreceptor tyrosine activating motifs (ITAMs) 
or immunoreceptor tyrosine inhibitory motifs (ITIMs) within 
their cytoplasmic tails (34, 35). Phosphorylation of these ITAMs 

and ITIMs leads to the recruitment and activation of other 
kinases, phosphatases, and adaptor proteins that enhance or 
inhibit downstream signaling.

Positive Signaling Cascade
The B  cell receptor (BCR) comprises the membrane-bound 
immunoglobulin (Ig) and the heterodimeric signaling subunit 
Ig-α/Ig-β (CD79α/β) that contain ITAMs within their cytoplas-
mic tails (36). Antigen binding to the BCR induces a variety 
of signaling cascades that are initiated by the proximal kinase 
Lyn (Figure 1), which phosphorylates Ig-α/Ig-β ITAMs thereby 
creating docking sites for the recruitment and activation of 
Syk (37–39). Activated Syk leads to the phosphorylation and 
activation of downstream molecules such as the adaptor protein 
SH2 domain-containing leukocyte protein of 65 kDa (SLP-65) 
(also known as BLNK or BASH), Btk, and PLCγ2 (40). Upon 
phosphorylation, SLP-65 organizes a signalosome that pro-
motes calcium (Ca2+) flux and the differentiation of developing 
B cells (41). Phosphorylated SLP-65 also allows the recruitment 
of Bruton’s tyrosine kinase (Btk), Vav Guanine Nucleotide 
Exchange Factor 1 (Vav1), and Growth Factor Receptor Bound 
Protein 2 (Grb2) (42).

Phosphorylation of the non-T-cell activation linker (NTAL) 
by Lyn leads to the recruitment of Grb2, murine son of seven-
less homolog (mSOS), and GRB2-Associated Binding Protein 1 
(Gab1) (43). Phosphorylation of Gab1 promotes complex forma-
tion between SH2 Domain-Containing Transforming Protein 
1 (Shc), non-receptor SH2-containing tyrosine phosphatase 
2 (SHP-2), and p85 subunit of phosphatidylinositol 3-kinase 
(PI3K) (44). Syk-mediated phosphorylation of Shc promotes the 
interaction between Grb2 and mSOS, which activates Ras-MAPK 
pathways (45), while interaction between Shc and Gab1 leads to 
the activation of PI3K pathway (46, 47).

Syk-mediated phosphorylation of CD19 enables the recruit-
ment and activation of p85, which also promotes membrane 
localization of PI3K (48, 49). Syk also phosphorylates E3 
ubiquitin-protein ligase Cbl, which permits the interaction 
with p85 and activation of PI3K (50). Similarly, Syk and Btk  
phosphorylate B cell phosphoinositide 3-kinase adapter protein 
1 (BCAP), which localizes p85 to glycolipid-enriched microdo-
mains (GEMs) after anti-IgM stimulation (51). PI3K catalyzes the 
generation of phosphatidyl inositol 3,4,5-trisphosphate (PIP3) 
from phosphatidyl inositol 4,5-trisphosphate (PI(4,5)P2), which 
in turn is used as a docking site to activate other effector proteins 
(52). PIP3 is essential for plasma membrane translocation of 
Akt, placing it in proximity to 3-phosphoinositide-dependent 
protein kinase 1 (PDK1) and rapamycin-insensitive companion 
of mammalian target of rapamycin (Rictor)/mechanistic target 
of rapamycin (mTOR2) allowing threonine and serine phospho-
rylation of Akt, respectively (53, 54). Akt phosphorylation and 
activation following BCR cross-linking leads to the inhibition of 
the pro-apoptotic protein Bad and activation of the pro-survival 
proteins Bcl-2 and Bcl-XL (55). Additionally, Akt phosphoryl-
ates the transcription factor Forkhead box protein O (FOXO) 
thereby inducing its exclusion from the nucleus and preventing 
apoptosis while promoting cell proliferation (56, 57). Akt also 
activates alpha and beta subunits of the IκB kinase (IKKα/β) 
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FiGURe 1 | Lyn initiates signaling cascades following B cell receptor (BCR) cross-linking. Stimulation of the BCR leads to the activation [green (P)] of Lyn and Syk 
which results in Igα/β phosphorylation. PLCγ2 activity leads to the hydrolysis of PI(4,5)P2 to IP3 and diacylglycerol (DAG), which stimulates Ca2+ mobilization as well 
as protein kinase C (PKC) and MAPK activation and cell-cycle progression. Phosphorylation of CD19 leads to the membrane recruitment of phosphatidylinositol 
3-kinase (PI3K) and activation of Akt, which phosphorylates downstream proteins leading to their inhibition [red (P)] and up-regulation of pro-survival signaling.
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which phosphorylates IκBα and the p65 nuclear factor kappaB 
(NF-κB) subunit/RelA (58). IκBα phosphorylation leads to its 
proteasome-mediated degradation and exposure of the nuclear-
localization sequence of RelA, which leads to its translocation 
and up-regulation of pro-proliferation and pro-survival proteins 
such as c-Myc and Bcl-2 family proteins (59, 60).

