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Langerhans cells (LCs), the epidermal dendritic cell (DC) subset, express the trans-
membrane tyrosine kinase receptor Met also known as hepatocyte growth factor (HGF) 
receptor. HGF is the exclusive ligand of Met and upon binding executes mitogenic, 
morphogenic, and motogenic activities to various cells. HGF exerts anti-inflammatory 
activities via Met signaling and was found to regulate various functions of immune 
cells, including differentiation and maturation, cytokine production, cellular migration 
and adhesion, and T cell effector function. It has only recently become evident that a 
number of HGF-regulated functions in inflammatory processes and immune responses 
are imparted via DCs. However, the mechanisms by which Met signaling in DCs con-
veys its immunoregulatory effects have not yet been fully understood. In this review, 
we focus on the current knowledge of Met signaling in DCs with particular attention 
on the morphogenic and motogenic activities. Met signaling was shown to promote 
DC mobility by regulating matrix metalloproteinase activities and adhesion. This is a 
striking resemblance to the role of Met in regulating a cell fate program during embryonic 
development, wound healing, and in tumor invasion known as epithelial–mesenchymal 
transition (EMT). Hence, we propose the concept that an EMT program is executed by 
Met signaling in LCs.

Keywords: Langerhans cell, dendritic cell, Met signaling, hepatocyte growth factor, epithelial–mesenchymal 
transition, skin injury, immunity, tolerance

inTRODUCTiOn

Name giving, hepatocyte growth factor (HGF) was initially identified as a mitogenic factor for rat 
hepatocytes (1, 2). However, it then became evident that HGF elicits various biological activities 
in a number of different cell types. Independent studies before cloning of the HGF gene identified 
the same molecule as a potent inducer of epithelial cell motility (and thus termed as scatter factor) 
(3) and as a fibroblast-derived cytotoxic factor for some tumor cell lines (4). Furthermore, HGF 
was found to promote cell survival, tissue protection and regeneration but restrain fibrosis and 
inflammation (5). All these activities are commenced by binding of HGF to its cognate receptor 
Met, which was originally identified as a transforming oncogene (6, 7). HGF is primarily secreted 
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FiGURe 1 | The domain structure of hepatocyte growth factor (HGF) and 
Met. HGF and Met are both synthesized as inert single-chain precursors and 
are cleaved to generate mature disulfide-linked α–β heterodimers that have 
signaling competence. The α-chain of HGF contains an N-terminal hairpin 
loop and four kringle domains, and the β-chain harbors a catalytically inactive 
serine proteinase homology domain. Important for ligand binding the α-chain 
of Met and the amino-terminal end of the β-chain form a so-called Sema 
domain found in semaphorin axon-guidance proteins and plexins (cell 
adhesion and semaphorin receptors). The remainder of the extracellular part 
of the β-chain contains a PSI domain (present in plexins, semaphorins, and 
integrins) and four IPT domains (immunoglobulin-like fold shared by plexins 
and transcription factors). IPT3 and IPT4 serve as the high-affinity docking 
site for HGF. The cytoplasmic region comprises the tyrosine kinase domain,  
a juxtamembrane regulatory region, and a multiprotein-docking site at the 
carboxy terminus essential for downstream signaling.
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by mesenchymal cells that are frequently positioned in the 
immediate vicinity of Met-expressing cells reflecting the limited 
capacity of HGF to diffuse in vivo (8). The indispensable roles 
of Met signaling by HGF for embryonic development and tissue 
regeneration have been demonstrated by targeted disruption of 
the HGF and Met genes. Both the conventional Met- or HGF-null 
mutations in mice result in a lethal phenotype in utero caused by 
the impaired development of placenta and liver (9–11). In addi-
tion, Met-expressing myogenic precursors fail to emigrate from 
the dermomyotome leading to the total absence of all muscle 
groups derived from these migratory progenitor cells (10, 12). 
The contribution of Met signaling to the long-range migration of 
cells during development is mediated by induction of a cell fate 
program known as epithelial–mesenchymal transition (EMT) 
that is fundamental not only during embryogenesis but also in 
tissue regeneration of the adult organism (8, 13, 14).

A corresponding aberrant activation of the EMT program 
by Met signaling during tumorgenesis results in invasive 
growth and metastasis of tumor cells (8, 13, 14). The oncogenic 
role and potential interventions of the Met signaling pathway 
for tumor therapy have long been a major focus of research, 
which is comprehensively documented in a number of excel-
lent reviews (5, 15–18). However, a growing body of evidence 
suggests an additionally important role of Met signaling in 
control of immune cell functions and thus in regulation of 
immunity. Here, we will discuss the current understanding 
of Met signaling and function in dendritic cells (DCs) with 
particular emphasis on the motogenic activities of Met for 
Langerhans cells (LCs).

