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There is a need to develop improved methods to treat and potentially cure HIV infection. 
During chronic HIV infection, replication is concentrated within T follicular helper cells (Tfh) 
located within B cell follicles, where low levels of virus-specific CTL permit ongoing viral 
replication. We previously showed that elevated levels of simian immunodeficiency virus 
(SIV)-specific CTL in B cell follicles are linked to both decreased levels of viral replication 
in follicles and decreased plasma viral loads. These findings provide the rationale to 
develop a strategy for targeting follicular viral-producing (Tfh) cells using antiviral chimeric 
antigen receptor (CAR) T cells co-expressing the follicular homing chemokine receptor 
CXCR5. We hypothesize that antiviral CAR/CXCR5-expressing T cells, when infused into 
an SIV-infected animal or an HIV-infected individual, will home to B cell follicles, suppress 
viral replication, and lead to long-term durable remission of SIV and HIV. To begin to test 
this hypothesis, we engineered gammaretroviral transduction vectors for co-expression 
of a bispecific anti-SIV CAR and rhesus macaque CXCR5. Viral suppression by CAR/
CXCR5-transduced T cells was measured in vitro, and CXCR5-mediated migration was 
evaluated using both an in vitro transwell migration assay, as well as a novel ex vivo tissue 
migration assay. The functionality of the CAR/CXCR5 T cells was demonstrated through 
their potent suppression of SIVmac239 and SIVE660 replication in in vitro and migration to 
the ligand CXCL13 in vitro, and concentration in B cell follicles in tissues ex vivo. These 
novel antiviral immunotherapy products have the potential to provide long-term durable 
remission (functional cure) of HIV and SIV infections.

Keywords: hiV, simian immunodeficiency virus, chimeric antigen receptor, car-T cells, cXcr5, B cell follicles, 
cD8+ T cells, hiV cure strategies

inTrODUcTiOn

Over 2 million individuals become infected with HIV each year, and nearly 37 million people are 
currently infected with HIV (1). Current antiretroviral therapy (ART), while effective at reducing 
viral loads, does not eliminate the virus, thus requiring HIV-infected individuals to remain on ART 
for life. ART is expensive, inconvenient, demands strict adherence, and, in some cases, leads to 
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drug resistance. In addition, HIV-infected individuals remain at 
increased risk of cardiovascular disease (2), neurological disease 
(3), and malignancies (4), and have decreased life expectancies 
(5). Given these issues and risks, there is great global interest in 
developing strategies to fully eradicate infectious HIV from the 
body (“sterilizing cure”), or to achieve durable viral remission in 
the absence of ART (“functional cure”) (6).

During chronic HIV and simian immunodeficiency virus 
(SIV) infections prior to the development of AIDS, virus replica-
tion is most concentrated within B cell follicles (7–12), primarily 
within T follicular helper cells (Tfh) (10, 13, 14). Replication is 
further sustained by infectious virions adhering to the surface 
of follicular dendritic cells (FDC) via antibody and complement 
complexes in germinal centers (15–19). Although virus-specific 
CD8+ T cells are critical for controlling HIV and SIV infections, 
they fail to fully suppress viral replication (20). Several mecha-
nisms are thought to contribute to this failure including: the 
emergence of CTL escape variants (21–28), viral induced MHC 
class I down-modulation (29, 30), viral latency (31), CTL exhaus-
tion (32–34), and potential Treg inhibition of CTL (35–39).  
A particularly compelling factor, which we address in this study, is 
that levels of virus-specific CD8+ T cells are low within B cell fol-
licles, thereby permitting ongoing viral replication (8, 9, 40–42).

Migration of cells into the B cell follicle is mediated through 
the chemokine receptor, CXCR5 (43–45), and its ligand, the 
chemokine CXCL13 (46, 47), which is expressed by B  cells 
(48–50) and FDCs in follicles (47, 51). We hypothesize that 
increasing levels of virus-specific CTL in B cell follicles will lead 
to significantly better control of viral replication in B cell follicles 
and might lead to sustained remission of HIV infection (42). 
Several lines of evidence support this hypothesis. In lymphocytic 
choriomeningitis virus (LCMV)-infected mouse models, adop-
tive transfer of CXCR5-expressing, LCMV-specific CD8+ T cells 
controlled LCMV infection of Tfh cells and reduced viral loads 
significantly better than CXCR5− CD8+ T  cells (52, 53). We 
previously showed that levels of SIV-specific CTL in lymphoid 
compartments predicted levels of viral replication in lymphoid 
compartments (8) and that levels of SIV-specific CTL in fol-
licles tended to predict plasma viral loads (36). Furthermore, it 
was reported recently that levels of virus-specific CXCR5+ cells 
inversely correlated with viral load in HIV-infected individuals 
(52). In addition, in a recent SIV CTL vaccine study, it was found 
that vaccine induced protection from pathogenic SIV challenge 
was associated with increased levels of CXCR5+ virus-specific 
CD8+ T cells (54). Thus, increasing virus-specific CD8+ T cells in 
B cell follicles is predicted to lead to better control of viral replica-
tion in lymphoid follicles and decreased viral loads.

