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Therapeutic molecules derived from antibodies have become a dominant class of drugs 
used to treat human disease. Increasingly, therapeutic antibodies are discovered using 
transgenic animal systems that have been engineered to express human antibodies. 
While the engineering details differ, these platforms share the ability to raise an immune 
response that is comprised of antibodies with fully human idiotypes. Although the 
predominant transgenic host species has been mouse, the genomes of rats, rabbits, 
chickens, and cows have also been modified to express human antibodies. The creation 
of transgenic animal platforms expressing human antibody repertoires has revolutionized 
therapeutic antibody drug discovery. The observation that the immune systems of these 
animals are able to recognize and respond to a wide range of therapeutically relevant 
human targets has led to a surge in antibody-derived drugs in current development. 
While the clinical success of fully human monoclonal antibodies derived from transgenic 
animals is well established, recent trends have seen increasingly stringent functional 
design goals and a shift in difficulty as the industry attempts to tackle the next genera-
tion of disease-associated targets. These challenges have been met with a number of 
novel approaches focused on the generation of large, high-quality, and diverse antibody 
repertoires. In this perspective, we describe some of the strategies and considerations 
we use for manipulating the immune systems of transgenic animal platforms (such as 
XenoMouse®) with a focus on maximizing the diversity of the primary response and 
steering the ensuing antibody repertoire toward a desired outcome.
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iNtrODUctiON

The remarkable capacity of engineered animals to utilize human antibody sequences to functionally 
replace their own has allowed researchers to harness the power of the natural humoral immune 
response. Antibody generation in  vivo offers several advantages, including the ability to readily 
recover molecules that bind to the target antigen with high specificity and affinity (1). The processes 
of in vivo sequence diversification, antigen-driven somatic hypermutation, and numerous quality 
control checkpoints ensure the non-random selection and enrichment of B cells that produce anti-
bodies with therapeutically desirable properties (2–5).

Despite the demonstrated successes of transgenic platforms, researchers face significant chal-
lenges related to the increasing complexity of functional design goals and targets. Ideal antibody 
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candidates are often required to bind with high affinity to a 
specific epitope, cross-react to a non-human ortholog, lack 
binding to paralogs, and survive the rigors of the stringent drug 
development process (6). Thus, antibodies satisfying all the 
design goals may be extremely rare, if they are elicited at all. At 
the same time, the targets themselves have shifted in difficulty 
from the “low-hanging fruit” to those that are considerably more 
challenging (7–11). In this perspective, we will highlight the 
strategies and considerations used for manipulating the immune 
systems of transgenic animal platforms. We will first concentrate 
on the transgenic platforms and call out specific features that 
contribute to forming antibody repertoires. We will then draw 
from our experience using XenoMouse® to discover novel human 
therapeutics and focus on the approaches we use to maximizing 
the diversity of the primary antibody repertoire and to steer it 
toward the desired outcome.

trANsGeNic PLAtFOrMs eXPressiNG 
HUMAN ANtiBODY rePertOires

The collection of unique B  cells in an organism (the B-cell 
repertoire) encodes and produces the corresponding antibody 
repertoire. Herein, we will use “antibody repertoire” to describe 
the collection of sequence-unique antibodies, and their cor-
responding B cells, present in a given system. Transgenic animal 
platforms expressing human antibodies utilize the in vivo biology 
of the host immune system to generate diversity through canoni-
cal recombination and somatic hypermutation. Importantly, 
both the breadth and shape of the antibody repertoire can be 
influenced to yield a desired response.

