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The activating receptor NKG2D is peculiar in its capability to bind to numerous and 
highly diversified MHC class I-like self-molecules. These ligands are poorly expressed 
on normal cells but can be induced on damaged, transformed or infected cells, with 
the final NKG2D ligand expression resulting from multiple levels of regulation. Although 
redundant molecular mechanisms can converge in the regulation of all NKG2D ligands, 
different stimuli can induce specific cellular responses, leading to the expression of one 
or few ligands. A large body of evidence demonstrates that NK cell activation can be 
triggered by different NKG2D ligands, often expressed on the same cell, suggesting a 
functional redundancy of these molecules. However, since a number of evasion mecha-
nisms can reduce membrane expression of these molecules both on virus-infected and 
tumor cells, the co-expression of different ligands and/or the presence of allelic forms of 
the same ligand guarantee NKG2D activation in various stressful conditions and cell con-
texts. Noteworthy, NKG2D ligands can differ in their ability to down-modulate NKG2D 
membrane expression in human NK cells supporting the idea that NKG2D transduces 
different signals upon binding various ligands. Moreover, whether proteolytically shed 
and exosome-associated soluble NKG2D ligands share with their membrane-bound 
counterparts the same ability to induce NKG2D-mediated signaling is still a matter of 
debate. Here, we will review recent studies on the NKG2D/NKG2D ligand biology to 
summarize and discuss the redundancy and/or diversity in ligand expression, regulation, 
and receptor specificity.
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iNTRODUCTiON

NK  cells and T  cells respond to pathogens and tumors by the integration of signals deriving 
from numerous cell surface receptors that can initiate, enhance or suppress lymphocyte effector 
functions. While the antigen-specific T  cell receptor—generated by somatic genetic recombi-
nation—dictates T cell recognition and activation, NK cells use a vast repertoire of germ-line 
encoded receptors. Many of them are also expressed by T cells, with NKG2D being one of the 
best characterized receptors shared by both cell types (1).

NKG2D is a C-type lectin-like receptor expressed on NK cells, γδ T cells, CD8+ T cells, and 
some autoreactive or immunosuppressive CD4+ T cells and represents a major recognition recep-
tor for the detection and elimination of damaged, transformed, and pathogen-infected cells. 
Its ligands belong to the H60 (a–c), RAE (α–ε), and MULT1 families in mice, and to the MIC 
(MICA and MICB) and ULBP (ULBP1–ULBP6) families in humans, where their repertoire is 
more complex than in other species (1, 2). In fact, MIC molecules are encoded by the most highly 
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polymorphic human genes after the classical HLA molecules, 
while murine ligands have a low allelic diversity (2).

But which is the reason and biological significance of having 
more than 100 different alleles for MICA, 40 for MICB, and less 
than 20 for the ULBPs, or, in other words, why do we have such 
a diversity of NKG2D ligand genes and alleles? The answer lies 
in the million years of co-evolution between host and pathogens. 
“Cat and mouse” evolution of the host immune system and 
pathogen immune evasion mechanisms are a dominant view of 
immunogenetics, and among the different classes of pathogens, 
there is ample evidence that viruses, in particular herpesviruses, 
could be the major driving force for the evolution of NKG2D 
ligand diversity. Moreover, gene duplications and further muta-
tions within the alleles result in such a ligand variety that there is 
not a single viral protein or RNA described so far able to target all 
of them (2, 3). Thus, possessing a high number of NKG2D ligands 
together with genetic polymorphisms is clearly advantageous to 
the host, allowing it to counteract viral immune evasion strate-
gies. In fact, in the paradigmatic example of cytomegalovirus, 
although viral immune evasion genes are strongly diversified, 
they are not entirely successful, since NK cells are functionally 
active, with NKG2D playing a role in the elimination of infected 
cells (4–8). On the other hand, there is no convincing evidence 
to date that non-viral infectious pathogens are a significant drive 
for the evolution for NKG2D ligand diversity, and for the “cat 
and mouse” competition, thus further supporting a role for the 
viral-mediated selective pressure.

Although the origin and evolution of NKG2D ligand variety 
dates back to host–pathogen competition, infections are far to be 
the only examples in which NKG2D ligands are induced. In fact, 
they can be expressed at different levels on some normal cells 
(9–11), but more typically they are upregulated on tumor cells 
(12). The pathways underlying the regulation of their expression 
are generally activated by different forms of stress and cellular 
abnormalities, often associated with tumor transformation and 
progression, and they can act at different levels: regulation of 
transcription and protein synthesis, posttranslational modifica-
tions, and release of ligands in the microenvironment have been 
all described as important mechanisms controlling NKG2D 
ligand expression (13). Thus, primary tumors frequently express 
NKG2D ligands but, as in the case of viral infections, several 
mechanisms have been identified that elude the detection and 
elimination of tumor cells by the immune system, suggesting an 
NKG2D-mediated immune editing of the tumor (14). As with 
virus-infected cells, alerting the immune system will be then the 
final result of a balance between expression of ligands and tumor 
immunoevasion strategies (15).

