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C-reactive protein (CRP) is a short pentraxin mainly found as a pentamer in the circula-
tion, or as non-soluble monomers CRP (mCRP) in tissues, exerting different functions. 
This review is focused on discussing the role of CRP in cardiovascular disease, including 
recent advances on the implication of CRP and its forms specifically on the pathogenesis 
of atherothrombosis and angiogenesis. Besides its role in the humoral innate immune 
response, CRP contributes to cardiovascular disease progression by recognizing and 
binding multiple intrinsic ligands. mCRP is not present in the healthy vessel wall but it 
becomes detectable in the early stages of atherogenesis and accumulates during the 
progression of atherosclerosis. CRP inhibits endothelial nitric oxide production and con-
tributes to plaque instability by increasing endothelial cell adhesion molecules expression, 
by promoting monocyte recruitment into the atheromatous plaque and by enzymatically 
binding to modified low-density lipoprotein. CRP also contributes to thrombosis, but 
depending on its form it elicits different actions. Pentameric CRP has no involvement 
in thrombogenesis, whereas mCRP induces platelet activation and thrombus growth. 
In addition, mCRP has apparently contradictory pro-angiogenic and anti-angiogenic 
effects determining tissue remodeling in the atherosclerotic plaque and in infarcted 
tissues. Overall, CRP contributes to cardiovascular disease by several mechanisms that 
deserve an in-depth analysis.

Keywords: c-reactive protein, pentameric C-reactive protein, monomeric C-reactive protein, atherosclerosis, 
thrombosis, angiogenesis, ischemic heart disease, cardiovascular disease

inTRODUCTiOn

C-reactive protein (CRP) is a short pentraxin belonging to the highly conserved family of calcium-
dependent ligand-binding plasma proteins of the superfamily of soluble pattern-recognition 
molecules, and it is mainly found as a pentamer in the circulation. It is synthesized in the liver 
induced by interleukin (IL)-6 (1), IL-1β, and tumor necrosis factor (TNF) (2), although other tis-
sues such as adipose tissue may be able to synthesize CRP under pro-inflammatory stimuli (3). The 
native circulating form of CRP is pentameric (pCRP), that is a disc of five identical subunits non-
covalently bounded around a central pore (4). When pCRP bounds to one of its ligands [for instance 
lyso phosphatidylcholine via activation of phospholipase A2 (5) or in denaturizing or oxidative 
environment (6)] it dissociates in a non-reversible manner into its non-soluble monomers, leading 
to a potential functional activation (7). pCRP and monomeric CRP (mCRP) are shown to exhibit 
different functions, although the specific physiopathological functions of CRP are still unknown and 
are a focus of intense research. It is believed that mCRP is involved in the innate immune system by 
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activating the complement cascade (8), in angiogenesis (9) and in 
thrombosis (10), whereas pCRP is mostly released to the circula-
tion after an inflammatory stimuli (1).

CVD is mainly caused by atherosclerosis, which starts from 
lipid infiltration in the vessel wall, endothelial dysfunction, and 
chronic low-grade inflammation causing plaque development 
that ends with clinical ischemic complications. Levels of pCRP 
in serum ≥3 µg/mL are used in the clinical setting as unspecific 
marker for inflammation, infection, and tissue injury, associated 
with an acute-phase response (11). Indeed, CRP is considered 
a predictor of future cardiovascular events (12), and in current 
guidelines is classified as Class III B level of evidence (13), although  
there are some discrepancies (14). CRP is a downstream 
biomarker of elevated IL-1, IL-6, and TNF-α. It can increase 
10,000-fold within 6 h and has a half-life of 19 h, and its catabolic 
rate is independent of its plasma concentration (15). Besides its  
role in humoral innate immune response, CRP recognizes and 
binds multiple intrinsic ligands, such as the complement system, 
resulting in a significant increase in infarct size, cell receptors, 
apoptotic cells, growth factors, and extracellular matrix compo-
nents, and thus contributing to cardiovascular disease progres-
sion. On those grounds, we aimed to highlight the implication of 
CRP and its forms on the pathogenesis of atherothrombosis and 
angiogenesis.