Lyn, Syk, Btk, and Blk can also phosphorylate and enhance the 
activation of phospholipase C gamma 2 (PLCγ2), which hydro-
lyzes PI(4,5)P2 to create inositol 3,4,5-trisphosphate (IP3) and 
diacylglycerol (DAG), stimulating Ca2+ mobilization and protein 
kinase C (PKC), respectively (61–64). PLCγ2 phosphorylation 
also stimulates the activation of MAPK pathways and nuclear 
location of NF-κB and nuclear factor of activated T cells (NF-AT) 
(65–67). Additionally, PKC activation leads to the inhibition of 
glycogen synthase kinase 3 beta (GSK-3β), which promotes the 
accumulation of beta-catenin in the nucleus and thus up-regulates 
the expression of c-Myc and cyclin D (68).

B cell scaffold protein with ankyrin repeats 1 (BANK1) inter-
acts with PLCγ2, which is mediated by B-lymphocyte kinase (Blk) 
(69). BANK1 promotes the Lyn-mediated phosphorylation of the 
inositol trisphosphate receptor (IP3R) located on the endoplas-
mic reticulum which mediates Ca2+ flux (70).

Negative Signaling Cascade
The role of Lyn in generating the positive signaling cascade in 
B cells is not essential and can be compensated for the other SFKs 
(71, 72). However, the role of Lyn in the initiation of negative 

feedback loops that not only regulate downstream signaling 
molecules but also limit the activity of SFKs is unique (35, 73). In 
addition to the phosphorylation of ITAMs after BCR stimulation, 
Lyn phosphorylates ITIMs contained within receptors including 
CD22, FcγRIIB, PIR-B, PD-1, CD66a (CEACAM1), CD5, and 
CD72 (35, 74–79), which act as docking sites for the binding 
and activation of non-receptor SH2-containing tyrosine phos-
phatases 1 and 2 (SHP-1 and SHP-2) and, in the case of FcγRIIB, 
phosphatidylinositol phosphatase 5 (SHIP-1) (76, 80–86). SHP-1 
has been demonstrated to dephosphorylate and, therefore, 
down-regulate the activity of Btk, Syk, and Lyn, leading to the 
inhibition of signaling cascades (85, 87–89). Similarly, SHP-2 has 
been shown to dephosphorylate Ig-β, Syk, and PLCγ2 following 
BCR cross-linking (76). However, SHP-2 has also been implicated 
in enhancing various signaling pathways (90).

Upon BCR activation (Figure  2), SHIP-1 dephosphorylates 
PIP3 to P(3,4)P2, which decreases PI3K- and Akt-mediated 
signaling (91). The decrease of available PIP3 also leads to the 
down-regulation of Btk activity and subsequent reduction of 
PLCγ2-mediated Ca2+ mobilization (92). Activated SHIP-1 
recruits downstream of tyrosine kinase 1 (Dok1/p62dok), which 
down-regulates MAPK signaling pathways (93). FcγRIIB phos-
phorylation leads to the Dok3-mediated recruitment of SHIP-1 
into the Grb2/Shc/mSOS complex, which inhibits SFK-dependent 
activation of Syk and decreases NF-κB and MAPK signaling path-
ways (94–97). A more direct role of Lyn in negative signaling is 
the phosphorylation of the Csk-binding protein/phosphoprotein 
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FiGURe 2 | Lyn activates negative receptors following B cell receptor (BCR) cross-linking. In addition to initiating positive signaling, Lyn phosphorylates receptors 
containing immunoreceptor tyrosine inhibitory motifs (ITIMs), leading to the recruitment and activation of phosphatases SHP-1, SHP-2, and SHIP-1. SHP-1 and -2 
dephosphorylate (=> arrows) and inhibit the activity of Lyn, Syk PLCγ2 and Btk leading to the down-regulation of positive signaling events. SHIP-1 
dephosphorylates PIP3 and prevents activation of Akt signaling pathways.
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associated with glyco-sphingolipid microdomains (Cbp/PAG), 
which activates Csk to down-regulate the activity of Lyn and 
other active SFKs (98).