In the field of cancer immunotherapy, dramatic successes 
have been achieved by genetically engineering autologous patient 
T cells to express a chimeric antigen receptor (CAR). CAR-T cells 
have shown great promise in treating certain B cell leukemias and 
lymphomas, and are being actively pursued to treat additional can-
cers including solid tumors (55–57). Several features make CAR 
technology particularly appealing in HIV functional cure efforts 
(58–61). CAR activity is MHC-independent, and thus not com-
promised by HIV-1 nef-mediated down-modulation of MHC-I 
in infected cells that facilitates their evasion from conventional 

cytotoxic T cells (62). The target for an anti-HIV CAR is the viral 
Env glycoprotein, which is expressed exclusively on infected cells. 
Env is absolutely essential for virus infectivity and spread, and the 
targeting motif of the CAR can be designed to recognize strictly 
conserved Env elements that are refractory to mutational escape. 
Interestingly, the very first clinical tests of CAR technology were 
directed against HIV-1 infection, using first-generation CAR 
constructs employing CD4 as the targeting motif; while minimal 
virus suppression was achieved, the gammaretroviral-engineered 
CAR-T were found to be safe, and had stable levels of engraftment 
with a decay half-life exceeding 16 years (63–66).

Achieving durable HIV/SIV remission in the absence of 
ART demands long-term persistence of functional CAR-T cells, 
with minimal chance for virus mutational escape and immune 
response against the CAR. To this end, we have designed 
bispecific CARs containing CD4 (domains 1 and 2) linked to a 
second moiety that binds to a distinct highly conserved site on the 
HIV-1 Env glycoprotein. The second moiety both enhances CAR 
potency and prevents the CD4 from acting as an entry recep-
tor in CAR-expressing CD8+ T cells (67, 68). In a favored CAR 
construct (68), the second moiety is the carbohydrate recognition 
domain of mannose-binding lectin (MBL), which binds to the 
dense oligomannose patch that is highly conserved on clinically 
relevant HIV-1 variants. Indeed, compared to a monospecific 
CD4 CAR, the CD4–MBL CAR displays superior suppressive 
activity against genetically diverse HIV-1 primary isolates. 
Immunogenicity concerns are minimized with the CD4–MBL 
CAR, since both Env-binding components are derived entirely 
from human protein sequences; moreover, the MBL moiety lacks 
the equivalent of variable regions that are likely to elicit immune 
responses during the long-term persistence required to durably 
maintain HIV suppression.

In the present study, we address another major concern for 
achieving effective HIV control, namely the likely requirement to 
enhance CAR-T cell trafficking to B cell follicles. To this end, we 
engineered rhesus macaque T cells to co-express CXCR5 along 
with an all-rhesus variant of the CD4–MBL CAR. Results from 
in vitro and ex vivo assay systems suggest promising potential of 
this approach as a means to direct CAR-T cells to B cell follicles, 
where HIV replication is concentrated.

MaTerials anD MeThODs

Plasmid constructs and retroviral Vectors 
encoding cars
All CAR targeting motifs were synthesized by GenScript, 
codon-optimized for expression in rhesus macaque cells, and 
subcloned into the plasmid pMSGV1 gammaretrovirus vector 
backbone (69). The active antiviral CAR employed in this study 
was a rhesus variant of the human bispecific CAR designated 
CD4–MBL (68). As a non-reactive negative control, we used the 
previously described 139 CAR, which does not react with cells in 
this system. The targeting domains were linked to extracellular 
hinge, transmembrane and cytoplasmic co-stimulatory domain 
of rhesus CD8 followed by the activation domain of rhesus CD3 
zeta, as previously described (67, 68).
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T  cells were transduced to express either the rhCD4–MBL 
CAR, rhCXCR5, or the rhCD4–MBL CAR plus rhCXCR5. For 
co-expression, bicistronic plasmid constructs (produced by 
GenScript) were designed in which the rhCD4–MBL gene was 
linked to the downstream rhCXCR5 gene. CXCR5 expression 
was driven by either the ECMV internal ribosome entry site 
(IRES) or the self-cleaving P2A peptide from porcine tescho-
virus-1 with a GSG linker added at the N-terminus of the P2A 
peptide sequence (70). The corresponding gammaretroviruses 
were generated for expression of these genes in rhesus macaque 
T cells. In most experiments, these plasmids were co-transfected 
with the plasmid pBS-CMV-gagpol (71) (a gift from Dr. Patrick 
Salmon, Addgene plasmid #35614), a plasmid encoding RD114 
envelope glycoprotein (72), and the plasmid pMD.G encoding 
VSV-G envelope (73) (a gift from Dr. Scott McIvor) at ratios of 
3:1:1:0.4, respectively. Retroviral vector supernatants were col-
lected 48 h after transfection, and were titrated by transducing 
HEK293T cells. Retrovirus was snap frozen and stored at −80°C. 
In the SIV suppression studies, gammaretrovirus vector produc-
tion was carried out as previously described (67).