The demonstration that large portions of the intact human 
immunoglobulin loci could be introduced into the mouse 
genome was a significant achievement and is the subject of a 
series of excellent reviews (1, 12–14). These efforts culminated 
in the world’s first fully human transgenic antibody generation 
platforms (XenoMouse® and HuMab-Mouse®) and have been 
followed by a series of related, next-generation animals (15–20). 
These platforms largely recapitulate critical aspects of the human 
antibody repertoire including V-, D-, and J-segment usage pat-
terns. The remarkable ability of these animals to assimilate mouse 
biology and human antibody sequence information has revolu-
tionized biotechnology by providing access to a diverse source 
of fully human antibodies. The number of marketed human 
therapeutics derived from these platforms, and their continued 
use as engines for de novo antibody discovery, highlights their 
success (21).

Three exciting, emerging trends in this area are as follows: 
(1) the development of human antibody generation platforms in 
species other than mouse, (2) the creation of transgenic systems 
that produce non-canonical antibodies, and (3) attempts to 
genetically manipulate the immune system to yield unconven-
tional antibody repertoires.

Open Monoclonal Technologies (OMT, now Ligand Phar-
maceuticals) produced a set of transgenic rat strains (Omni-
Rat®) that express a human idiotype repertoire (22, 23). Crystal 
Biosciences (now Ligand Pharmaceuticals) and Sab Biothera-
peutics have reported the development of transgenic chickens 

(Omni Chicken™) and cows (Tc Bovine™), respectively, carry-
ing human repertoires (24–27). The ability to produce human 
antibody repertoires in evolutionarily divergent systems may 
be advantageous for helping overcome tolerance. The immune 
systems of these animals are distinct from conventional antibody 
generation hosts. As such, they are potentially rich sources of 
antibody repertoires that may help address challenging targets or 
design goals.

Non-canonical antibodies have the potential to address 
practical drug development challenges and to bind to targets in 
novel ways. The desire to create multispecific therapeutics, with 
human idiotypes at their core, has seen the development of plat-
forms designed to yield candidates suitable for straightforward 
conversion into multivalent formats (e.g., common light chain 
animals) (28). However, the most interesting molecules of this 
class are derived from heavy-chain-only antibodies (HCAbs) 
(29, 30). Because of their small size and unique mechanism by 
which they interact with antigens, the VH domains derived from 
these antibodies have the potential to bind to classes of targets 
that regular antibodies cannot. Several groups have developed 
transgenic HCAb generation platforms that utilize a human 
antibody repertoire (Harbour Biomed, OMT Therapeutics, 
Crescendo) (31, 32).

Additional transgenic modifications, distinct from the immu-
noglobulin loci, can impact the resulting antibody repertoire. 
Researchers at ImmunoGenes have produced a mouse that over 
expresses the bovine neonatal Fc receptor (FcRn) (33–35). These 
animals have an enhanced humoral response and an expanded 
IgM repertoire (36). Editing the genome by manipulating genes 
that are known to impact the humoral response would be 
expected to allow researchers to modify the resulting repertoire. 
Combining these modifications with a human antibody discovery 
platform may yield animals capable of producing nonstandard 
repertoires.

strAteGies FOr MAXiMiZiNG 
ANtiBODY rePertOire DiversitY

The primary goal for our XenoMouse® immunization campaigns 
is to maximize antibody repertoire diversity. This serves two 
purposes: (1) it increases the likelihood of finding antibodies 
that meet the functional design goals and (2) it increases the 
probability of identifying lead candidates that are sequence 
diverse (6). While identification of an antibody satisfying the 
design goals is a minimal requirement for a successful campaign, 
the stringent manufacturing criteria of therapeutic antibody 
development also necessitate the selection of multiple lead 
candidates with different sequences. If the initial candidate fails 
biophysical characterization, a unique backup molecule has 
already been identified.

Since the number of B cells in a mouse at any given moment 
is ~108, and the theoretical diversity of the human antibody 
repertoire exceeds 1011, it is reasonable to conclude that an indi-
vidual mouse can only harbor a fraction of the potential human 
repertoire (37, 38). As such, a fundamental tenet of our strategy 
is that individual mice can produce unique antibody repertoires.  
We regularly immunize large cohorts of mice to maximize 
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exploration and sampling of the theoretical antibody sequence 
space. In addition, we have developed multiple strains of 
XenoMouse® for the purpose of generating the broadest reper-
toire possible (39). Indeed, we routinely observe biases among 
the strains with regard to their response to specific antigens.  
To ensure we raise a diverse response, we include many animals 
from a variety of strains and genetic backgrounds in our antibody 
discovery campaigns.