Lyn also mediates internalization of the BCR, which acts to 
dampen signaling by the BCR (99) and may also play a role in the 
dephosphorylation of BCAP, which down-regulates PI3K activity 
(51). Similar to the regulation of active Src (100), the kinase activ-
ity of Lyn also promotes its own ubiquitination and subsequent 
degradation in B  cells, most likely via the activity of Csk and 
suppressor of cytokine signaling (SOCS) proteins (101–104).

IN VIVO MODeLS OF Lyn ACTiviTY  
AND AUTOiMMUNiTY

Consistent with the important role for negative signaling in the 
hematopoietic compartment, mice lacking Lyn (Lyn−/−) progres-
sively develop symptoms of autoimmunity that are comparable 
to SLE in humans (105). Lyn−/− mice produce high titers of anti-
nuclear antibodies (ANA) and develop splenomegaly, systemic 
inflammation, antibody complex deposition in the kidneys 
and glomerulonephritis (105). B cells from Lyn−/− mice display 
hyper-phosphorylated Akt, MEK1/2, Erk1/2, and JNK compared 
to wild-type (WT) B  cells after BCR stimulation, indicating 
enhanced positive signaling in the absence of negative feedback 
inhibition (23, 72, 106). In keeping with this, there is a reduced 
phosphorylation of FcγRIIB, CD22, SHP-1, and SHIP-1 (73, 74).

The activation of Lyn-dependent inhibitory signaling in 
mature B cells is essential for maintaining B cell tolerance (107), 
including B cell anergy (108). In Lyn-deficient mice, the absence 

of inhibitory signaling in mature B cells increases their sensitivity 
to antigen stimulation and this population of now auto-reactive 
cells is selectively depleted via clonal deletion (109). As such, 
Lyn−/− mice show a significant reduction in naive, mature B cells 
in the periphery compared to WT mice despite similar frequen-
cies of newly formed, immature B cells (105). The naive B cells 
that do persist in the periphery of Lyn−/− mice are, however, 
hyper-responsive to anti-IgM stimulation, show delayed but 
increased Ca2+ mobilization and express markers of activation 
(107, 109–111). Additionally, antibody secreting B cells (plasma 
cells) persist in lymphoid tissues at 10-times normal frequency 
(105, 111). The myeloid compartment is also expanded, and 
T cells display markers of activation (101, 112). Increased serum 
levels of IL-6, IFN-γ, and BAFF, primarily produced by B cells, 
T  cells, and myeloid cells respectively, promote the activation 
and proliferation of immune cells, further driving autoimmunity 
(112, 113).

Components of the autoimmune phenotype of Lyn−/− mice 
are B cell intrinsic. This has been demonstrated using a B-cell-
specific deletion of Lyn (Lynfl/fl mb-1Cre), which recapitulates 
the generation of hyper-responsive B cells, auto-antibodies and 
the development of glomerulonephritis (114). This phenotype 
may be dependent on signaling through toll-like receptor (TLR) 
adaptor protein myeloid differentiation primary response gene 
88 (MyD88), as B-cell-specific deletion of MyD88 from Lyn−/− 
B cells ameliorated auto-antibody production, T cell activation, 
myeloid expansion, and the development of glomerulonephritis 
(114). Additionally, global deletion of MyD88 from Lyn−/− mice 
attenuated autoimmune disease development, which was 
considered to be due to reduced production of inflammatory 
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cytokines IL-6 and IL-12 by Lyn−/− dendritic cells (115, 116). 
This result was supported by Lyn being found to negatively 
regulate TLR-MyD88-IRF5-dependent expression of Type 1 IFNs 
in dendritic cells and by the double knock out of Lyn and IRF5 
(Lyn−/− IRF5−/−) in mice ameliorating SLE-like pathology (117). 
Perhaps surprisingly, the persistence of plasma cells was found 
to be independent of autoimmune disease and intrinsic to the 
Lyn−/− hematopoietic compartment (118). Similarly, mice double 
deficient in Lyn and IL-6 retain the plasma cell hyperplasia but 
show a dramatic reduction in kidney damage, splenomegaly, and 
the production of ANAs (112). As in B cells, Lyn controls intra-
cellular signaling intensities within plasma cells in response to 
stimulation by cytokines thought to play a critical role in plasma 
cell survival (118).