Transduction of rhesus T cells
Primary rhesus macaque PBMC, or CD8+ T  cells enriched by 
negative selection (Miltenyi), were activated for 2 to 3  days in 
six-well plates with plate-bound anti-CD3 (FN18) and soluble 
anti-CD28.2 (both from NHP Reagent Resource) in either RPMI 
supplemented with 10% heat inactivated FBS, 100 U/ml penicil-
lin, 100 µg/ml streptomycin, and 300 IU/ml IL-2, for early experi-
ments, or in X-Vivo 15 completed with 10% heat inactivated FBS, 
100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM glutamine, 
and 50 IU/ml IL-2 for later experiments. RetroNectin (TaKaRa)-
mediated transduction was carried out on the activated T cells. 
Retroviral vector supernatants, diluted in serum-free media, 
were added (eventual MOI of 0.5) to RetroNectin-coated six-well 
plates and centrifuged for 2 h at 2,000 × g to facilitate binding of 
the retrovirus. After removal of the unbound retrovirus, activated 
PBMC or CD8+ T cells (1.5 × 106 cells/well) were added to the 
wells and centrifuged at 1,000 × g for 10 min. Mock-transduced 
cells were subjected to exactly the same procedures without the 
addition of retrovirus to the RetroNectin-coated wells. Cells were 
cultivated in the media listed above for 5–6 days prior to analysis 
by flow cytometry.

Flow cytometry
Cells were analyzed using an LSR Fortessa flow cytometer (BD 
Bioscience). The following antibodies were used: CD4 (M-T477, 
reactive with endogenous rhCD4 and the rhCD4–MBL CAR), 
CD3 (SP34-2), CD8 (RPA-T8) (all from BD Bioscience), CXCR5 
(MU5UBEE) (eBioscience), MBL2 (3E7) (Invitrogen). Viability 
was assessed with the Live/Dead Fixable Near IR Dead Cell Stain 
Kit (Invitrogen). A minimum of 70,000 events were acquired for 
each sample. Data analysis utilized FlowJo v10 (FlowJo, LLC).

In Vitro Transwell Migration assay
Rhesus macaque PBMCs were transduced with the CAR or 
CAR/CXCR5 vectors, or mock-transduced. Samples were run in 
duplicate. For each sample, one million cells in 100 µl X-Vivo-15 

media containing 0.1% BSA were placed in the upper chamber of 
a 24-well plate, with a 5.0-µm transwell membrane (Costar). To 
the lower chamber containing 600 µl X-Vivo 15 and 0.1% BSA, 
either CXCL12 at 1 µg/ml or CXCL13 at 2.5 µg/ml (both from 
ProSpec) were added. No chemokine was added to control wells. 
After incubation for 4  h at 37°C, cells were collected from the 
lower chamber, fixed with 1% paraformaldehyde, and counted 
on a Cytoflex flow cytometer (Beckman). All samples were 
normalized with the addition of AccuCheck Counting Beads 
(Invitrogen). Specific cell migration was determined by first 
subtracting the number of cells that migrated to media alone 
from the number of cells that migrated to the chemokine and 
then dividing by the number of cells added to the upper chamber.

