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Immunological inductive tissues, such as secondary lymphoid organs, are composed 
of distinct anatomical microenvironments for the generation of immune responses to 
pathogens and immunogens. These microenvironments are characterized by the com-
partmentalization of highly specialized immune and stromal cell populations, as well as 
the presence of a complex network of soluble factors and chemokines that direct the 
intra-tissue trafficking of naïve and effector cell populations. Imaging platforms have pro-
vided critical contextual information regarding the molecular and cellular interactions that 
orchestrate the spatial microanatomy of relevant cells and the development of immune 
responses against pathogens. Particularly in HIV/SIV disease, imaging technologies are 
of great importance in the investigation of the local interplay between the virus and host 
cells, with respect to understanding viral dynamics and persistence, immune responses 
(i.e., adaptive and innate inflammatory responses), tissue structure and pathologies, 
and changes to the surrounding milieu and function of immune cells. Merging imaging 
platforms with other cutting-edge technologies could lead to novel findings regarding the 
phenotype, function, and molecular signatures of particular immune cell targets, further 
promoting the development of new antiviral treatments and vaccination strategies.

Keywords: Hiv, lymph nodes, mucosa, immune cells, T cells, imaging

iNTRODUCTiON

Investigation of the human immune system in the context of infectious diseases has been accomplished 
primarily based on studies utilizing circulating cells. However, use of such biological material may 
not capture the in vivo timing or mechanisms governing the initiation and development of immune 
responses to pathogens at important anatomical sites, such as secondary lymphoid organs, mucosal-
associated lymphoid tissues (MALTs), and mucosae. Therefore, the need for comprehensive analysis 
of tissues central to disease pathogenesis, and interactions between theses tissues, is of great impor-
tance. The application of multidimensional methodologies, like polyparametric flow cytometry, has 
provided critical information regarding the phenotype and functionality of tissue-resident immune 
cells, especially T and B  cells (1–5). Despite their analytical power, these methodologies cannot 
address the tissue distribution/localization of lymphoid populations in vivo, as well as the anatomical 
context in which their highly dynamic interactions occur. On the other hand, tissue investigation 
using histopathological assays, like immunohistochemistry, has provided critical information regard-
ing the impact of HIV/SIV on the organization of the human immune system at a tissue level (6–14).

Imaging technologies are continuingly advancing, with new hardware (i.e., new types of cameras, 
laser lines, hybrid detectors, etc.) and software, improving the quality of images obtained at the 
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level of acquisition, segmentation, and deconvolution of cells. 
Furthermore, the availability of steadily increasing antibody 
specificities and appropriate labels/probes further facilitates 
the application of imaging technologies to biological material. 
The introduction of advanced imaging technologies, such as 
multispectral confocal (15) and multiphoton microscopy, as 
well as imaging mass cytometry, positron emission tomography 
(PET), and magnetic resonance imaging (MRI) (16–18), opens 
new opportunities for the investigation of molecular and cellular 
events at dimensions that range from the nanoscale to the entire 
body and for visualizing the dynamic changes occurring in living 
tissues and individuals. Furthermore, the availability of tech-
nologies like stimulated emission depletion microscopy (STED) 
can provide unprecedented resolution (~20–50 nm) using light 
microscopy (19) for the detailed analysis and quantification of 
molecular dynamics at a subcellular level (20). Therefore, the 
application of cutting-edge imaging technologies can provide 
substantial novel insights into host–pathogen interactions that 
are simply not feasible with other approaches (Table 1), which 
may be critical for the development of vaccines, especially those 
aiming to elicit broadly neutralizing antibodies, as well as for the 
discovery of novel immunotherapy targets to eliminate HIV.

wHY DO we NeeD TiSSUe iMAGiNG?