Yet, although we have many information today on both the 
NKG2D receptor and its numerous ligands, some key questions 
still await a full comprehension and exhaustive answer. Are the 
ligands regulated in different manner depending on the cell type, 
stimulus, microenvironment, etc? And if so, are there general 
rules for which the different ligands are induced in various cell 
types by different stimuli? Do different ligands and/or alleles  
bind to NKG2D with different affinities? Are the ligands redun-
dant in their functions? Or are they specific?

In this review, we will try to discuss these aspects, illus-
trating the diversity of ligand expression, regulation, and 

receptor specificity, in the context of viral infections and tumor 
transformation.

NKG2D LiGAND ReGULATiON: 
ReDUNDANCY AND SPeCiFiCiTY

NKG2D ligand expression at the cell surface results from multi-
ple levels of regulation, and as a consequence, it is often due to 
the contribution of distinct pathways acting collectively. We will 
discuss the specialization of some regulatory processes intrinsic 
to one or few ligands, as well as the redundancy of other molecu-
lar mechanisms able to simultaneously control the expression of 
several NKG2D ligands in normal conditions and in response 
to different stimuli. Moreover, most of the studies reported 
that modulation of NKG2D ligand expression on “target” cells 
affected NK cell recognition and killing (Table 1).

TRANSCRiPTiONAL ReGULATiON

NKG2D ligands can be regulated at transcriptional level by a 
plethora of molecular pathways; both the multiplicity of transcrip-
tion factors (TFs) and the diversity in the regulatory sequences 
in NKG2D ligand gene promoters can significantly contribute 
to generate the extensive heterogeneous expression of these 
proteins in different cell types. Indeed, distinct TFs are able to 
regulate the transcription of a number of NKG2D ligands in 
different systems; on the other hand, some cell lineage specific 
transcriptional regulators of selected ligands have also been 
described in cancer cells. Finally, epigenetic mechanisms have 
a robust impact on the transcriptional regulation of diverse 
NKG2D ligands.

NKG2D ligand-inducing cell stresses, including proliferative 
signals, malignant transformation, infection, or oxidative stress, 
share the ability to activate a DNA damage response involved in 
maintaining the integrity of the genome (52, 53). In this context, 
the sensor kinases ATM and ATR can trigger a signaling cas-
cade in which different downstream checkpoint kinases, such 
as Chk1 and Chk2, are activated together with the key tumor 
suppressor p53 (54). Interestingly, although the activity of these 
kinases is needed for the induction of MIC, ULBPs or Raet1 
genes (16, 17), p53 can differently regulate several NKG2D 
ligands, e.g., ULBP1–2, with no evident effects on the expres-
sion of MICA/B (22–24). On the other hand, the same pathway 
connected with proliferative signals (19, 20) or triggered by 
oxidative stressors (18) can enhance the activity of either 
NF-κB or E2F1, thus inducing the transcription of MICA/B in 
humans, or RAE-1 in the mouse. In addition, genomic damage 
or cytosolic DNA can lead to the activation of the DNA sensor 
pathway regulated by STING/TBK1 and IRF3, identified as 
regulators of RAE-1 ligands (21). These observations suggest 
that triggering of DDR (16), together with the induction of a 
senescence program (17, 18, 55) and/or the involvement of 
cytosolic DNA/RNA sensors (21), represents a major signal of 
activation/alarm for NKG2D-expressing cells (e.g., NK  cells), 
likely establishing a primary checkpoint for aberrant cell prolif-
eration or infection. Of note, the expression and/or function 
of effector proteins of these pathways can be often altered/
defective in cancer cells, suggesting that their contribution in 
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TAbLe 1 | Mechanisms regulating NKG2D ligand expression in steady state conditions and in response to stimuli.

Regulatory level Condition/stimuli Pathway/molecule Ligand modulation Cell type NK cell functions Reference

TRANSCRiPTiONAL

Ionizing radiation, 
cisplatin, and 5-FU

DDR ↑ MICA, ULBP1–3
↑ RAE-1, MULT1

HFF; C1, C2 cell lines ↑ Cytotoxicity (16)

Doxorubicin and 
melphalan

DDR/E2F1 ↑ MICA Multiple myeloma ↑ Cytotoxicity
↑ IFNγ

(17, 18)

Activation/proliferation NF-κB
NF-κB
E2F1

↑ MICA
↑ MICA
↑ RAE-1ε

T cells
T cells
Primary fibroblasts, embrionic  
brain cells

n.d.
↑ Cytotoxicity
↑ Cytotoxicity

(9)
(19)
(20)