Ex Vivo B cell Follicle Migration assay
Chimeric antigen receptor- and CAR/CXCR5-transduced rhesus 
CD8+ T cells were used in conjunction with fresh lymph node 
tissue sections from allogeneic rhesus macaques. A gelatin 
sponge (7  mm Gel foam by Pfizer) was cut to fit and placed 
into a six-well plate containing 3–4 ml of RPMI with 20% heat 
inactivated FBS. The sponge was hydrated for 1  h at 37°C. 
Fresh rhesus macaque lymph nodes, collected at the Wisconsin 
National Primate Research Center, were shipped in chilled RPMI 
containing 100  µg/ml heparin overnight on ice blocks. Lymph 
nodes were cut into 0.5 cm × 0.5 cm pieces and embedded in 40°C 
PBS-buffered 4% low-melt agarose and cut into 300-µm thick 
slices using a Compresstome, as we have previously described 
(74). Tissue sections and associated agarose were laid flat on 
the hydrated sponge without being submerged. Transduced 
CD8+ T  cells were stained with a 5-µM solution of Cell Trace 
Violet Dye (CTV) (Molecular Probes). The dye was added at 
a 1:1 ratio to 1 × 107 cells/ml suspended in PBS/10% FBS, and 
cells were incubated for 15 min at 37°C, followed by two washes 
with complete RPMI supplemented with 10% heat inactivated 
FBS 100 U/ml penicillin, and 100 µg/ml streptomycin. For each 
fresh tissue section, one million CTV-stained transduced CD8+ 
T cells were re-suspended in 20–30 µl complete RPMI and were 
slowly pipetted onto the surface of the tissue. Tissue sections were 
incubated at 37°C for 6 h followed fixation with 4% PBS-buffered 
paraformaldehyde for 2  h at RT. After fixation, sections were 
washed with chilled PBS containing 100 µg/ml heparin (PBS-H). 
Antigen retrieval was carried out by boiling tissues 3× in 0.01 M 
urea for 30  s. Tissues were permeabilized and blocked with 
PBS-H containing 0.3% Triton x-100 and 2% normal goat serum 
for 1 h, then incubated overnight with mouse-anti-human CD20 
(0.19 µg/ml, clone L26, Novocastra) to label B cells and rat-anti-
human CD3 (2 µg/ml, CD3-12, Bio-Rad) to label T cells. After 
washing with PBS-H, secondary antibody staining was carried 
out by incubating tissues overnight with goat-anti-mouse-IgG/
Alexa 488 (0.75 µg/ml Jackson ImmunoResearch Laboratories) 
and goat-anti-rat-IgG/Cy5 (0.3 µg/ml, Jackson ImmunoResearch 
Laboratories). All incubations were done at 4°C on a rocking 
platform. Sections were imaged using a Leica confocal micro-
scope. 512 × 512 pixel z-series were collected using a step size 
of 2  µm and with collection initiated at least 50  µm deep into 
each section. B cell follicles were identified morphologically as 
clusters of brightly stained closely aggregated CD20+ cells. Areas 
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that showed loosely aggregated B cells that were ambiguous as to 
whether the area was a follicle were not included. Cell counts were 
done with individual z-scans. The total number of CTV-stained 
cells was counted inside follicles and the adjacent area outside of 
the follicles. For each sample, 2–3 tissue sections and a minimum 
of three follicles (range 3–8) were evaluated.

siV suppression assay
To generate SIV-infected target cells, rhesus macaque PBMCs 
were re-suspended at 5 × 105/ml in complete medium, transferred 
to a T25 flask, and incubated at 37°C in 5% CO2 for 2–3 days. 
The PBMCs were washed, adjusted to 3  ×  106/ml in total of 
4 ml volume in complete media containing 30 IU/ml IL-2, and 
incubated with 200–600 TCID50/ml of virus for 24 h at 37°C in 
5% CO2. Infected cells were washed three times using 20 ml of 
medium per wash and then re-suspended in complete medium at 
a density of 1.5 × 106 cells per ml in 96-well round bottom plates. 
To generate effector cells, T cells (derived from activated PBMCs) 
were transduced with the indicated gammaretroviral vectors. In 
triplicate, 100 µl of SIV-infected targets were mixed with 100 µl 
of serially diluted effectors. Cocultures were incubated at 37°C 
in 5% CO2 for a total of 16 days. On the indicated days, superna-
tants were collected, and p27 content was determined by ELISA  
(ABL, Inc.).

statistical analysis
All statistical analyses assumed two-sided tests with P < 0.05 con-
sidered significant. Paired t-tests with pooled variance were used 
to evaluate co-expression levels of the CAR and CXCR5 via IRES 
versus P2A constructs An unpaired t-test with pooled variance 
was used to evaluate groups in the CXCL12 in vitro migration 
assays while an unpaired Welch’s t-test of unequal variance was 
used to evaluate groups in the CXCL13 in vitro migration assays. 
Paired t-tests with pooled variance were used in all statistical 
analyses in the ex vivo migration assay. The F:EF ratios were log 
transformed before analysis. Statistical analyses were conducted 
using GraphPad Prism (Version 6.01; GraphPad Software, Inc., 
La Jolla, CA, USA).

resUlTs

The goal of this study was to engineer rhesus macaque T cells to 
co-express a potent anti-SIV CAR along with CXCR5, in order to 
promote CAR-T cell trafficking to B cell follicles. To this end, we 
designed constructs for expression of the CARs, without or with 
co-expression of CXCR5. CAR-transduced T cells were analyzed 
using both an in  vitro transwell assay of chemokine-directed 
cell migration and a novel ex vivo B cell follicle migration assay. 
In addition, we tested the ability of T cells expressing CAR and 
CXCR5 to suppress viral replication in vitro.

car and cXcr5 expression in 
Transduced Primary rhesus  
Macaque T cells
For this study, we developed gammaretroviral vectors encoding 
the rhCD4–MBL CAR and rhCXCR5, and vectors encoding 

bicistronic constructs to express both proteins. We developed  
two variations of bicistronic vectors, one with CXCR5 co-
expression driven by an internal ribosome entry site (IRES) and 
the other via a P2A self-cleavage site (70). For simplicity, the con-
structs encoding the rhCD4–MBL CAR alone or the bicistronic 
rhCD4–MBL CAR plus rhCXCR5 are, respectively, referred to as 
CAR or CAR/CXCR5; for the latter, the use of either the IRES or 
P2A modalities is indicated. The constructs are shown schemati-
cally in Figure 1A.