Secondary lymphoid organs (i.e., lymph nodes and spleen) and 
MALT create an extended tissue network that provides a unique 
microenvironment for pathogen capture, antigen presentation, 
and induction of adaptive immune responses (21–23). The ex 
vivo and in vitro analysis of cells derived from such tissues using 
powerful methodologies like polyparametric flow cytometry and 
sequencing of sorted cell subsets has provided important infor-
mation about the character and molecular profile of cells involved 
in the development of these responses (4, 15, 24, 25). The applica-
tion of imaging technologies, however, can provide relevant infor-
mation about cell populations in their “natural environment” and 
with respect to their spatial positioning, displacement, surround-
ing cells, and milieu microenvironment. Furthermore, estimating 
the possible role of parameters, like cell shape and polarization 
(26), in the biological process under investigation is impossible 
for cells removed from their natural tissue microenvironment. 
To this end, the combination of ex vivo organ culture models 
(27) with imaging analysis and whole-body in vivo studies would 
significantly increase our knowledge about the role of particular 
cells and soluble factors in HIV/SIV pathogenesis.

The compromised immune response against pathogens in 
subjects with genetic defects that affect the architecture and 

development of follicles demonstrates the importance of tissue 
integrity for an effective response against pathogens (28–30). It 
is well established that HIV/SIV infections are associated with 
extensive changes/damage of tissue architecture, especially in 
LNs and gut mucosa (31). Stromal cells, like fibroblastic reticular 
cells (FRCs) and follicular dendritic cells (FDCs), represent 
critical elements of the lymphoid tissue architecture, which are 
significantly affected by HIV/SIV (32–35), and because of their 
biology and function forming extended interdigitating networks 
within the follicular (FDC) (36) and extra-follicular (FRC) (37) 
areas, their isolation and in  vitro analysis is challenging. Thus, 
imaging these stromal elements in their native intact tissue envi-
ronments, with 3D volumetric analysis, will likely be essential to 
fully understand the importance of these networks in HIV/SIV 
infections. A comprehensive understanding of tissue perturba-
tions in terms of cellularity and architecture will further elucidate 
defects in adaptive cellular responses and in the generation of 
antibody responses with functionalities that effectively control 
the virus, including broadly neutralizing antibodies.

The development of effective adaptive immune responses 
against pathogens is a multistep process that requires the 
orchestrated function of several cell types and soluble factors 
within the LN environment. A critical aspect of this process is 
the compartmentalization of immune cell subsets with different 
origins or maturation status, as well as the presence of chemokine 
gradients that direct this compartmentalization and trafficking of 
cells between and within areas of LN. For example, the develop-
ment of high-affinity, antigen-specific B-cell responses requires 
interactions between CD4  +  T  cells and B  cells in the follicle. 
The identification of human follicular helper CD4 + T cells (Tfh) 
revealed a highly specialized CD4 + T-cell subset with a unique 
phenotypic, functional, and molecular signature (38–40). Still, 
Tfh cells represent a heterogeneous cellular population with dif-
ferent combinations of expressed surface receptors, such as PD-1, 
CD150, and CD57 (4, 41, 42). Likewise, follicular B cells represent 
a diverse population with different phenotypic profiles depending 
on their localization in germinal cell areas [light and dark zone 
(43, 44)]. Analysis of these populations based on their phenotype 
using flow-cytometry assays has been particularly informative 
with respect to their relative frequencies and dynamics in human 
and animal disease models. However, their phenotype does not 
always indicate their localization within tissue microenviron-
ments. For example, although the dark zone is the site where B-cell 
division takes place, many proliferating (Ki67 +) B cells can be 
found in the light zone, and under physiological conditions, Tfh 
subsets have a distinct localization pattern (Figure 1). This type 
of imaging analysis can provide additional unique information 
regarding the juxtaposition/clustering of Tfh cells and B cells, the 
“polarization” pattern of germinal centers, as well as the distribu-
tion of Tfh cells, B  cells, and FDCs within these LN follicular 
areas. Investigation of the impact that HIV/SIV infection has on 
the microanatomy of tissue environments could provide informa-
tion about the cellular and molecular mechanisms mediating the 
development of humoral responses, as well as the local interplay 
between the host and virus during HIV/SIV disease progress.

The introduction of novel imaging technologies could gener-
ate new perspectives regarding the role of particular immune cell 

TAble 1 | Importance of performing tissue imaging.