STRUCTURAL AnD FUnCTiOnAL 
FeATUReS OF HGF AnD MeT

Hepatocyte Growth Factor
Biologically active HGF is a disulfide-linked heterodimeric 
molecule composed of a 69 kDa α-chain and a 34 kDa β-chain 
that is derived from an inactive single-chain precursor (pro-
HGF; Figure 1) (5). HGF and the structurally similar cytokine 
macrophage-stimulating protein (MST1, also known as HGF-
like or MSP) comprise the unique group of plasminogen-like 
cytokines (19). Unlike other cytokines and growth factors, 
they share structural homologies with coagulation factors, 
including prothrombin, coagulation factor XII, plasminogen 
and plasminogen activators (urokinase type, u-Pa and tissue 
type, t-Pa), and HGF activator protein (HGFA). They have in 
common the presence of a serine proteinase homology (SPH) 
domain and at least one kringle domain. HGF and MST1 have 
lost the proteinase activity due to loss of catalytic residues in 
the SPH domain but retained the requirement for proteolytic 
cleavage to become mature proteins (20, 21). The α-chain of 
HGF with four kringle domains confers high-affinity binding 
to the Met receptor and its dimerization, while subsequent 
binding of the β-chain is required for the activation of Met 
signaling (22).

A complex process is regulating the availability of bioactive 
HGF. Both pro-HGF and cleaved HGF bind with high affinity to 

heparan sulfate proteoglycans that limits the diffusion and leads 
to accumulation within the extracellular matrix (ECM) (23). 
Pro-HGF can be cleaved by many serine proteinases present in 
serum or cell membrane including u-Pa, t-Pa, plasma kallikrein, 
factor XII, HGFA, and others (5). Among them, HGFA is one 
of the most efficient in processing pro-HGF. Again, HGFA like 
other serine proteinases of this family is synthesized as an inac-
tive single-chain precursor (pro-HGFA) that needs proteolytic 
cleavage, e.g., by the central coagulation factor thrombin to 
become an active proteinase (24). The contribution of the 
coagulation cascade to the activation of HGF strongly points 
toward the significant role of HGF in tissue injury (25). In 
addition, the activity of HGFA is regulated by specific inhibitors 
of the Kunitz-type family of membrane-bound serine protease 
inhibitors, namely, HGFA inhibitor 1 (HAI-1) and HAI-2 (26). 
HGFA activity is suppressed by binding to HAI-1 on the cell 
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surface. The HGFA/HAI-1 complexes on the cell surface can be 
released by metalloproteinase-mediated shedding of the HAI-1 
ectodomain (5). Interestingly, DCs also express HAI-1 and 
thus may themselves be capable of regulating the availability of 
bioactive HGF in injured tissue and inflammation (27). Notably, 
pro-inflammatory mediators, including IL-1β and prostaglandin 
E2, are potent inducers of HGF expression and cleavage of HAI-1 
(5). The regulatory mechanisms that control HGF activity thus 
refer to the mutual link of inflammation with tissue damage and 
regeneration.

Met
All biological functions of HGF are exerted by binding to its 
unique receptor Met. Like its ligand, Met is synthesized as an 
immature single-chain precursor that is cleaved by intracel-
lular endoproteinases to form the mature membrane-bound 
disulfide-linked α-β heterodimer (Figure 1). Met shares similar 
structural features with the receptor for MST1 (MST1R; also 
known as Ron/CD136 or as STK in mice) (28, 29). The mature 
form of Met comprises the extracellular 50 kDa α-chain and the 
transmembrane-passing 145  kDa β-chain. The so-called Sema 
domain constituted by the α-chain and the amino-terminal end 
of the β-chain is required for HGF binding and activation of Met 
signaling (30). Upon HGF binding, Met undergoes dimerization 
and autophosphorylation of two critical tyrosine residues in 
the activation loop of the kinase domain, leading to enhanced 
catalytic activity (14). Further phosphorylation of tyrosine resi-
dues within the C-terminal docking site controls recruitment of 
various signaling and adaptor proteins that in turn can activate 
downstream signaling pathways, such as ERK, AKT, and RAC1 
pathways (8, 14, 31).

Met interacts with other cell surface receptor that can 
modulate Met signaling in ligand-dependent and -independent 
manner. Remarkably, this includes a number of surface recep-
tors involved in regulation of cellular motility and migration, 
such as integrin α6β4 (32), plexin-B1 (33), CD44 (34, 35), Mif 
receptor (36), and E-cadherin (37). Met and plexins share the 
highly homologous Sema domain that allows physical interac-
tions between them (38). Consequently, semaphorin binding to 
plexins can lead to Met transactivation independent from HGF 
binding (14). The expression of different members of the plexin 
family on DCs and their contribution to the regulation of DC 
migration has already been described (39–41), suggesting that 
this may involve interaction with Met signaling.