In Figures 1B–F, T cells derived from activated rhesus PBMCs 
were transduced with gammaretroviral vectors encoding the 
CAR or CXCR5 genes alone, or the bicistronic CAR/CXCR5 
constructs (IRES or P2A). Cell viabilities posttransduction were 
87–90% (data not shown). Antibodies directed against MBL 
or CXCR5 were used to detect surface expression of the CAR  
and CXCR5, respectively. Transduction with the CAR (Figure 1B) 
or CXCR5 (Figure 1C) vectors gave the expected surface expres-
sion of the corresponding individual proteins. For vectors encod-
ing the bicistronic CAR/CXCR5, the P2A-based construct yielded 
a clear population of cells expressing both CAR and CXCR5, with 
only a small fraction of cells expressing only one of the proteins; 
by contrast, the IRES-based construct appeared less effective at 
co-expressing CXCR5 relative to CAR, since the fraction of cells 
expressing only the CAR was comparable to that expressing both 
proteins, with a minimal fraction expressing only CXCR5 only 
(Figures 1D,E). These results are consistent with the efficient P2A 
system producing equivalent amounts of the two post-cleavage 
components of a bicistronic construct, as contrasted with the 
relatively inefficient expression of the downstream component in 
the IRES system (75, 76). Moreover, as indicated in Figure 1G, the 
P2A-based construct produced cells with nearly twofold higher 
surface expression levels of CXCR5 than obtained with the IRES-
based construct (median 1.8-fold higher; range 1.4- to 2.2-fold).

The percentages of T cells that expressed the CAR and CXCR5 
with each construct are shown in Figure 1H. Transduction with 
the vectors encoding CAR-only or CXCR5-only yielded a median 
of 44.4% (range 40–47.6%) and 81.1% (range 51.8–84.2%) of 
cells expressing each protein, respectively. Cells transduced with 
the IRES-based bicistronic CAR/CXCR5 vector showed higher 
number of cells expressing the CAR compared to CXCR5, with 
a median cell expression of 37.2% (range 5.6–50.2%) for the 
CAR and 19.4% (range 4.7–19.7%) for CXCR5. In contrast, cells 
transduced with the P2A-based CAR/CXCR5 vector showed 
similar expression of the two proteins, with a median of 40.2% 
(range 37.3–52.2%) for the CAR and 38.9% (range 27.5–50.2%) 
for CXCR5. Similar transduction efficiencies were found with 
enriched rhesus CD8 T cells transduced with these vectors (data 
not shown). The percentage of cells that co-expressed CAR 
and CXCR5 is shown in Figure  1I. Cells transduced with the 
IRES-based construct showed a median co-expression efficiency 
of 18.1% (range 4.3–18.9%), whereas cells transduced with 
the P2A-based construct resulted in a significantly higher co-
expression efficiency of 33.3% (range of 25.9–38.3). Thus, the data 
in Figure 1 establish the suitability of the P2A-based bicistronic 
system for efficient co-expression of CAR and the B cell follicle-
homing chemokine receptor CXCR5, and its superiority over the 
IRES-based system.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 1 | Construct design, and expression in rhesus macaque T cells. (a) Schematic figures showing constructs encoding the chimeric antigen receptor (CAR) 
(rhCD4–MBL CAR), rhCXCR5, and the bicistronic CAR/CXCR5 encoding both proteins, with CXCR5 expression mediated by IRES or P2A. In all cases, the targeting 
domains are linked to domains from rhesus CD28 including a short extracellular hinge, transmembrane TM, and cytoplasmic signaling, followed by the CD3 
activation domain. Cells were transduced with gammaretroviral vectors encoding (B) CAR, (c) CXCR5, (D) CAR/CXCR5 (IRES), (e) CAR/CXCR5 (P2A), or  
(F) mock-transfected, and analyzed by flow cytometry. Cells were pre-gated sequentially on lymphocytes, singlets, live cells, and CD3+ cells (T cells) and evaluated 
for CAR and CXCR5 expression, using antibodies against mannose binding lectin (MBL) and CXCR5, respectively. (g) Histogram depicting fluoroscent intensites  
of CXCR5 expression from samples shown in panels (D–F). (h) Median percentage of T cells that expressed the CAR and CXCR5 in activated PBMCs transduced 
with CAR (n = 3), CXCR5 (n = 3), CAR/CXCR5 (IRES) (n = 5), CAR/CXCR5 (P2A) (n = 5) and mock-transduced (n = 5). (i) The percentage of T cells that co-
expressed the CAR and CXCR5 in activated PBMCs transduced with either CAR/CXCR5 (IRES) or CAR/CXCR5 (P2A).