A second guiding principal that governs our approach for 
maximizing the diversity of antibody repertoires is to develop a 
comprehensive immunization strategy. Multiple factors should 
be considered when designing a strategy focused on generating a 
broad antibody response. These include (1) preparation and pres-
entation of the immunogen, (2) choice of adjuvant, (3) immuni-
zation method, and (4) the impact of T-cell tolerance. Although 
the precise details depend on the nature of the target antigen, our 
general approach is to use validated forms of immunogens and 
present them to the immune system in variety of ways.

Preparing the target antigen such that it is an effective immu-
nogen is a critical first step. When considering ways to prepare 
immunogens, we focus on strategies that are the least likely to 
disrupt the native structure of the antigen and destroy important 
epitopes. Our goal is to produce at least three orthogonal types 
of immunogens for each target: soluble protein, cells expressing 
the target on the membrane, and DNA expression constructs. 
These immunogens form the core of our primary immunization 
strategy and allow us to present multiple forms of the antigen to 
the immune system.

Many target antigens can be engineered to yield soluble 
proteins for use as immunogens. The extracellular domains 
(ECDs) of type-I and -II membrane proteins often exist as 
modular domains that can be isolated from their native context 
without compro mising their structure. For membrane targets 
that contain ECDs that are difficult to purify or that cannot 
easily be overexpressed, an alternative strategy is to artificially 
tether them to the surface of a cellular expression host (40). This 
can be done by fusing the ECD to another well-characterized 
transmembrane domain or by adding a signal sequence for a 
C-terminal Glycosylphosphatidylinositol (GPI)-anchor (41, 42).  
Multipass membrane proteins that contain extracellular loops 
(ECLs) present significant challenges for antigen engineer-
ing. Attempts to utilize the isolated loop sequences as peptide 
immunogens are rarely successful, presumably because they lack 
native conformation (43). Because of this, we favor genetic and 
cell-based immunogens for this target class, both of which can 
be readily produced using the same expression plasmid (44, 45). 
Regardless of how the antigen is engineered, it is important to 
validate it prior to use. Evidence of the native conformation can 
be obtained using functional bioassays or by assessing relevant 
biophysical interactions.

Adjuvants play a pivotal role in potentiating immune responses 
against antigens. The most widely used adjuvants include the 
water-in-oil emulsions and the aluminum salts (46). Modern 
adjuvant research has focused on exploiting the connection 
between the innate and adaptive immune systems. In particular, 
toll-like receptor (TLR) agonists have received significant atten-
tion because of the important role of TLRs in the activation of 

innate signaling pathways (47, 48). In our experience, adjuvants 
are absolutely required for generating a robust immune response 
and diverse antibody repertoires in XenoMouse®. Consistent 
with our results, several studies have demonstrated a broadening 
of the antibody repertoire as a result of preparing immunogens 
with specific adjuvants (49, 50). Our adjuvant strategy is to 
leverage the most potent immunomodu latory agents available, 
while minimizing undesirable effects on the antigen and animal 
welfare. Although progress continues to be made to develop new 
adjuvants, we will not cover this here and direct the reader to 
several excellent reviews (51–54).