 – Cells in their natural environment
 – Tissue architecture, stromal cells
 – Compartmentalization of immune reactivity (immune cells, soluble factors)
 – Complexity of local immune dynamics
 – Displacement of cells and duration of local interactions
 – Dynamics and mechanisms of virus transmission
 – Generation of new questions
 – Tissue pathology and damage
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FiGURe 1 | Heterogeneity of follicular cell populations. (A) Confocal images showing the relative distribution of proliferating B cells (CD20hi/dimKi67hi, CD20/cyan, 
and Ki67/magenta) and CD4 Tfh subsets (PD-lhiCD57hi, PD-lhiCD57lo, PD-1/green, and CD57/red) in a tonsillar follicular area. (b) Flow-cytometry plots showing 
the phenotype of tonsillar Tfh subsets based on the combined expression of PD-1, CXCR5, and CD57 surface receptors.

3

Estes et al. Tissue Imaging in HIV/SIV

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 423

subsets. Traditionally, the quality of CD8 + T cells in HIV/SIV 
infection has been evaluated based on (i) their capacity to produce 
multiple cytokines (poly-functionality) (45), (ii) the expression of 
an “exhausted” phenotype related to their function and survival/
proliferative capacity (46–48), and (iii) their potential for killing 
infected targets, mainly through perforin/granzyme protein 
expression (49, 50). However, an effective CTL response requires 
trafficking of activated and differentiated CD8 + T cells in areas 
with HIV/SIV-infected cells, followed by their ability to sense, 
efficiently engage the infected cells and perform their CTL effec-
tor function. Development of imaging-based methods allowing 
for the evaluation of such biological processes/steps (10) could 
provide a comprehensive analysis of CTL responses in HIV/SIV 
infection and contribute to a holistic view of the efficiency of 
adaptive responses needed for virus elimination.

wHAT CAN we leARN FROM Hiv/Siv 
iNFeCTiONS?

The Host: lymph Nodes
Classic immunohistochemistry studies have provided valuable 
information regarding the impact of HIV/SIV infection on the 
structure of tissues, such as LNs and gut mucosa. Early histologi-
cal studies revealed lymphoid tissue pathologies (i.e., follicular 
hyperplasia, follicular lysis, and depletion and fibrosis) that 

are hallmarks of HIV infection (31, 51). Further work demon-
strated a process of progressive deposition of fibrotic collagen, 
beginning early after HIV infection, driven by TGFβ regulatory 
CD4 + T cells (34, 52, 53), leading to the loss of stromal cells, like 
FRCs, and CD4 + T-cell populations (34). Additional significant 
changes take place in the follicular areas, manifested as enlarged/
less-defined follicles and germinal centers, with presumably an 
important effect on Tfh cell dynamics.

Follicular Helper CD4 + T Cells (Tfh)
Follicular helper CD4 + T cells represent a highly differentiated 
CD4 + T-cell subset with a unique phenotype (4, 40, 41, 54, 55) 
and molecular signature (4, 39), which provides critical help 
to follicular B cells during the development of B-cell responses 
against pathogens and immunogens (44). The chronic phase of 
HIV/SIV infection is characterized by accumulation of Tfh cells, 
at least in a group of individuals (4, 56, 57). Furthermore, SIV 
infection has a significant impact on the gene signature of Tfh 
cells, characterized by increased expression of IFNγ- and TGFβ-
related genes (4). Imaging studies have facilitated the characteri-
zation/localization of Tfh cells within the follicular areas during 
HIV/SIV infection, based on the expression of surface receptors 
like PD-1 and CXCR5 (4, 8, 13, 58, 59). Furthermore, imaging 
analysis has revealed that Tfh cells populate different areas of the 
follicle (marginal zone, surrounding GC, or mainly within the 
light zone) (Figure 1) (4, 8, 58), presumably exposed to different 
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local signals. Given the dramatic effect of HIV/SIV infection on 
the LN structure and follicular organization, imaging provides 
critical information about the distribution of Tfh cells within 
the follicular areas, as well as their proximity and engagement 
with B cells. The cellular and molecular mechanisms regulating 
the dynamics of Tfh cells during HIV/SIV infection are not well 
understood (4, 60). To this end, tissue imaging can contribute 
valuable information regarding:

 1. The heterogeneity of follicular cells (Tfh subsets like Th1-like 
Tfh cells (61), dark zone vs. light zone B cells, etc.) and how these 
populations are impacted during different stages of infection.