CRP in ATHeROTHROMBOSiS

Atherothrombosis is a complex inflammatory pathological process  
initiated by lipid deposition in the arterial wall with a subse- 
quent recruitment of circulating leukocytes. The growing ather-
omatous plaque may become unstable and rupture, triggering 
the formation of a thrombus by accumulation of platelets and 
coagulation proteins. Occlusive thrombi may eventually induce 
an ischemic event (16). In this process, inflammation has a pivotal 
role in all phases, and CRP actively participates by activating 
the complement system, and inducing apoptosis, vascular cell 
activation, leukocyte recruitment, lipid accumulation, platelet 
aggregation, and finally thrombosis (17). mCRP is detectable  
in the vessel wall in early stages of atherogenesis but not in healthy 
vessels, and accumulates during the progression of atheroscle-
rosis, whereas pCRP is not detectable in healthy or atheroscle- 
rotic vessels (18). In this context, complement activation by 
enzymatically modified low-density lipoprotein (LDL) plays an 
important role in atherogenesis (19). Enzymatic modification of 
LDL confers the capacity to bind pCRP, and CRP-binding enhan-
ces complement activation through C3 cleavage (20). Both pCRP 
and mCRP are able to activate and amplify the classical pathway 
of the complement system by interacting with the complement 
factor C1q, significantly activating C1. Only mCRP is able to 
interact with complement factor H and C4b-binding protein (21), 
thus provoking local inflammatory responses and contributing  
to the establishment and progression of atherosclerosis or to  
the tissue damage following myocardial infarction. In addition, 
pCRP can promote inflammation by binding to modified or 
oxidized LDL and (non) oxidized phosphatidylcholine from 
apoptotic cells (22), promoting the transformation from macro-
phages to foam cells.

C-reactive protein contributes to endothelial dysfunction and 
hypertension by inhibiting nitric oxide (23), increasing endothe-
lin-1 production, and thus impairing endothelial-dependent 
vascular relaxation (24). In the setting of chronic local inflam-
mation in atherosclerosis, the addition of mCRP to apical but  
not basolateral surfaces of intact human coronary artery endothe-
lial cell monolayers, upregulated monocyte chemotactic protein 
(MCP)-1, IL-8, and IL-6 expression and activated endothelial cells 
through the polarized induction of phospholipase C, p38 mito-
gen-activated protein kinase, and nuclear factor (NF)-κB signal-
ing pathways (25). Therefore, tissue-associated mCRP induces  
endothelial cell activation and dysfunction, and spatial localiza-
tion is determinant for the highly context-dependent actions of 
CRP isoforms within vessels.

In addition, pCRP contributes to plaque instability by acti-
vating NF-κB and, therefore, increasing endothelial cell adhe-
sion molecules expression such as vascular cellular adhesion 
molecule-1, vascular E-selectin, and MCP-1 (26, 27). pCRP also 
induces monocyte polarization to M1 and conversion from M2 
to M1 phenotype (2), thus promoting monocyte recruitment  
into the plaque. Indeed, circulating pCRP binds to the cell mem-
brane of activated, but not resting monocytes (28), and activated 
but not resting platelets and apoptotic leukocytes are able to 
dissociate pCRP to mCRP via lysophosphatidylcholine inducing 
reactive oxygen species (ROS) production and monocyte chemo-
taxis, activation and adhesion (18), being mCRP and not pCRP 
the responsible of these effects, even at low concentrations. In 
neutrophils, mCRP but not pCRP increases IL-8, CD11b/CD18, 
and superoxide production, and induces endothelial nitric oxide 
synthase-mediated nitric oxide formation. This leads to enhanced 
peroxynitrite formation, and to the activation of NF-κB and 
activator protein (AP)-1 (29), as well as enhanced neutrophil 
adhesion to activated endothelial cells (30), thus aggravating  
the inflammatory response at injured vascular sites and contri-
buting to plaque destabilization. Overall, mCRP is able to aggra-
vate the preexisting inflammatory response by inducing leukocyte 
rolling, adhesion, and transmigration to the endothelium and 
generation of ROS (5), which in turn, modifies the structure and 
ligand recognition function of CRP (31).

In addition, CRP also contributes to plaque instability by 
inducing the expression of metalloproteinases (MMP) 1, 2, and 9  
(32, 33). On those grounds, CRP mRNA was detected in poten-
tially vulnerable ulcerated carotid artery plaques but not in 
hemorrhagic ulcerated plaques independently of the circulating  
levels of CRP. In non-complicated ulcerated carotid artery 
plaques, CRP was mainly localized in infiltrated and endothelial 
cells around areas of newly formed microvessels (34), potentially 
contributing to plaque neovascularization and rupture resulting  
in thrombosis.