5

Haran et al. CAR-CXCR5 T Cells to Functionally Cure HIV

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 492

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 2 | Co-expression of CXCR5 promotes selective migration of chimeric antigen receptor (CAR)-T cells toward CXCL13 in vitro. The percentage of CAR-  
or CAR/CXCR5-transduced PBMC that migrated toward (a) CXCL12 (SDF-1) or (B) CXCL13 was measured in transwell plates. (c) The relationship between the 
percentage of cells expressing CXCR5 and the percentage of cells that migrated. In all panels, each data point symbol represents the mean value of duplicate 
samples obtained with cells from individual animals, with colors indicating transduction with CAR (blue) or CAR/CXCR5 (red).
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cXcr5 co-expression Promotes car-T 
cell Migration selectively to cXcl13 
In Vitro
We next tested the ability of CXCR5 co-expression to promote 
migration of CAR-T cells toward CXCL13, the chemokine ligand 
for CXCR5. To this end, we utilized an in vitro transwell migra-
tion assay. Using this assay, we found that both CAR-transduced 
and CAR/CXCR5-transduced PBMCs similarly migrated toward 
a positive control chemokine CXCL12 (SDF-1α) that is strongly 
chemotactic for lymphocytes (77) demonstrating the ability of 
both CAR and CAR/CXCR5-transduced cells to migrate to a 
chemotactic stimulus (Figure  2A). In contrast, significantly 
more CAR/CXCR5-transduced than CAR-transduced PBMCs 
migrated toward CXCL13 (Figure 2B). Furthermore, increasing 
specific migration to CXCL13 was seen with an increase in the 
percentage of cells expressing CXCR5 (Figure 2C). For these stud-
ies, a median of 54% (range 12–64%) of CAR/CXCR5-transduced 
cells expressed CXCR5. By contrast, a median of only 2% (range 
1–5%) of the CAR-transduced cells expressed CXCR5 and they 
showed minimal migration to the stimulus. These results demon-
strate that co-expression of CXCR5 promotes selective migration 
of the CAR-T cells toward CXCL13 in vitro.

car/cXcr5-Transduced cD8+ T cells 
selectively Migrate into B cell Follicles  
Ex Vivo
As an additional means to evaluate the ability of CXCR5 to 
promote selective migration of CAR-T  cells, we developed a 
novel ex vivo B  cell follicle migration assay. This method was 
adapted from previously described ex vivo live tissue migration 
assays that tracked T cells in mouse thymus tissue using two-
photon microscopy (78, 79). For these studies, we evaluated the 
migration of CTV-labeled CAR- and CAR/CXCR5-transduced 
primary rhesus macaque CD8+ T  cells in fresh lymph node 
tissue sections. Figure  3A shows representative images of 
sections incubated with CTV-labeled CAR and CAR/CXCR5-
transduced cells. Similar levels of total CTV+ cells were detected 

in lymph node sections incubated with CAR versus CAR/
CXCR5-transduced cells (Figure 3B). While total numbers of 
cells were similar, significant differences were observed in the 
levels of CAR- compared to CAR/CXCR5-transduced cells 
in follicular and extrafollicular compartments. Significantly 
lower levels of CTV+ cells were found in follicular compared to 
extrafollicular areas in sections incubated with CAR-transduced 
cells (Figure  3C). In contrast, significantly higher levels of 
CTV+ cells were found in follicular compared to extrafollicular 
areas in sections incubated with CAR/CXCR5-transduced cells 
(Figure 3D). As a result, significantly large increases in the fol-
licular to extrafollicular ratios (F:EF) of CTV-labeled cells were 
detected in the tissue sections incubated with CAR/CXCR5- 
compared to CAR-transduced T cells. Sections incubated with 
CAR/CXCR5-transduced cells showed a median F:EF ratio of 
2.8 (range of 1.5–6.9), whereas sections incubated with CAR-
transduced T cells showed a median ratio of 0.4 (range 0.3–0.7) 
(Figure  3E). An increased follicular to extrafollicular ratio 
was seen with an increase in the percentage of cells expressing 
CXCR5 (Figure 3F). A median of 46% (range 23–71%) of CAR/
CXCR5-transduced cells expressed CXCR5 and they showed 
relatively high F:EF ratios. By contrast, a median of only 1.6% 
(range 0.2–4.1%) of the CAR-transduced cells expressed CXCR5 
and they showed correspondingly low F:EF ratios. Thus, in this 
novel ex vivo B cell follicle migration assay, CAR/CXCR5- but 
not CAR-transduced CD8+ T  cells preferentially migrated to 
B cell follicles.