Ara-C STING/TBK/IRF3 ↑ RAE-1 B cell lymphoma ↑ Cytotoxicity (21)

RITA

Vincristine

p53

p53
p53

↑ ULBP1, ULBP2

↑ ULBP2
↑ ULBP1

Cancer cell lines

Cancer cell lines
Multiple myeloma

↑ Cytotoxicity
↑ IFNγ 
↑ Cytotoxicity
↑ Cytotoxicity

(22)

(23)
(24)

Heat shock response HSF1 ↑ MICA, MICB Cancer cell lines
Multiple myeloma

n.d.
↑ Cytotoxicity

(25)
(26)

ER-induced stress CHOP ↑ ULBP1
↑ MULT1

Intestinal epithelial cells ↑ Cytotoxicity (27)

Steady state STAT3 ↑ MICA Colonrectal cancer
Multiple myeloma

↑ Cytotoxicity
↑ IFNγ
↑ Cytotoxicity

(28)
(29)

Steady state IKZE1/3, IRF4 ↑ MICA Multiple myeloma ↑ Cytotoxicity (30, 31)

RNA SPLiCiNG

Steady state RBM4 ↓ ULBP1 HAP1 cell line n.d. (32)

POSTTRANSCRiPTiONAL

Steady state AUF1 ↓ ULBP2, MICB Epithelial cells n.d. (33)

Steady state miR34a, c
miR-519a-3p
miR-93

miR-20a

↓ ULBP2
↓ MICA, ULBP2
↓ MICA, MICB, 
ULBP3
↓ MICA, MICB, 
ULBP2

Melanoma cell lines
Mammary epithelial cell line
Glioma cell lines

Cancer cell lines

↓ Cytotoxicity
↓ Cytotoxicity
↓ Cytotoxicity

↓ Cytotoxicity

(34)
(35)
(36)

(37, 38)

IFNγ miR-520b ↓ MICA Cancer cell lines n.d. (39)

HCMV, KSHV, and 
EBV

miR-UL112; 
miRK12-7; and 
miR-BART2-5

↓ MICB Infected HFF cells; cancer cell lines ↓ Cytotoxicity (40, 41)

JCV miR-J1-3p ↓ ULBP3 Infected cancer cell lines ↓ Cytotoxicity (42)

Posttranslational

Steady state Ubiquitination ↓ MULT1 Cancer cell lines n.d. (43)

KSHV K5 ubiquitin ligase ↓ MICA Cancer cell lines ↓ Cytotoxicity (44)

Histamine Ubiquitination ↓ MICA Monocytic leukemia ↓ Cytotoxicity (45)

Steady state ADAMs and MMPs 
(protease-mediated 
shedding)

↓ MICA, MICB, 
ULBP2

Cancer cell lines ↓ Cytotoxicity
n.d.

(46–48)
(49–51)

↓ Decrease; ↑ increase; HFF, human foreskin fibroblasts; HCMV, human cytomegalovirus; EBV, Epstein–Barr virus; KSHV, Kaposi’s sarcoma-associated herpes virus; JCV,  
human polyoma virus JC; ADAM, a disintegrin and metalloprotease; MMP, matrix metalloprotease; n.d., not done; CHOP, C/EBP homology protein.
Ref. (48) provides an ample overview on protease-mediated shedding of NKG2D ligands.
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the regulation of one or more specific ligands guarantees the 
expression of these molecules in different types of tumors  
or at different disease stages.

Mechanisms of chromatin remodeling are also widely impli-
cated in the transcriptional regulation of almost all NKG2D 
ligands. Both hypomethylating agents and histone deacetylase 

inhibitors have been shown to upregulate MICA/B and ULBPs 
surface levels in different tumors and infected cells (56–61), 
thus indicating that transcriptional silencing of these genes 
is largely dependent on events of DNA methylation and dea-
cetylation. Accordingly, epigenetic dysregulation of NKG2D 
ligand promoters is an important immune evasion mechanism 
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helping cancer or infected cells to acquire resistance to NK cell 
surveillance.

An example of a molecular pathway selectively targeting 
MICA and MICB molecules is the heat-shock response that 
regulates their expression in different models. In this regard, 
ChIP experiments indicated that the MICA/B promoters are 
occupied by the HSF1 in heat-shocked cells, or in cells where 
the basal repression of this factor by the chaperone HSP90 is 
abrogated by specific small molecule inhibitors or proteotoxic 
stress (25, 26). Although promoter sequence analyses indicate 
that potential canonical heat-shock elements also exist in some 
of the ULBP genes (62, 63), no evidence regarding heat shock-
induced ULBP expression has been reported to date.