 2. The possible role of local immune activation/inflammation on 
T- and B-cell dynamics during HIV/SIV disease progression.

 3. The impact of follicular damage/alteration (i.e., loss of FDC) 
on Tfh and B-cell dynamics.

 4. The possible role of locally expressed cytokines (i.e., IL-21, TGFβ, 
IL-10) or chemokines (i.e., CXCL-13) on Tfh, B-cell dynamics.

 5. The distribution of Tfh-infected cells and the dynamics of 
local HIV/SIV replication.

 6. The impact of LN pathologies (i.e., fibrosis, etc.) on LN func-
tion (i.e., antigen capture, vaccine responses, etc.).

 7. The impact of cART and HIV cure strategies on the FDC 
reservoir.

Follicular CD8 + T Cells
Chronic HIV/SIV infections are characterized by accumulation of 
CD8 + T cells in the LN and particularly in the follicle, a process 
referred to as “follicular lysis” (15, 24, 62). Imaging studies have 
shown that trafficking of virus-specific CD8 + T cells into the fol-
licular area is relatively compromised (63–65). Flow-cytometry-
based assays have shown that similar to Tfh cells, follicular 
CD8 + T cells are characterized by low expression of CCR7 and 
upregulated CXCR5, and have a unique transcriptional profile  
(15, 24). What regulates the trafficking of CD8 + T cells, particularly 
the cytotoxic effector cells, into the LN and distinct microenviron-
ments, like follicles, is not well understood. It was recently shown 
that expression of viral proteins per se may not represent the main 
force behind this trafficking (15). Imaging analysis can provide 
critical information regarding the role of local inflammatory cells/
signals as mediators of CD8 + T-cell trafficking in the follicular 
areas during HIV/SIV infection, potentially leading to novel tar-
gets for the in vivo manipulation of LN CD8 + T-cell dynamics. 
FRCs provide the cellular network for trafficking of T cells in the 
T-cell zones (37). Chronic HIV/SIV infection is associated with 
significant damage to both FRC (34) and follicular structures  
(31, 33). Whether this tissue damage creates an environment where 
T-cell trafficking becomes highly stochastic and/or dysfunctional 
is not known. Thus, imaging studies could be highly informative 
in addressing these unresolved questions, for example, by assess-
ing the relationship between the magnitude of FDC changes, 
follicular lysis, and altered chemokine gradients on one hand with 
follicular CD8 + T-cell enrichment on the other hand.

Innate Immunity Cells
Innate immune cells play an important role in HIV/SIV infec-
tions and disease at multiple levels, including (i) virus capture and 

dissemination (66), (ii) expression of pro- and anti-inflammatory 
mediators (i.e., IFNα/β, TNFα, IL6, IL10, etc.) (67–71), and 
(iii) expression of pro-inflammatory chemokines (i.e., IP-10, 
MCP, MIP-1α/β, etc.) (72, 73). Flow-cytometry studies have 
shown an increased recruitment of hyporesponsive monocyte/
macrophages and plasmacytoid dendritic cells early after SIV 
infection that could affect the ability of IFNα production in the 
LN (74–76). Complementary to flow-cytometry data, imaging 
studies have revealed an accumulation of monocytic-lineage 
cells in areas surrounding the follicle and in close proximity 
to CD8  +  T  cells in chronic HIV infection (15) as well as in 
pathogenic SIV infection of rhesus macaques but not in non-
pathogenic SIV infection in nature hosts (i.e., sooty mangabeys) 
(77). Furthermore, pharmacological manipulation of monocyte 
activation results in reduced recruitment of activated monocytes 
to the LN and reduced viral replication (78). More recently, tissue 
imaging has shown that infected macrophages could contribute 
to the rapid disease progression in SIV-infected non-human 
primate (NHP) infants (79). While monocytes/macrophages can 
clearly become infected with HIV/SIV, the relative contribution 
of infected monocytes/macrophages as long-lived viral reservoirs 
in vivo is still an open question. Novel, high-resolution imaging 
approaches allowing for the simultaneous detection of viral RNA 
and DNA could shed light upon this issue. Furthermore, it is not 
known if the viral dynamics of infected monocytes/macrophages 
occurs in a similar fashion in LNs from different anatomical sites, 
for example, comparing axillary and mesenteric LNs or MALT 
(80), and warrants further investigation.