C-reactive protein also contributes to thrombosis, but depend-
ing on its form it elicits different actions. CRP at 10–100 mg/L is 
able to increase 75-fold tissue factor (TF) procoagulant activity 
of monocytes, with a parallel increase in TF antigen levels (35). 
CRP at 2–24  mg/L activates both inflammation and coagula-
tion through increasing circulating levels of E-selectin, von 
Willebrand factor, IL-6, IL-8, serum amyloid A protein, type II 
secretory phospholipase A2, prothrombin F1 +2, D-dimer, and 
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FigURe 1 | Involvement of C-reactive protein (CRP) in atherothrombosis. CRP contributes to the development and progression of atherosclerosis and thrombosis 
by several mechanisms that induce endothelial dysfunction, leukocyte recruitment at atherosclerotic lesions, and thrombus formation through platelet activation and 
aggregation.
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plasminogen activator inhibitor type-1 (36). It has been shown 
that circulating microvesicles can bind pCRP and dissociate it to 
mCRP, and patients with myocardial infarction have circulating 
microvesicles carrying mCRP (37). In addition, pCRP binding 
to activated cell-derived microvesicles also undergoes a struc-
tural change leading to the expression of neoepitopes without 
disrupting the pentameric symmetry activating the classical 
complement pathway through C1q binding and enhancing 
leukocyte recruitment to inflamed tissues (28). pCRP has no 
involvement in thrombogenesis, whereas mCRP is able to pro-
mote thrombosis by inducing platelet activation (38), platelet 
adhesion by upregulating P-selectin (10), and thrombus growth 
(39). Additionally, mCRP has been found in platelet aggregates 
and stimulates further platelet deposition (38). Blocking gly-
coprotein IIb-IIIa on activated platelets prevented the dissocia- 
tion of pCRP to mCRP and reduced platelet deposition at the 
arterial wall (38).

As depicted in Figure 1, the dissociation of pCRP into mCRP 
could be interpreted as a master switch for the inflammatory 
processes involved in atherogenesis. Both mCRP bound to phos-
phorylcholine of activated cell membranes and mCRP present 
within the advanced atherosclerotic plaque may play a critical 
role in the further development of the plaque and thrombus 
formation and propagation upon mechanical or spontaneous 
atherosclerotic plaque rupture. Nevertheless, it is worth men-
tion that some ex vivo experiments suggest anti-atherosclerotic 
functions of CRP. As previously stated, CRP binds to enzymati-
cally modified LDL at the same binding site as phosphocholine; 
therefore, it could prevent the formation of foam cells and 
limit complement activation (40, 41). Indeed, when CRP binds 
to lysophosphatidylcholine, this complex triggers a less potent 
generation of ROS and less activation of the transcription factors 
AP-1 and NF-κB by macrophages in comparison to free CRP or 
lysophosphatidylcholine, reducing the pro-atherogenic effects of 
macrophages (42). Finally, it has also been shown that CRP also 
affects the physicochemical properties of LDL and inhibits further 
oxidation of ox-LDL (43, 44), although the mechanism remains 
unknown. In addition, mCRP has been found to decrease the 

uptake of acetylated LDL by endothelial cells independently of 
CD16, CD32, or the receptor for oxidized LDL (45).

CRP in iSCHeMiA AnD AngiOgeneSiS

Monomeric CRP has been involved in ischemic heart disease 
(46), therefore pCRP dissociation to mCRP modulates inflam-
mation in both acute (cardiac ischemia/reperfusion) and chronic 
(atherosclerosis) inflammatory processes. Local inflammatory 
response during myocardial ischemia contributes to myocardial 
damage and infarct size, and plays a major role in angiogenesis 
and tissue remodeling. Infiltrated macrophages at the border site 
of the cardiac ischemic lesion express mCRP (47, 48), and CRP 
in monocytes upregulates vascular endothelial growth factor 
(VEGF)-A expression in vitro via binding to its Fc-gamma recep-
tors (49). In fact, myocardial ischemia activates mCRP expression 
in myocardial infiltrated macrophages but not in peripheral 
blood mononuclear cells (47), and cardiac mCRP expression re- 
mains elevated after 1 week of acute myocardial infarction (48), 
potentially contributing to cardiac remodeling and in perpetuat-
ing and/or amplifying the inflammatory process. Along this line, 
circulating CRP has been shown to correlate with infarct size and 
left ventricle remodeling 2 months after percutaneous coronary 
intervention, and patients with persistent microvascular obstru-
ction presented increased circulating CRP levels 2  days after 
percutaneous coronary intervention (50).