A successful immunization campaign requires a suitable 
immunogen delivery method. Both the form of the antigen and 
the route by which it is delivered are known to impact the resulting 
immune response (55–62). While we leverage many traditional 
methods for delivering protein and cell-based immunogens, we 
have had tremendous success immunizing XenoMouse® using a 
genetic approach. Genetic immunization offers many advantages 
compared with traditional methods. Minimally, it requires only 
plasmid DNA encoding the antigen of interest which, upon 
delivery, is taken up by cells and expressed in vivo. The simplicity 
and native-like expression of this method increases the probabil-
ity that the natural conformation of the antigen is maintained. 
This strategy is particularly attractive for complex membrane 
proteins (e.g., GPCRs, transporters, and ion channels) due to 
difficulties associated with their expression and purification. We 
have explored different approaches to improve the effectiveness 
of DNA immunization. These include frequent and extended 
boosting regimens, the use of more effective delivery methods, 
and inclusion of molecular adjuvants. For example, intradermal 
DNA delivery via a gene gun is a widely used approach that relies 
on the transfer of plasmid DNA-coated gold particles into the 
skin via particle bombardment (63, 64). The immune response 
can be potentiated by the inclusion of molecular adjuvants (e.g., 
cytokines, transcription factors, TLR agonists, etc.) (65–68). 
Using this method, we routinely generate immune animals within 
4–5  weeks that harbor diverse antibody repertoires directed 
against therapeutically interesting complex membrane targets.

The ability to overcome immune tolerance remains a central 
problem for antibody discovery using transgenic platforms. For 
our therapeutic antibody campaigns using XenoMouse®, we have 
exploited observations that tolerance can often be overcome by 
adding T-cell epitopes (TCEs) to antigens. Consistent with our 
results, several groups have raised functionally active antibod-
ies against murine antigens in wild-type mouse hosts using this 
strategy (69, 70). The context in which the TCE resides within 
the antigen plays an important role in determining whether it 
is efficacious. Intracellular antigen processing, which ultimately 
yields the peptides for MHC class-II loading and presentation 
to T  cells, may destroy the TCE if it is presented in a context 
optimal for proteolytic processing (71, 72). Thus, finding the ideal 
location within the antigen of interest is a critical factor that must 
be determined empirically.

A number of inbred mouse strains have been identified that 
have tolerance defects that result in auto-antibody production 
(73). Breeding a human antibody transgenic mouse to such 
a strain theoretically produces an animal more prone to break 
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tolerance. A more direct approach is to abolish expression of the 
murine ortholog pertaining to the human target antigen of inter-
est (74). Indeed, we have developed a collection of XenoMouse® 
knockout lines that carry inactivating mutations in a variety of 
genes orthologous to human therapeutic targets. However, major 
caveats are associated with these strategies: (1) many of the auto-
immune strains suffer from health issues, (2) some genes are 
essential for embryonic development and cannot be systemically 
knocked out, and (3) inactivating genes required for mounting 
an immune response compromises the ability of the platform to 
function as desired. Nonetheless, in cases where it is possible, this 
approach is an effective tolerance-breaking strategy.

strAteGies FOr steeriNG ANtiBODY 
rePertOires

The ability to “steer” the immune response toward a desired out-
come has been recognized since Jenner’s revolutionary demon-
stration of induced immunity to the smallpox virus in the 1770s 
(75). Since then, multiple repertoire engineering approaches 
have been used with varying degrees of success. In the context 
of therapeutic antibody development, there is often a desire to 
target (or avoid) a particular epitope on the antigen of interest. 
Here, we will focus on a selection of current strategies that we use 
to direct the XenoMouse® immune system to produce a desired 
antibody repertoire.

One of the most powerful approaches for directing the 
antibody repertoire toward a specific epitope is to engineer the 
antigen such that the desired region is effectively presented to 
the immune system. One way to accomplish this is to selectively 
express or display the minimal domain carrying the epitope(s) of 
interest. Importantly, this method also allows us to avoid immune-
dominant epitopes that otherwise skew the antibody repertoire 
toward undesired specificities (76–78). We have also had success 
using human-mouse chimeras and grafting the ECLs of multipass 
membrane proteins onto related proteins that share a common 
structure with the target of interest. Grafting the target loops onto 
a scaffold that retains key intramolecular interactions raises the 
likelihood that the correct conformational epitopes are retained. 
Moreover, it is often possible to find a suitable scaffold that has 
been demonstrated to have more optimal expression character-
istics, better cell surface retention properties, or that can tolerate 
heterologous sequence fusions. This approach is particularly 
attractive for novel targets where no structural information exists. 
We have had limited success extracting ECLs and immunizing 
them as peptides or when grafting them onto heterologous car-
rier proteins, despite the existence of successful reports (79, 80). 
The success of this strategy depends on the degree to which the 
design goals are tied to a specific functional epitope or if targeting 
multiple epitopes within a structural region is permitted.