Natural killer (NK) cells play an essential role in antiviral 
immunity, but knowledge of their function in secondary lymphoid 
organs is incomplete. Contrary to SIV-infected macaques, in situ 
approaches demonstrated that NK cells in secondary lymphoid 
organs from chronically SIVagm-infected African green monkeys 
(AGMs) were frequently CXCR5 + and entered and persisted in 
lymph node follicles where they seem to play a major role in viral 
reservoir control (81). The relative positioning/compartmentali-
zation of innate cells and associated soluble factors could inform 
on the role of these cells in the generation and maintenance of 
effective adaptive immune responses during HIV/SIV.

The Host: Mucosa
Mucosal barriers are the body’s first defense against external 
pathogenic threats. Although they represent the boundary 
between the external environment and the host, mucosal surfaces 
are often the sites of pathogen transmission (82). In the context 
of HIV infection, mucosal surfaces represent the major routes of 
transmission, with the most relevant mucosal tissues being the 
genital mucosa and gastrointestinal tract (82). Imaging studies 
utilizing SIV NHP models have been absolutely instrumental 
in dissecting key aspects of HIV-1 transmission across mucosal 
surfaces and the early events surrounding mucosal infection, 
including (i) understanding the unique cellular composition and 
characteristics of different mucosal tissues and their susceptibility 
to viral transmission, (ii) defining the early host–viral dynamics 
within mucosal tissues, including characterizing the principal 
target cells in vivo, and (iii) demonstrating the process and prin-
cipal pattern of viral dissemination and establishment (83–86).
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Disruption of the intestinal barrier and subsequent microbial 
translocation and inflammation is one of the hallmarks of HIV/
SIV pathogenesis and disease progression (87–89). Damaged 
epithelial integrity (90, 91), as well as the loss of relevant cells 
from the gut mucosa (92–94), has been associated with HIV/
SIV pathogenesis. Imaging studies have been instrumental in 
investigating the impact of these tissue perturbations in the 
context of HIV/SIV infections. Besides the documentation of the 
magnitude of barrier damage, imaging studies have shown: (i) 
the possible role of gut macrophages with respect to their phago-
cytic activity (80, 91) or capacity to produce pro-inflammatory 
cytokines (95) in chronic immune activation and progression to 
AIDS, (ii) that blocking microbial translocation can reduce viral 
replication and dissemination in LNs (96), and (iii) that barrier 
damage and microbial translocation differentiate pathogenic and 
non-pathogenic SIV infections (91). Furthermore, tissue imaging 
has been very informative concerning the verification of animal 
models for SIV pathogenesis––such as the use of pigtail macaques 
(97) or experimental colitis as an alternative model to investigate 
the impact of barrier integrity in SIV pathogenesis (16). Similar 
to LNs, imaging studies will be instrumental in our understand-
ing of the local interplay between the virus and innate/adaptive 
immunity.

The Host: Other Tissues
Besides lymphoid organs, other tissues have also been shown to 
play a role in the pathogenesis of HIV/SIV infections. Imaging 
studies have been instrumental for our understanding of the 
CD3 + (98) and CD8 + T cell (99), NK (100) as well as myeloid 
(Kuppfer) cell (101) dynamics in liver during SIV infection. In 
situ hybridization imaging assays have also shown insufficient 
viral replication in liver (99, 101). Besides the liver, RNA in situ 
hybridization imaging has been widely used for the detection of 
cells harboring transcribed virus in several tissues including the 
following:

 (1) adipose tissue and specifically in the stromal vascular frac-
tion (6);

 (2) lungs, where macrophages represent a main source of virus 
production in infant NHP (79, 102) with lung tissue damage 
associated with infection of interstitial rather than alveolar 
macrophages (103); and