In a different context, accumulation of improperly folded 
proteins or alterated UPR, as shown in dysregulated intestinal 
epithelial cells and human cell lines, can induce the selective 
expression of diverse ULBPs via C/EBP homology protein- 
mediated transactivation, and increase NKG2D-mediated epi-
thelial cytolysis (27). In addition, a critical role for the TF ATF4 
has been also described for UPR-induced upregulation of ULBP1 
in human cell lines (32).

Different mechanisms of transcriptional repression have 
been described only for MICA; they are caused by cell type-
specific proteins, the expression and/or function of which is 
often critical for the survival and proliferation of cancer cells. 
A cogent example is the TF STAT3 shown to directly interact 
with MICA promoter and repress its transcription in colon 
cancer cells (28); the same mechanism was found to occur also 
in multiple myeloma cells where the serine–threonine kinase 
GSK3 was identified as an important upstream regulator of 
STAT3 contributing to the inhibition of MICA expression (29). 
Furthermore, three TFs highly expressed in multiple myeloma 
and pivotal regulators of malignancy-specific gene expression, 
the Ikaros family zinc finger protein-1 and -3 (IKZF1 and 
IKZF3) and IRF4, are potent repressors of MICA expression in 
this hematological cancer (30, 31).

Connected with these mechanisms able to negatively regulate 
the expression of NKG2D ligands at transcriptional level is the 
polymorphism of their promoters. It is well known that promot-
ers of MICA and MICB are polymorphic (12 MICA/B promoter 
haplotypes) with some polymorphisms associated with reduced 
expression (64, 65) or increased susceptibility to specific 
diseases (66). Accordingly, binding sites for TFs in MICA/B  
promo ters have been demonstrated to be interrupted by 
polymorphisms within these regions, resulting in allele-specific 
regulation (65). These findings indicate that individuals with the 
same alleles might show variation in the expression of MICA and 
MICB because of polymorphism in their promoters. Altogether, 
these modifications may lead to selective transcriptional regula-
tion of distinct NKG2D ligands.

In summary, despite most of the transcriptional regulatory 
mechanisms are common to distinct ligands, assuring the recog-
nition and elimination of stressed cells, a number of studies 
indicate a certain level of specificity in the type of “stressor” 
that allows the expression of a particular ligand. Heat-shock 
response acts essentially on MICA/B but not on ULBPs (25); 
ligand induction in proliferating cells is characteristic of some 

NKG2D ligands like RAE-1 but not MULT1 or H60 (20) and in 
proliferating T cells MIC molecules are induced with a faster 
kinetic when compared with ULBPs (19, 67); ER-induced stress 
results in selective upregulation of ULBP1 in humans and 
MULT1 in mice (27). Thus, different stimuli induce specific cel-
lular responses leading to the expression of one or few ligands, 
originating a sophisticated mechanism to alert the immune 
response.

RNA SPLiCiNG

Regulation of RNA splicing represents another mechanism to 
control NKG2D ligand expression. In particular, Gowen et  al. 
have shown that the RNA-binding protein (RBP) RBM4 supports 
ULBP1 expression by suppressing a novel alternatively spliced 
isoform of ULBP1 mRNA and appears to be specific for the  
differential splicing of ULBP1 but not of other NKG2D ligands 
(32). Although alternative splicing isoforms have been described 
for MICA (68), ULBP4 (69) and ULBP5 (70), the molecular 
mechanisms involved in their regulation is still unknown.

POSTTRANSCRiPTiONAL ReGULATiON

Stabilization of NKG2D ligand mRNA is considered an impor-
tant mode to strictly control ligand expression mainly under 
normal conditions. In this context, a new pathway by which 
NKG2D ligand mRNAs (i.e., MICA, MICB, and ULBP2) are 
constitutively targeted by AUF1 proteins that mediate RNA 
degradation has been identified (71). In response to EGFR 
activation, either by its ligand or by some type of stress, AUF1 
molecules are excluded from the nucleus allowing NKG2D 
ligand mRNA to be stabilized. In addition, the oncogenic RBP 
IMP3, which selectively binds to ULBP2 but not ULBP1 and 
ULBP3 mRNA, leads to ULBP2 transcript destabilization and 
reduced ULBP2 surface expression in several human cell lines 
(33). Similarly, Nachmani et  al. identified other RBPs able to 
bind to MICB RNA and regulate its expression (72).