cXcr5 co-expression Does not impair 
car-T cell-Mediated suppression of  
siV replication In Vitro
The all-rhesus CD4–MBL CAR (rhCD4–MBL) displayed potent 
suppression of multiple SIV strains (Hajduczki et al., manuscript 
in preparation). For this study, we tested whether co-expression 
of CXCR5 affected the potency of SIV suppression by T  cells 
expressing the rhesus CD4–MBL CAR. PBMCs transduced 
with the CAR or CAR/CXCR5 vectors, were cocultured with 
rhesus PBMC targets infected with two different pathogenic SIV 
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FigUre 3 | CXCR5 co-expression enhances CD8+ CAR-T cell migration to B cell follicles ex vivo. (a) Chimeric antigen receptor (CAR) or CAR/CXCR5-transduced 
rhesus macaque CD8+ T cells were stained with cell trace violet dye (CTV) (pseudo-colored yellow), then pipetted on to fresh rhesus macaque lymph node sections 
and incubated for 6 h at 37°C. Sections were then fixed and stained with anti-CD20 antibodies (green) to delineate B cell follicles (F) and anti-CD3 antibodies (blue) 
to delineate the T cell zone and extrafollicular areas (EF). Arrowheads indicate CTV+ cells. Confocal images were collected with a 20× objective. Scale bars equal 
100 µm. (B) Similar total levels of CFSE-labeled CD8+ T cells were detected in tissues incubated with CAR- and CAR/CXCR5- transduced cells. (c) CAR-
transduced cells showed higher levels in the extrafollicular regions than in the follicles. (D) By contrast, CAR/CXCR5-transduced cells showed increased levels within 
B cell follicles. (e) CAR/CXCR5-transduced cells showed higher F:EF ratios compared to CAR-transduced cells. (F) The relationship between the percentage of 
transduced cells that expressed CXCR5 and F:EF ratios. Each symbol represents individual animals from which CD8+ T cells were derived.
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FigUre 4 | Chimeric antigen receptor (CAR)/CXCR5-transduced T cells suppress simian immunodeficiency virus (SIV) in vitro. PBMC target cells were infected with 
the indicated SIVmac239 and SIVE660 isolates for 24 h. The cells were then washed and mixed with the effector cells transduced as indicated, at effector-to-target ratios 
(E:T) of 1:1 (left panels) or 0.2:1 (right panels). Culture supernatants were collected on the indicated days, and the presence of virus was determined by p27 ELISA. 
The effector cells were transduced either with the CD4–mannose-binding lectin (MBL)–CAR alone or CD4–MBL–CAR plus CXCR5. As negative controls, no effector 
cells, or cells transduced with the negative control 139 CAR were used.
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isolates, SIVmac239 and SIVE660. The negative controls employed 
included adding no effector T cells, and adding effector T cells 
that were transduced with the 139 CAR that recognizes an irrel-
evant epitope [a glioma-specific variant of the epidermal growth 
factor receptor (80)]. Robust spreading of viral infection by both 
SIV strains was evident in the presence of the negative control 
effector cells (no effector T  cells and 139 CAR-transduced 
T  cells). In contrast, CAR-transduced and CAR/CXCR5-
transduced effectors suppressed infection by both strains with 
equivalent high potency over the 12-day infection, at E:T ratios 
of 1:1 or 0.2:1 (Figure  4). These data demonstrate that the 
antiviral activity of CAR-T cells is not altered by co-expression 
of the CXCR5 follicular trafficking chemokine receptor on the 
effector cell surface.

DiscUssiOn

In most HIV-infected individuals and SIV-infected rhesus 
macaques, virus-specific CTL fail to accumulate to high levels in 
B cell follicles (8, 9, 40–42), where virus replication is most con-
centrated prior to the development of AIDS (7–12). The paucity of 
virus-specific CTL in follicles permit ongoing replication (8, 36,  
52, 54). We hypothesize that increasing levels of virus-specific 
CTL in follicles will lead to better control of viral replication and 
may lead to long-term durable remission in the absence of ART, 
i.e., a “functional cure.” In this study, we developed tools to test 
this hypothesis in the SIV-infected rhesus macaque model of HIV 
infection. To this end, we developed gammaretroviral vectors for 
co-expression of a potent bispecific anti-SIV CAR (rhCD4–MBL) 
and the B cell follicle-homing chemokine receptor CXCR5.