 (3) brain (104) in line with other assays showing that CNS mac-
rophages represents a latent reservoir in cART-treated ani-
mals. Confocal imaging of protein markers has revealed the 
heterogeneity and possible role of monocytes/macrophages, 
especially recently infiltrating cells, in HIV/SIV encephalitis 
(105, 106). Increased frequency of perivascular proliferating 
macrophages (107) could account for the accumulation of 
macrophages in SIV-infected animals. CNS lesions, found in 
monkeys receiving cART, were associated with inflammation 
dominated by lymphocyte and low levels of SIV RNA in the 
brain (108). Complementary to these imaging studies, use of 
laser capture microdissection revealed a compartmentaliza-
tion of viral sequences in brain from animals infected with 
a neurotropic virus (109). In addition to tissue imaging 
assays, MRI-based methodologies have been widely used for 

the study of HIV/SIV neuropahtogenesis (110–113) as well 
as the in  vivo viral dynamics in the brain of experimental 
models (17).

Host–virus interplay
A major obstacle for HIV eradication is the establishment of 
long-lived viral reservoirs, particularly in “immunologically 
privileged” areas, like B-cell follicles (114, 115). Therefore, the 
molecular characterization of cells contributing to these reser-
voirs, as well as their tissue topology, is of great importance in 
the development of novel strategies for virus reactivation and 
elimination. Sensitive PCR-based assays have contributed signifi-
cantly to our knowledge regarding the dynamics/kinetics of virus 
replication, the efficacy of cART, and the characterization of cell 
subsets harboring actively transcribed or latent virus (116–119). 
Early studies have shown sequestration of viral RNA in follicles 
using in situ hybridization techniques (120). More recently, novel 
next-generation in situ hybridization platforms have been devel-
oped with great potential for the comprehensive analysis of viral 
reservoirs at a tissue level. These platforms allow for the detec-
tion of viral RNA (RNAscope) and/or viral DNA (DNAscope)  
(114, 121, 122). Merging this technology with multispectral con-
focal microscopy will allow for a comprehensive analysis of (i) the 
viral reservoir with respect to relevant molecular markers of cells 
harboring the virus, (ii) the local microenvironment (surround-
ing immune cells, inflammatory cells, cytokines/chemokines), 
and (iii) virus dynamics (based on the simultaneous detection of 
viral RNA, DNA, and viral particles).

In addition to identification of individual cells harboring virus 
at a tissue level, imaging assays have contributed significantly to 
our understanding of viral dynamics in vivo. Confocal imaging 
has provided important information regarding viral transmission 
across and infection in the female reproductive tract (86), as well 
as revealed that Th17-lineage CD4 + T cells as a preferential tar-
get for the virus early after vaginal inoculation (12). Application 
of technologies like whole-body immune-PET has provided 
additional insight into the distribution of virus among different 
organs in chronic SIV infection (123), as well as the impact of 
antiretroviral or immune-based treatments on viral dynamics 
(123, 124). Non-invasive whole-body imaging, although of 
relatively low resolution, provides a “real time” and non-invasive 
monitoring of viral or relevant immune cell dynamics and could 
guide the performance of tissue imaging assays for a high-
resolution analysis of related cells. Additional information can 
be obtained from whole-body PET-TDM for drug distribution 
dynamics (125) allowing the identification of pharmacological 
sanctuaries, drug interactions and helping the optimization of 
drug delivery use and drug design.

which imaging Platform?
Today, several imaging technologies and platforms are available 
for tissue analysis. Several factors should be taken into considera-
tion regarding the choice of the most relevant platform, including 
the following:

 (i) The scientific question under investigation: tissue cell com-
position and viral reservoirs [light microscopy, confocal  
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microscopy, ion beam imaging (126), Laser Capture Micro-
dissection (127)], subcellular structure and virus–host pro-
tein interactions (confocal microscopy, electron microscopy, 
high-resolution optical imaging technologies), or assessment 
of cellular and viral dynamics at organ or whole-body level 
[MRI (17), PET scan (123), confocal endoscopy].

 (ii) The requirement for high-resolution, “volumetric” analysis 
or live imaging (two-photon microscopy) to address the bio-
logical process under investigation. The introduction of the 
two-photon intravital microscopy in the NHP SIV model 
could revolutionize the field of HIV/SIV pathogenesis and 
vaccine development by providing real time, in vivo meas-
urements of immune cell trafficking, tissue cell dynamics, 
and interactions between host cells and virus.