A number of studies have shown that distinct NKG2D 
ligands are regulated by microRNAs (miRNAs), which are short, 
non-coding RNAs that exert their regulation of gene expres-
sion posttranscriptionally by targeting 3′-untranslated region 
(3′UTR) of the target mRNAs and leading to degradation or 
translation inhibition (73). Different sites for cellular miRNAs 
within the 3′UTRs and/or the 5′UTR of MICA, MICB, and 
ULBP1 have been identified (39, 74–77). Interestingly, several 
viruses use miRNAs to hinder NKG2D ligand expression and 
evade the NKG2D-dependent immunosurveillance. Indeed, 
Stern-Ginossar and colleagues identified a group of endogenous 
cellular miRNAs regulating MICB and MICA expression by 
targeting a specific site also used by the human cytomegalovi-
rus (HCMV) miRNA miR-UL112 (40, 74). Despite MICA and 
MICB display almost identical putative binding sequence for 
miR-UL112, the cooperation between miR-UL112 and cellular 
miRNA was reported to suppress only MICB expression dur-
ing HCMV infection, suggesting that additional factors are 
involved in determining a functional binding site (40). Similarly, 
results of functional approaches and basic bioinformatic tools 
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demonstrated that other herpesvirus miRNAs (i.e., Kaposi’s 
sarcoma-associated herpesvirus, KSHV, and Epstein–Barr 
virus) downregulate preferentially MICB but not MICA expres-
sion (41). The human polyoma viruses BKV and JCV use an 
identical miRNA to evade NK cell control by downregulating 
the stress-induced ligand ULBP3 (42).

Moreover, miRNA-mediated NKG2D ligand regulation occurs 
also in cancer cells. Indeed, the tumor-suppressive miR34a and 
miR34c strongly downregulated ULBP2 in human melanoma 
(34). The downregulation of ULBP2 and MICA expression by 
miR-519a-3p has been implicated in the inhibition of NK cell-
mediated cytotoxicity of breast cancer cells (35), whereas miR-93 
mimics decreased cell surface expression of MICA, MICB, and 
ULBP3 by translational repression, thus contributing to the 
immune evasion of glioma cells (36). Recently, miR-17-92 cluster 
was also reported to downregulate MICA/B protein expression 
in ovarian tumors (37), and breast cancers (38). In the latter, the 
authors provided the evidence that miR-17-92 members affected 
ULBP2 expression by inhibiting the MAPK/ERK signaling path-
way (38). Finally, also some cytokines regulate NKG2D ligand 
expression by miRNAs. In particular, IFN-γ increased expression 
of miR-520b able to inhibit MICA transcript levels in different 
types of cancer cell lines (39).

All together these studies highlight the fact that cellular miR-
NAs and RBPs represent an important way to keep a low NKG2D 
ligand expression in steady state conditions, and they emerge as a 
general mechanism to regulate both ULBPs and MIC molecules.

POSTTRANSLATiONAL ReGULATiON

The surface expression levels of a determined NKG2D ligand 
can be finely controlled by mechanisms implicated in the 
regulation of its release as soluble form by various processes 
including protease-mediated cleavage, exosome secretion, and 
alternative splicing. The choice of one of these processes is 
mainly dependent on the ligand type as well as its allelic variant.

In general, both MIC and ULBP molecules are cleaved by 
proteases belonging to two distinct families, the matrix metal-
loproteinases (MMPs) and a disintegrin and metalloproteases 
(ADAMs) (46–51) that undergo modulation of their activity 
and expression (78–81). Different susceptibility to the protease-
mediated cleavage has been described for several NKG2D 
ligands. As such, ULBP1, ULBP2, and ULBP3 are released from 
cells with different kinetics and by distinct mechanisms, being 
ULBP1 and ULBP3 more resistant to cleavage and preferentially 
secreted into exosome-like vesicles (82). Similarly, the short-
allelic variant MICA*008, the prototype of a group of MICA 
alleles named MICA*A5.1, is resistant to proteolytic cleavage 
and mostly released from cells in association with exosomes  
(83). Also the MICA-129 dimorphism, causing a valine to methio-
nine exchange at position 129, has been described to affect MICA 
shedding, but the mechanism behind is largely unknown (84).  
Thus, the existence of NKG2D ligands and/or allelic variants with 
distinct sensitivity to proteases might have relevant functional 
consequences. In this regard, genotoxic agents have been reported 
to selectively stimulate the shedding of MICB or of the allelic vari-
ant MICA*019 in a ADAM10-dependent manner, whereas the 

release of the short MICA*008 allele was not perturbed. Therefore, 
during the course of chemotherapy, MICA*008 appears to be 
more stable on the tumor cell surface thus favoring the recogni-
tion and killing by NK  cells (85). In another study, expression 
of the metalloprotease tissue inhibitor of metalloproteinase 3 
(TIMP3), induced by specific miRNAs in HMCV-infected cells, 
resulted in an enhanced activity of ADAM17 and MMP14 and 
increased MICA shedding (86). Moreover, an increased protease-
mediated shedding of MICA, MICB, and ULBP2 was described 
in HIV-infected CD4+ T cells (87).