The deletion of MyD88 in Lyn−/− mice also decreased 
spontaneous germinal center (GC) formation thus implicating 
GC reactions in the generation of pathogenic ANA in Lyn−/− 
mice (119). In line with this, removing T cells (TCRβ/δ−/−) or 
deleting the adaptor protein SAP (SAP−/−), thereby preventing  
T  cell B  cell interactions required for GC formation, leads to 
the reduction of IgG auto-antibodies in Lyn−/− mice (119). 
Similarly, deleting IL-21, a key regulator of GC responses and 
plasma cell formation (120), in Lyn−/− mice leads to reduced 
IgG ANAs but does not alleviate IgM ANA, plasmacytosis, or 
glomerulonephritis (121), suggesting that IgM and/or IgA can 
mediate the development of autoimmunity (122). In keeping 
with this, the autoimmune disease in the sanroque lupus mouse 
model also develops in the absence of germinal centers and 
depends on IgM (123).

While Lyn can act as a positive or negative regulator of sign-
aling cascades, its role as a negative regulator is critical to the 
development of the phenotype seen in Lyn−/− mice. Indeed, the 
fact that dysregulation of other modulators of negative signaling, 
which are themselves targets of Lyn, also leads to autoimmunity 
(e.g., CD22, FcγRIIB, SHP-1, and SHIP-1) (124–128) helps define 
the pathways involved. This is also apparent in the compounding 
autoimmune disease phenotype in mice heterozygous in Lyn 
and SHP-1 (Lyn+/−, Mev+/−) (129). Finally, the importance of 
Lyn-regulated pathways in hematopoietic cells other than B cells 
is revealed by co-deletion of Btk, a key intermediate of several 
positive signaling pathways, from Lyn−/− mice. This alleviates 
symptoms of autoimmunity and the production of auto-antibodies, 
but B cells remain hyper-responsive to anti-IgM stimulation as 
measured by Ca2+ mobilization and the phosphorylation of 
Erk1/2 and Akt (130, 131). Consistent with this, mice deficient 
in Lyn and p110δ, a PI3K isoform, also show a reduction in 
inflammation, splenomegaly, T cell activation, ANA production, 
and glomerulonephritis, while hyper-phosphorylation of Akt 
and Erk1/2 compared to control mice after BCR cross-linking 
remained (132), indicating a unique requirement for Lyn in 
regulating these signaling responses, but one that is insufficient 
by itself to permit development of disease.

Lyn’s enzymatic activity appears to be critical to its function, 
as mice expressing Lyn with no or impaired kinase activity still 
develop autoimmune disease, albeit with delayed onset and 
reduced severity (23, 24). B cells from LynMld4 or kinase dead Lyn 
(LynKD) mice, harboring a mutation within the activation loop, 

display similar signaling kinetics to Lyn−/− B  cells, with hyper-
Ca2+ mobilization, hyper-phosphorylated Erk1/2, Akt, and JNK 
and reduced phosphorylation of Syk, SHIP-1, and SHP-1 after 
BCR stimulation (23). Expansion of the myeloid compartment, 
splenomegaly, and the production of IgG anti-dsDNA antibodies 
were significantly reduced in LynKD compared to Lyn−/− mice, but 
evidence of immune complex deposition in the kidneys remained 
(23). In contrast are LynWeeB mice, with a mutation in the G-loop 
of Lyn that leaves partial kinase activity, conferring B cell signal-
ing kinetics that are intermediate between WT and Lyn−/− (24). 
Stimulation of LynWeeB B cells results in a partial decrease in the 
phosphorylation of Syk, Btk, PLCγ2, SHIP-1, and CD22 and a 
slight increase in the phosphorylation of Erk1/2, Akt, and JNK 
compared to WT B cells (24). However, in older LynWeeB mice, 
splenomegaly, anti-dsDNA antibodies, and glomerulonephritis 
were comparable to those in Lyn−/− mice (24), indicating that the 
partial positive signaling permitted by LynWeeB requires greater 
negative signaling to counterbalance its activity and prevent 
the development of autoimmunity. This is exemplified in mice 
expressing a mutant form of constitutively active Lyn (LynY508F 
or Lynup/up), as they develop an autoimmune disease with an 
increased rate of mortality (male-specific) compared to Lyn−/− 
mice (102). Lynup/up B cells display constitutive phosphorylation 
of proteins involved in positive (Syk, PLCγ2) and negative (CD22, 
SHP-1, SHIP-1, FcγRIIB) signaling pathways, which is further 
increased after BCR stimulation (102). Despite the increased 
phosphorylation of ITIM-containing negative regulators, Lynup/up  
B  cells display enhanced Ca2+ mobilization compared even to 
Lyn−/− B  cells, indicating that the increased positive signaling 
further outweighs the inhibitory signaling capacity within these 
cells (102). Thus, in the hematopoietic compartment, Lyn activity 
controls both negative and positive signaling and its dysregula-
tion in mice is responsible for the breakdown of tolerance in 
B cells and progressive development of autoimmunity.