Angiogenesis also has a role in plaque instability and disrup-
tion, favoring leukocyte and macrophage infiltration in growing 
atherosclerotic lesions. Indeed, the adventitial vasa vasorum faci-
litates neovascularization related to progression of atherosclerosis 
(51). Although some authors have observed that CRP inhibits 
VEGF production and angiogenesis (23, 52), several studies 
suggest that mCRP may be a mediator of neovessel formation 
in the intima of vulnerable plaques, as it has been localized in 
the adventitia and intimal neovessels from complicated regions  
of unstable carotid plaques (53). In the setting of atheroscle-
rosis, CRP upregulates VEGF expression via activating hypoxia 
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FigURe 2 | Implications of C-reactive protein (CRP) in angiogenesis. monomeric CRP (mCRP) has apparently contradictory pro-angiogenic and anti-angiogenic 
effects which determine tissue remodeling in the atherosclerotic plaque and in infarcted tissues.
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inducible factor-1α, and MMP-2 expression and in adipose-
derived stem cells, significantly increasing endothelial cell tube 
formation and vasa vasorum proliferation (54). As previously 
explained, mCRP has been localized around newly formed 
microvessels in carotid artery plaques and in peri-infarct regions 
after an acute ischemic stroke (34, 55), promoting angiogenesis 
and inducing inflammation and increased permeability of abnor-
mally developing microvessels after tissue injury (56), potentially 
leading to an increased risk of dementia.

In stroke patients, mCRP colocalized with endoglin (CD105), 
a marker of angiogenesis in regions of revascularization, and stimu-
lated phosphorylation of extracellular signal-regulated kinase 
(ERK)1/2, inducing cell migration and formation of tube-like 
structures independently of the CD16 axis (55). mCRP exerts 
potent angiogenic effects on microvascular endothelial cells. 
CRP dissociates into mCRP on the endothelial cell membrane 
and mCRP induces angiogenic effects by increasing TF expres-
sion and activation of the axis F3-TF-ETS1-CCL2 (9), and by 
increasing endothelial expression of CD32 and CD64 (57), thus 
promoting migration, wound repair, and tube-like formation.  
In parallel, it has been demonstrated that mCRP has the ability 
to promote angiogenesis by increasing proliferation, migration, 
and tube-like structure formation in  vitro and by stimulating 
blood vessel formation in  vivo with the chorioallantoic mem-
brane assay. mCRP induced vascular VEGFR2/KDR, platelet-
derived growth factor (PDGF-BB), inhibitor of DNA binding/ 
differentiation-1 (ID1) gene expression, notch family transcrip-
tion factors (Notch1 and Notch3), and also induced stabilization 
and maturation of cysteine-rich angiogenic inducer 61 (CYR61/
CCN1), overall playing a central role in the main stages of 
blood vessel formation and remodeling (58). Along this line, 
mCRP induces Notch-3 and N-cadherin expression and down-
regulates VE-cadherin expression. mCRP and Notch-3 act in 
a co-operative manner in vascular endothelial cells, exerting a 
role in the remodeling and maturation of the vascular develop-
ment by increasing endothelial cell proliferation, migration, and 
tube formation and also stabilizing vascular structures through 
modulating VE-cadherin and N-cadherin expression (59). On the  
other hand, CRP has several deleterious effects on endothelial 

progenitor cells, which account for about 26% of endothelial cells 
in newly formed blood vessels (60), by decreasing their survival 
and inducing apoptosis, by impairing their differentiation through 
the inhibition of the expression of tyrosine-protein kinase recep-
tor for angiopoietin (Tie)-2, endothelial cell-specific lectin, and 
VE-cadherin, and by impairing nitric oxide-dependant angio-
genesis via decreasing endothelial nitric oxide synthase (61, 62). 
Therefore, as depicted in Figure 2, angiogenesis plays a dual role 
in CVD progression, and further research should focus on the 
mechanisms by which CRP may contribute to the atherosclerotic 
process and/or tissue repair.