On the other side, the soluble form of the high-affinity 
mouse NKG2D ligand, MULT1, promotes NK  cell activation 
and tumor rejection (88). Indeed, in an in vivo mouse model, 
Deng and coworkers reported that in the presence of this soluble 
ligand, NK cells were not desensitized because soluble MULT1 
prevented the chronic interactions between NKG2D and its 
ligands on cells of the tumor microenvironment (88). However, 
these effects appear to be restricted to the mouse and could 
depend on the capacity of MULT1 to bind to NKG2D with an 
elevated affinity respect to other mouse NKG2D ligands.

In regard to the exosome secretion, both MIC and ULBP 
ligand family members can be released by this class of nanovesi-
cles (89–91), and some of them such as ULBP3 or ULBP1 (82) 
or the allelic variant MICA*008 (83) are secreted exclusively by 
exosomes. Interestingly, increased exosome secretion has been 
observed in response to different types of stress (90, 92, 93); 
however, unlike the protease-mediated shedding, it is still unclear 
whether the release of NKG2D ligands via exosomes could result 
in the reduction of their surface expression.

In addition to shedding and exosomal secretion, alternative 
splicing represents another mode to generate soluble forms of 
some ligands as demonstrated for ULBP4 and ULBP5 (69, 70).

Several reports have provided also evidence that other post-
translational mechanisms concur to regulate NKG2D ligand 
expression at protein level, including protein turnover and 
ubiquitination. For instance, stability of ULBP1 and MICB at the 
plasma membrane is lower than for other ligands, and in part 
occurs because of a rapid internalization (94, 95). The intracellu-
lar sequestration of immature forms of MICA in the endoplasmic 
reticulum was observed in melanoma cancer cells and proposed 
as an immune escape strategy (96).

Reduction of MICA expression by ubiquitination has been 
described in different models (44, 45). It is used as evasion 
strategy by KSHV because it encodes the K5 ubiquitin ligase that 
ubiquitinates MICA cytoplasmic tail, thus causing a profound 
downregulation of this ligand on the surface of infected cells  
(44). Of note, the truncated allelic variant MICA*008, lacking 
lysine residues in its cytoplasmic tail, was resistant to KSHV-
induced downregulation suggesting a selective advantage for 
individuals carrying such allele. Moreover, it has been shown 
that the murine ligand MULT1 is ubiquitinated and degraded in 
normal cells, and this process is reduced in response to heat shock 
or ultraviolet irradiation (43). Thus, targeting the ubiquitination 
machinery in cancer or virus-infected cells might increase their 
susceptibility to NK cell-mediated killing.

In conclusion, structural characteristics inherent to a specific 
ligand/allelic variant affecting the different susceptibility to 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


6

Zingoni et al. NKG2D and Its Ligands

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 476

the protease-mediated cleavage, the ubiquitination-mediated 
degradation and its stability on the cell surface, represent all 
fundamental elements to successfully complete the long route 
that finally allows the ligand to be expressed on the cell surface.

DiSTiNCT LiGANDS OR ALLeLiC 
vARiANTS DiFFeR iN THeiR AbiLiTY  
TO MODULATe NKG2D-MeDiATeD 
SiGNALiNG

Given that NKG2D ligands are characterized by variable domain 
structure, distinct mode of membrane anchor and diverse affin-
ity for their receptor, it is likely that they are not equally able 
to evoke activating signals. This paragraph summarizes recent 
findings that support the capability of NKG2D ligands to differ-
ently regulate NKG2D signaling events in both NK and T cells.

Engagement of human NKG2D elicits cytolytic responses 
overcoming inhibitory signals on NK cells and enhancing TCR-
dependent activation in CD8+ T cells, Vγ2Vδ2, and gut intraepi-
thelial Vγ1δ1 T cells (97–100). In CD8+ T cells, both co-stimulatory 
and T cell receptor independent functions have been described 
(101–104), whereas Vγ9Vδ2 T cells can be directly activated by 
NKG2D in the absence of TCR-dependent antigen recognition 
(105). Of note, NKG2D engagement alone can elicit effector func-
tions only in NK cells preactivated by cytokines including IL-15 
(106) and IL-2 (107), whereas the synergistic engagement of at 
least another activating receptor is required on freshly isolated 
NK cells (108). Thus, NKG2D can provide either a co-stimulatory 
signal or a direct activating signal depending on the cell context 
and/or the initial influence of cytokine environment.

In humans, NKG2D homodimer forms a hexameric complex 
with two homodimers of the transmembrane adaptor DNAX-
activating protein 10 (DAP10), which is involved in intracellular 
signal propagation (109). Indeed, the cytoplasmic tail of DAP10 
contains a tyrosine based signaling motif (YINM), which is 
tyrosine phosphorylated by Src-family kinases upon antibody-
mediated NKG2D engagement (110). DAP10 phosphorylation 
promotes the recruitment of the p85 regulatory subunit of PI3K 
and of the Grb2/Vav1 complex, that, in turn, is required for the 
phosphorylation of Src homology 2 domain-containing leuko-
cyte protein of 76 kD (SLP-76) and of phospholipase C gamma 
(PLCγ2) (109–111).