Our initial bicistronic constructs encoding both the CAR and 
CXCR5 utilized an internal ribosome entry site (IRES) to achieve 

co-expression. We found inconsistent and often low levels of cells 
that co-expressed both the CAR and CXCR5. This was likely due 
to inefficient initiation of translation at the IRES. This finding was 
not altogether surprising as it is well known that IRES-dependent 
gene expression from a bicistronic construct is not always 
efficient in all cell systems (75, 76). To achieve more consistent 
levels of CAR and CXCR5 co-expression, we tested an alterna-
tive construct with the porcine teschovirus-1 P2A self-cleavage 
site between the CAR and CXCR5 genes. The P2A-sequence 
allows the cell to produce both proteins without re-initiation of 
translation due to a “stop and go” translational effect mediated 
by the ribosome, thereby resulting in similar levels of expression 
of the two proteins (70, 81). In contrast with the IRES-based 
CAR/CXCR5 construct, T cells transduced with the P2A-based 
construct consistently produced efficient co-expression of both 
proteins on the T cell surface. Moreover, the P2A yielded nearly 
twofold higher levels of CXCR5 at the cell surface. These results 
highlight the superiority of the P2A compared to the IRES modal-
ity for advancing the CAR/CXCR5 system as an immunotherapy 
product.

Using the P2A system, we demonstrated CXCR5 functionality 
in promoting targeted migration of CAR-T cells. In an in vitro 
migration assay, CXCR5 co-expression drove selective migration 
of rhesus CAR-T  cells toward CXCL13, the chemokine ligand 
for CXCR5 responsible for follicular homing. Moreover, using in 
a novel ex vivo B cell follicle migration assay, we demonstrated 
that CXCR5 co-expression promoted accumulation of rhesus 
CAR-T  cells in B  cell follicles of rhesus lymphoid tissue. This 
finding is supported by the recent report showing that rhesus 
CD8+ T cells engineered to express human CXCR5 and infused 
into rhesus macaques accumulated within B cell follicles in vivo 
(82). The T cells used in that study, however, did not contain a 
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viral-targeting CAR or other antiviral moiety required for sup-
pressing virus replication.

We previously demonstrated that human CD4–MBL 
CAR-T cells are capable of potently suppressing in vitro replica-
tion of genetically diverse HIV-1 isolates (68). The rhesus variant 
of this CAR displays potent suppressive activity against multiple 
SIV strains (Hajduczki et al., in preparation). Here, we show that 
co-expression of rhesus CXCR5 causes no impairment of the 
SIV-suppressive activity of this CAR.

As mentioned, we hypothesize that treatment with autologous 
CAR/CXCR5-transduced T cells can be a valuable component 
for achieving sustained remission of HIV. Future studies to 
evaluate the in  vivo efficacy of CAR/CXCR5 immunotherapy 
must address multiple complexities under active study in the 
cancer field (56, 83, 84), plus others distinct for HIV (60, 85, 86).  
Robust proliferation and persistence of the adoptively trans-
ferred cells is especially critical for the long-term (life-long?) 
viral suppression required for an HIV functional cure. Diverse 
aspects are being investigated, including choice of optimal cell 
type (T cells early stages of differentiation, hematopoietic stem 
cells, etc.), mode of ex vivo cell expansion, requirements for 
CAR expression on both CD4+ and CD8+ T  cells, alternative 
methods for CAR gene introduction (viral vector transduction, 
targeted gene insertion), influence of alternative co-stimulatory 
domains (CD28, 4-1BB, etc.), and strategies to limit CAR-T cell 
exhaustion.

Additional challenges confront CAR-based immunotherapy 
against HIV. A particular concern involves the potential for the 
CAR-T cells to become infected, which would likely compromise 
their function and persistence. The bispecific CD4-based CARs 
such as CD4–MBL (67, 68) are advantageous in that the second 
moiety prevents the CD4 from acting as an HIV entry receptor 
on CAR-expressing CD8+ T cells; however, an additional mode 
of protection is required for CAR-expressing CD4+ T cells, which 
are susceptible to infection via the endogenous CD4 molecules. 
Another issue is the requirement for antigenic stimulation to 
maintain the CAR-T cells. Within the B cell follicle, infected Tfh 
cells may provide the necessary stimulatory activity. If CAR-T cells 
are administered after effective HIV suppression with ART, the 
required antigenic stimulation presumably would occur upon 
drug cessation. For maintenance of CAR-mediated suppression 
in the absence of ART, the spontaneous activation of latently 
infected cells may provide the necessary antigenic stimulation. 
Well-designed studies in suitable animal models will help pave 
the way toward efficacious CAR-T cell therapy as a component of 
an HIV functional cure.
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Indian-derived rhesus macaque monkeys (Macacca mulatta) 
described in this study were housed at the Wisconsin National 
Primate Reasearch Center in accordance with the regulations 
of the American Association of Accreditation of Laboratory 
Animal Care and the standards of the Association for Assessment 
and Accreditation of Laboratory Animal Care International. 
All protocols and procedures were approved by the relevant 

Institutional Animal Care and Use Committee at the University 
of Wisconsin-Madison. All animals were housed indoors in an 
SOP-driven, AAALAC-accredited facility. Husbandry and care 
met the guidance of the Animal Welfare Regulations, OLAW 
reporting and the standards set forth in The Guide for the Care 
and Use of Laboratory Animals.
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