 (iii) The ability to simultaneously use multiple probes (dimen-
sionality), allowing for the comprehensive analysis of 
several cells, proteins, and RNA/DNA sequence within 
the same imaged plane (confocal or imaging mass cytom-
etry). Although high-resolution technologies like electron 
microscopy-based platforms or super resolution confocal 
microscopy can provide unprecedented information for 
the tissue, cell structure, and molecular dynamics, they are 
lacking their capacity to simultaneously use multiple probes, 
at least in their current form.

 (iv) The potential for “fusion” with other high-throughput 
platforms. Although current confocal microscopy assays can 
visualize several probes simultaneously (15), the selection 
of probes/antibodies is hypothesis-driven. Merging multi-
plexed confocal microscopy assays with technologies like 
tissue imaging mass cytometry (128) could provide unique 
information at multiple levels, including unbiased pathway 
analysis, discovery of novel therapeutic molecular targets, 
and pharmacokinetics of antiretroviral regimens.

Modern imaging technologies allow for the acquisition of 
high-dimensional data. To foster new discoveries derived from 
such data sets, the development and application of sophisticated 
algorithms is required. Accurate tissue reconstruction (using 
advanced 3D tomography algorithms) (129, 130), quantitative 
analysis of imaging objects using platforms like histocytometry 
(15, 131), algorithms allowing for the fusion of imaging with 
other high-throughput platforms (128), as well as modeling tissue 
cell and virus dynamics based on imaging data could significantly 
improve our understanding of the highly complex tissue immu-
nobiology, especially during HIV/SIV infection.

Although tissue imaging is a powerful tool, we should keep 
in mind that there are also limitations that could lead to mis-
interpretation of tissue immune dynamics. Limited access to 
tissue material, especially from human subjects, represents a 
major limitation for tissue analysis. Collecting images from one 
or two random tissue sections could potentially lead to inaccurate 
measurements (“sampling error”). Ideally, application of novel, 
large-volume imaging techniques, like optically cleared tissue 
imaging (132), could overcome the “sampling error” limitation. 
However, the need for multiple assays and measurements from 
usually limited tissue material precludes these types of imaging 

applications, especially when human tissues are under investiga-
tion. Therefore, one should be very cautious with the interpreta-
tion of imaging data generated from limited tissue sections. One 
common practice for the validation of imaging data could be their 
comparison to data derived from other types of assays, such as 
flow cytometry.

Future Directions
Imaging studies have significantly improved our understanding 
of cellular and molecular mechanisms for HIV/SIV pathogenesis 
both in humans and NHP SIV models (133). Several imaging 
studies have validated SIV infection of NHPs as models for HIV 
pathogenesis, including the illustration of early events resulting 
in HIV/SIV transmission (86, 134, 135), the documentation and 
role of gut mucosal barrier damage in HIV/SIV pathogenesis  
(89, 91), as well as the impact of infection in secondary lym-
phoid tissues (31). Particularly for lymph node dynamics, a 
similar profile for follicular CD4 + (4, 56, 57) and CD8 + T cells  
(15, 24) has been shown in infected humans and NHPs, while 
in  situ hybridization assays have established the importance of 
these sites for virus persistence (64, 122). Given the difficulty 
in obtaining human tissues from different anatomical sites, the 
performance of imaging studies in SIV models will continue 
to provide unpresented information regarding the anatomical 
compartmentalization of these immune dynamics.

We are witnessing a boom of imaging technologies that 
expand our capacity for comprehensive spatial analysis of tissue 
cells and molecules with high definition. Given the complex-
ity of tissue immunobiology, the performance of different 
imaging-based assays, as well as their merging with other high-
throughput assays, is of great importance for the generation of 
high-dimensional data. Besides the characterization of virus 
and cells at the tissue level, imaging technologies could prove 
useful in the analysis of other biological parameters, such as 
metabolic status, monitoring of therapeutics (pharmacokinetic 
studies), or novel immunotherapies (i.e., administration of 
multi-specific antibodies). Although HIV/SIV infections lead 
to major changes in tissue architecture, imaging the immune 
system in infected humans and NHPs can potentially provide 
insight into the overall anatomy and organization of the immune 
system in disease and contribute to the generation of a human 
cellular atlas.
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