Even though the interaction with target cells exposing one or 
more NKG2D ligands triggers a functional response, the relative 
contribution of distinct ligands to specific signaling pathways 
remains elusive.

Of note, persistent stimulation with membrane-bound or 
soluble NKG2D ligands down-modulates receptor expression 
and ultimately impairs NKG2D-dependent functions on both 
NK and CD8+ T cells (46, 91, 112–115). This functional impair-
ment is achieved by a rapid NKG2D internalization from plasma 
membrane and sorting along the endocytic compartments till 
lysosomes, where internalized receptor complexes are degraded 
(113, 116–118).

In addition to reduce surface receptor expression, NKG2D 
endocytosis also plays an indispensable role in NKG2D-mediated 

signaling. Indeed, recent findings demonstrate that receptor 
endocytosis is required for cytotoxic granule secretion and IFNγ 
production. In particular, the activation of extracellular signal-
regulated kinases 1 and 2 (ERK1 and ERK2) was found to occur in  
signaling-competent endocytic compartments where the inter-
nalized complexes are also transported, demonstrating that  
NKG2D continues to signal before reaching lysosomes for deg-
radation (119). Whether distinct ligands differ in their ability to 
promote signaling from endosomes is currently unknown.

Regarding the extent of receptor internalization and the 
rate of NKG2D lysosomal degradation, the nature of the ligand 
appears to play a pivotal role, as demonstrated by comparing 
the ability of membrane-bound MICA and ULBP2 to regulate 
NKG2D expression (118). Indeed, MICA promotes a more rapid 
NKG2D down-modulation if compared with ULBP2, leading to 
a stronger lysosomal degradation (Figure 1A). Although MICA 
and ULBP2 resulted equally able to elicit NKG2D-mediated 
NK  cell cytotoxic function, the ability to further perform 
cytotoxicity resulted dramatically impaired only upon MICA-
induced NKG2D down-modulation.

All together these results suggest that distinct ligands have 
the potential to activate selective signaling pathways resulting 
in different routes of receptor endocytosis. To this regard, we 
have reported that phosphorylation of the ubiquitin ligase 
c-Cbl, a negative regulator of NKG2D signaling (120), and the 
activation of the ubiquitin pathway is indispensable for MICA- 
but not ULBP2-induced NKG2D internalization and degrada-
tion (Figure 1A) (118). This selective behavior can be either 
attributable to MICA and ULBP2 distinct mode of membrane 
anchor (transmembrane and GPI-linked, respectively) and/
or to differences in their affinity/avidity for NKG2D. To this 
regard, recent evidences demonstrate that allelic variants of the 
same ligand that differ in their avidity for NKG2D can also 
vary in their ability to tune the threshold of NKG2D signaling 
(121, 122).

Regarding MICA, the dimorphism in the position 129 
strongly affects ligand ability to promote NK  cell effector 
functions and to co-stimulate CD8+ T  cell activation (121). 
MICA-129Met allele binds to NKG2D with higher avidity than 
MICA-129Val variant (123) and appears to be more efficient in 
the induction of proximal signaling events such as Src phos-
phorylation and in triggering NK cell degranulation and IFNγ 
release (121). In CD8+ T  cells, MICA-129Met co-stimulates 
IL-2 production and proliferation with a more rapid kinetic 
than the MICA-129Val variant. On the other hand, NKG2D 
engagement by the MICA-129Met isoform results in a stronger 
receptor down-modulation in both NK and T cells leading to a 
severe impairment of NKG2D-mediated functions and avoid-
ing excessive cell activity (Figure 1B).