Lyn AND SLe

Systemic lupus erythematosus is a heterogeneous disease with 
varied clinical presentations and manifestations (1). It is therefore 
not surprising that its cause is multifactorial, with numerous 
genetic and environmental factors contributing to pathogenesis 
(1, 133). As such, a single gene defect in mice such as Lyn−/− is 
unlikely to replicate the complex phenotype seen within SLE in 
humans. Despite this, a reduction in Lyn expression, via increased 
turnover or reduced transcription, and altered sub-cellular locali-
zation are reported in patients with SLE (134–136). However, a 
significant susceptibility association of the Lyn locus with SLE 
has only been determined in a single case–control association 
study (137). Interestingly, proteins involved in the positive (Blk, 
BANK1) and negative (PTPN22/PEP, Csk, FcγRIIA, FcγRIIB, 
FcγRIIIA, FcγRIIIB, SOCS1) signaling pathways in B cells have all 
been linked to SLE via genome-wide association studies (GWAS) 
and this highlights the importance of regulating these signal-
ing cascades to avoid disease onset or progression (138–143). 
Similarly, Blimp1 and Ets1, transcription factors involved in 
regulating plasma cell development, are also linked with SLE 
(141, 144). Mice deficient in Ets1 show enhanced generation of 
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plasma cells and auto-antibodies, which are symptoms of auto-
immunity (145). Recently, Lyn was linked with regulating Ets1 
expression, via the activation of CD22 and SHP-1 reducing the 
Btk-dependent down-regulation of Ets1 (146, 147).

Lyn−/− mice are one of the numerous mouse models reported to 
develop an SLE-like illness, with none being a perfect recapitula-
tion of the spectrum of human disease (148). Regardless, the Lyn−/− 
mouse model has been and remains a useful tool in dissecting the 
critical role that B cell signaling pathways play in the development 
of autoimmunity. Indeed, other models in conjunction with 
Lyn−/− mice have confirmed the importance of B cell dysregulation 
to the development of SLE-like autoimmunity. Deleting B cells in 
the MRL/lpr mouse model, for example, significantly decreases 
disease progression and mortality compared to mice that remain 
B cell replete (149). Furthermore, comparison of Lyn−/− with other 
mouse models has identified several potential novel therapies for 
patients with SLE such as inhibitors of BTK and HDAC (150, 151). 
Further determination of the molecular pathways responsible for 
B cell dysregulation in SLE-like autoimmunity will likely assist in 
the design of new treatments to ameliorate disease severity.

CONCLUDiNG ReMARKS

The role of Lyn in B cells involves fine-tuning of BCR signaling, 
balancing positive and negative signals to maintain tolerance to 
self-antigens while permitting responsiveness to foreign antigens. 
The Lyn-mediated phosphorylation of ITIM-containing negative 
receptors and subsequent activation of the inhibitory phos-
phatases, SHP-1 and SHIP-1, that leads to the down-regulation of 
BCR-mediated signaling cascades and inhibition of SFK activity 

represents a critical component in B cell signaling that prevents 
the development of autoimmunity.

Although defects in Lyn−/− mice are not an identical model 
for human SLE, the investigation of Lyn and the pathways it 
modulates have highlighted the delicate balance inherent in 
B cell kinase signaling cascades and the devastating consequences 
that can occur when they are dysregulated. Numerous SLE 
susceptibility genes identified through GWAS are also linked 
with other autoimmune diseases indicating the involvement of 
shared pathways that ultimately lead to the loss of tolerance (152). 
Therefore, future experiments examining genomic regulation or 
global phospho-proteomics in models of SLE could be useful 
in identifying all the components of the intracellular pathways 
involved and through that, potential therapeutic targets.
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