The safety of therapeutic antibodies must be evaluated in a 
preclinical setting prior to human trials. This important step of 
drug development usually necessitates that the clinical candidate 
cross-reacts to the appropriate preclinical animal species chosen 
for toxicology (81, 82). To ensure our lead candidates can meet 
this stringent design goal, we frequently incorporate the ortholo-
gous antigen from the toxicology species into our immunization 

protocols. One strategy is to design an immunization campaign 
that alternates between the human and orthologous antigen to 
steer the antibody repertoire toward functional antibodies that 
cross-react to both. Monitoring cross-reactivity throughout the 
course of the immunization campaign allows further customiza-
tion through extended or alternative boosting protocols. In our 
hands, the success of this strategy is tightly correlated with the 
conservation of functional epitopes and becomes significantly 
more challenging as evolutionary distances increase.

cONcLUDiNG reMArKs AND FUtUre 
PersPectives

The convergence of several key technologies, along with our 
increasing understanding of molecular and cellular immunology, 
is allowing researchers to purposefully manipulate the immune 
systems of transgenic animal platforms. Combined with the 
ability of these systems to produce human antibody repertoires 
directed against disease-associated target antigens, we are 
armed with profoundly powerful tools for the discovery of novel 
therapeutics. Advances in the fields of genetic engineering and 
immunization have enabled diverse antibody responses to be 
elicited against a variety of difficult targets. Progress in antigen 
engineering and immunomodulation have allowed researchers 
to steer the immune response toward the production of more 
relevant antibody repertoires.

Despite impressive progress, it is clear that transgenic animal 
platforms have more to offer. Although we can elicit broad and 
diverse repertoires, we lack suitable methods to deeply interro-
gate them. This is particularly problematic when seeking a B cell 
that produces an antibody with a rare specificity. Most current 
strategies rely heavily on hybridoma-driven repertoire sampling, 
a technique known to be notoriously biased and inefficient (83). 
Multiple variations on direct, single B-cell screening are also 
used to identify antibodies of interest (84–90). Unfortunately, 
these methods are generally low throughput, labor intensive, and 
restricted to simple assays, which limits their usefulness to mine 
significant fractions of the elicited repertoire. Other methods 
to display and screen antibody repertoires were developed, in 
part, to address some of these limitations (e.g., phage display). 
However, these approaches suffer from the fact that the native 
pairings are lost, making it even more difficult to recover rare 
antibodies (91–95).

However, notable advancements in high-throughput reper-
toire analysis and recovery have recently been made. It is now 
possible to use next-generation sequencing (NGS) to determine 
all of the individual sequences that make up the complete 
antibody repertoire of an animal (96, 97). For the first time, 
researchers can determine the holistic effects of their attempts 
to influence the repertoire (98). This will clearly impact future 
attempts to maximize diversity and shape repertoires by giving 
us unprecedented insight into the consequences of experimenta-
tion. Similarly, improvements in high-throughput techniques for 
single-cell isolation and screening are allowing scientists to apply 
these techniques to antibody discovery (99–104). Coupled with 
the ability to determine the corresponding antibody sequences 
using NGS, deep interrogation of antibody repertoires is within 
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reach. These advancements will no doubt allow the recovery of 
rare antibodies with properties satisfying the demanding design 
goals of the next generation of therapeutic targets.
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