By comparing the allelic variants of ULBP6, the most poly-
morphic ULPB ligand (124, 125), the amino acid substitution 
(from Arg to Leu) in position 106 reported in the ULBP0602 
variant was found to be responsible for the great enhancement 
in affinity and stability of NKG2D interaction compared with 
the ULBP0601 allelic variant (122). Unexpectedly, the higher 
affinity variant resulted less able to elicit both NKG2D down-
modulation and functional responses in NK cells as well as in 
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FiGURe 1 | Functional consequences of the interaction of NKG2D with different ligand/allelic variants. (A) Transmembrane MICA and GPI-linked ULBP2 ligands 
result equally able to trigger Vav1 and PI3K activation and to induce NK cell cytotoxic function. However, a stronger receptor internalization and lysosomal 
degradation due to the activation of the ubiquitin pathway was observed upon MICA engagement. Whether Cbl is the ubiquitin ligase regulating NKG2D/
DNAX-activating protein 10 ubiquitination and whether ULBP2 ligand is able to activate NKG2D-mediated signals from endosomal compartment is not clear  
(dashed arrows). (b) MICA-129Met, which binds to NKG2D with higher avidity compared with MICA-129Val allele, induces stronger Src phosphorylation, thus 
triggering both NK cell and CD8+ T cell effector functions with higher efficiency. Concomitantly, a higher extent of NKG2D down-modulation is also induced upon 
MICA-129Met allele engagement. (C) The rigid and stable binding to NKG2D of the high-affinity ULBP0602 variant impairs its ability to induce Ca++ flux and effector 
functions in NK cell and CD8+ T cells as well as NKG2D down-modulation. As consequence, ULBP0602 engagement results less efficient compared with the low 
affinity variant ULBP0601.
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CD8+ T cells and γδT cells (Figure 1C). To explain these find-
ings, the authors speculated that a rigid and stable interaction 
with the higher affinity ligand ULBP0602 limits the ability of 
cytotoxic lymphocytes to serially kill their targets.

Collectively, these results outline a hierarchy of cellular 
responses to different allelic variants of NKG2D ligands, 
sugges ting that they elicit heterogeneous functional outcomes 
(Figures  1B,C). In addition, they support the notion that the 
strength of NKG2D-mediated signaling positively correlates 
with the rapidity and degree of receptor down-modulation. The 
interconnection between signaling and endocytosis guarantees 
a rapid and tight regulation of NKG2D activation preventing 
strong intracellular signals that could drive autoimmune 
responses.

A further level of complexity is given by the potential ability of 
soluble NKG2D ligands to modulate NKG2D signal propagation 
by regulating receptor surface expression. Several lines of evi-
dence have demonstrated that the presence of soluble ligands in 
the sera of neoplastic patients correlates with a reduced NKG2D 
surface expression (113, 114, 126), sugges ting that soluble 
NKG2D ligands share with their respective membrane-bound 
forms the ability to regulate receptor expression. However, a 
direct comparison between ligands shed after proteolytic cleav-
age and ligands released in exosomes, demonstrate a higher abil-
ity of the latter to induce receptor down-modulation. Regarding 
MICA, the GPI-linked allele MICA*008 that is released in 
association with exosome membranes, is a more potent NKG2D 
down-modulator compared with metalloproteinase-shed 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Zingoni et al. NKG2D and Its Ligands

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 476

MICA variants (83). Accordingly, exosome-released ULBP3 
molecules reduce NKG2D surface expression and compro-
mise NKG2D-mediated NK  cell cytotoxic function with 
higher efficiency than the metalloproteinase-shed ULBP2 
ligands (82). These results may be explained by the presence 
of ligands on exosomal membranes that can multimerize and  
bind to NKG2D with higher avidity than the soluble counter-
part. Whether the ability of exosomal multimeric ligands to 
efficiently down-modulate receptor expression reflects their 
ability to induce intracellular signals and elicit selective func-
tional responses is currently unknown.

CONCLUSiON

Diversified modalities of NKG2D ligand regulation can be 
applied to all NKG2D ligands while others are specific just 
for one or a few of them. In steady state conditions, NKG2D 
ligand expression is tightly repressed to maintain immune 
homeostasis. In response to external “danger” signals (i.e., 
stress and pathogens) or during neoplastic transformation, 
increased transcriptional activity of NKG2D ligand genes 
together with a perturbation of their regulatory mechanisms at 
mRNA and protein levels leads to the ultimate ligand cell sur-
face expression. The sum of critical factors (the type of stressor, 
the structural characteristics of the ligand/allelic variant and 
the cellular context) determines the expression of one or more 
but not all ligands on the cell surface. Thus, despite some com-
mon regulatory mechanisms, NKG2D ligands are not equal or 
redundant in terms of final outcome, and the “specificity” of 
these cellular responses triggered by a multiplicity of ligands 

assures a sophisticated mechanism to alert the immune 
response. The “one for all” aspect is another compelling and 
still unsolved issue of the NKG2D-dependent immunosurveil-
lance, where the large variety of ligands appears functionally 
non-redundant, even though they all engage the same receptor. 
In this regard, the expression of a certain ligand or a particular 
allelic variant is essential to drive a proper immune response. 
To date, many questions still remain open, and it is unclear 
if a hierarchy exists and if one of them can dominate in the 
triggering ability when distinct ligands have reached the cell 
surface; alternatively it is plausible that the ligands may act 
“all for one,” contributing in concert to the NKG2D-mediated 
functional response. Thus, a detailed characterization of the 
cell biology of single NKG2D ligand will be indispensable to 
warrant targeted modulation of this system in the course of a 
viral infection or neoplastic transformation. 
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