CRP AnD CvD PROgnOSiS

Although CRP response is unspecific and is triggered by many 
disorders unrelated to cardiovascular disease, mathematical 
models that incorporate high-sensitivity CRP (hsCRP) improve 
CV risk prediction. Increased levels of CRP strongly predict the 
thrombotic complications of atherosclerosis, principally myocar-
dial infarction (1) and its adverse outcomes such as left ventri- 
cular failure, cardiac death, and ventricle rupture (7). In fact, CRP 
may have a role in risk stratification of patients with established 
CVD. hsCRP levels  >  3  mg/L are predictive of major adverse  
cardiac events at 1 year, and are also associated with higher coro-
nary plaque burden and volume (63). In addition, low, average 
and high CV risk categories can be stratified by hsCRP levels 
(<1.0, 1.0 to 3.0, and >3.0 mg/L, respectively) (64), and in the 
general population CRP levels are able to independently predict 
the risk of all-cause and cardiovascular mortality (65).

In subjects at intermediate risk of CVD, incorporation of CRP 
to a model of assessment of CV risk improves the prognostic 
power for myocardial infarction presentation (66), and could 
help prevent 1 additional CV event in 10  years from 400–500 
screened subjects (12). In patients with previous CVD and in 
asymptomatic subjects, hsCRP was a moderated predictor of 
coronary heart disease at the long term (67). In fact, the com-
bination of troponin I, N-terminal pro-brain natriuretic peptide 
(NT pro-BNP), cystatin C and CRP improved significantly the 
risk stratification for cardiovascular death (68). In patients with 
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stable and unstable angina, elevated CRP levels are predictive of 
future coronary events (69). Indeed, in ST-elevation myocardial 
infa rction patients CRP levels predicted heart failure and cardio-
vascular mortality the year after the CV event (70), and in patients 
with non-ST-elevation myocardial infarction, in-hospital mor-
tality was four times higher in patients with a CRP > 10 mg/L  
compared to patients with <3 mg/L CRP levels, and this associa-
tion persisted at the long term (71).

High-sensitivity CRP can be quantified by immunonephelom-
etry sensitized techniques routinely used to measure circulating 
pCRP with a lower detection limit than former procedures. 
However, as stated in this review it is unlikely that circulating 
pCRP elicit a direct role in CHD progression (7), because no major 
prothrombotic or pro-inflammatory effects have been found 
for circulating pCRP, and no association between genetically 
eleva ted CRP and risk of CHD has been found (72). Therefore, it  
seems plausible that mCRP would be the responsible for the 
observed associations between CRP and CVD.

COnCLUSiOn

As reviewed, mCRP is a potential regulator of signaling pathways 
associated with thrombosis, angiogenesis, and inflammation. The 
ability of CRP to bind and interact with multiple ligands under-
scores its implication in different steps of atherosclerosis and 
CVD. CRP contributes to atherosclerosis progression by exert-
ing pro-inflammatory effects, modulating the innate immune 
response and activating the complement system, promoting 
platelet activation, thrombus formation, vascular remodeling, 
and angiogenesis. However, whether CRP acts as regulator or 
amplifier of the innate immune response remains to be fully 
elucidated. Determining whether increased pCRP production 
merely reflects atherosclerosis or does indeed participate in its 
pathogenesis and complications is of utmost importance in order 
to definitively consider hsCRP as a clinical biomarker of CVD.

The study of the molecular mechanisms by which CRP con- 
tributes to atherothrombosis, angiogenesis, and CVD has a 
major pitfall. Human CRP does not interact with C1q in mice, 

and mice do not produce large amounts of CRP after an inflam-
matory stimuli (46). The study of CRP function has largely been 
performed with administration of exogenous, heterologous CRP 
or with mice transgenic for rabbit or human CRP. Therefore, cau-
tion should be taken when extrapolating from animal models to 
humans, and more research toward a more appropriate animal 
model is still warranted. Taking this into consideration, further 
research is required in order to differentially characterize the 
roles of CRP isoforms (pCRP, facilitator, versus mCRP, effector) 
in CVD onset and progression, and the binding ligands to circu-
lating pCRP which can lead to CRP dissociation and induction 
of local inflammation in order to develop more potent and orally 
bioavailable “CRP inhibitors” for the treatment of inflammation 
and atherosclerosis.
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