THe iMMUnOReGULATORY FUnCTiOn 
OF HGF/MeT SiGnALinG

Beyond the well-recognized role of Met signaling in epithelial 
cells and tumor development, early reports already provided 
evidence for a role in hematopoietic cells (42, 43), and accumu-
lating data from recent years clearly demonstrated important 
functions in hematopoiesis and immunity.

Constitutive Met expression is limited to hematopoietic 
progenitor cells and their antigen-presenting progenies, 
including B cells, monocytes/macrophages, and DCs (29, 44). 

How ever, exposure to pro-inflammatory cytokines leads to 
induc tion and/or upregulation of Met expression in various 
cell types, again pointing toward the regulatory link of tissue 
injury to the inflammatory response. Indeed, recent findings 
suggest con ditionally inducible expression of Met in other 
immune cells including neutrophils (45) and a specific subset 
of CD8+ T  cells (46). Interestingly, in neutrophils, the Met 
expression was found to be required for chemoattraction in 
response to HGF and transmigration across an endothelial 
barrier (45). This provides further evidence that Met signaling 
can exert motogenic functions in immune cells. Met signal-
ing was reported to play a role in regulating B cell homing to 
lymph nodes (LNs) (47) and was identified as a potent inducer 
of directional migration in monocytes (48, 49). Likewise, Met 
expression was found to regulate splenic DC function (50, 51) 
and was further shown to be expressed on bone marrow (BM)-
derived DCs, dermal DCs, and LCs (52, 53).

For the Met ligand HGF, it has been shown that it—frequently 
in synergy with other growth factors—can support erythro-
poiesis, thrombopoiesis, and myelopoiesis and development of 
Met-expressing thymocytes (5, 43). Fibroblast-like stromal cells 
in lymphoid tissues including spleen (54), LNs (47), thymus (55), 
and BM (56) constitutively produce HGF that can be modulated 
by activated T cells (54). HGF might thus play additional roles 
within lymphoid organs on Met-expressing cells, such as regula-
tion of cell survival (36) and cytokine production (50, 51, 57–59), 
thereby influencing immune responses (Figure 2). Moreover, also 
hematopoietic cells including platelets, mast cells, neutrophils, 
and macrophages can produce HGF.

In response to infection or tissue injury the production of 
HGF is further stimulated by pro-inflammatory cytokines, 
includ ing IL-1α, IL-1β, TNF-α, and IL-6 (60, 61). By contrast, 
anti-inflammatory factors, such as glucocorticoids (62), 1,25- 
dihydroxyvitamin D3 (63), and TGF-β (64), inhibit HGF 
production. This points toward a potential pro-inflammatory 
role of HGF. In line with this concept, stimulation of mono-
cytes with HGF induced upregulation of pro-inflammatory 
factors, including IL-4, IL-1β, GM-CSF, and MIP-1β (48). This 
notion was further fueled by studies, which showed that HGF 
stimulated the antigen presentation capacity of adult human 
blood monocytes (65) and that in the murine experimental 
auto immune encephalomyelitis (EAE) model Met signaling 
promoted the development of M1 macrophages fostering 
inflammation (66).

In addition to its pro-inflammatory role, it has been 
proposed that HGF exerts anti-inflammatory activities (5). 
Indeed, HGF was found to grant protective effects in various 
animal models of inflammatory diseases, including collagen-
induced arthritis (58), chronic airway inflammation (50), 
inflammatory bowel disease (67, 68), and even in EAE in 
contrast to the previously cited study (51, 69) by regulating 
various functions of immune cells, including cytokine pro-
duction, migration, and adhesion. A number of these studies 
provided strong evidence that HGF-mediated immunomodu-
latory effects were imparted via direct impact on DC function 
(Figure 2). HGF was shown to impair DC activation resulting 
in an obstructed antigen-presenting capacity (50, 70), and 
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FiGURe 2 | Hepatocyte growth factor (HGF)/Met signaling in Langerhans 
cells (LCs)/dendritic cells (DCs). Schematic representation of two major 
avenues of Met signaling on DCs in peripheral and lymphoid tissues. Met 
signaling induces LC and dermal DC emigration from skin in an epithelial–
mesenchymal transition (EMT)-like process, including matrix 
metalloproteinase (MMP) activation to facilitate arrival to draining lymph 
nodes and antigen presentation to naive T cells. HGF induces tolerogenic 
phenotypes by IL-10 and IL-27 secretion and upregulated expression of, 
e.g., glucocorticoid-induced leucine zipper (GILZ) and programmed-death 
ligand 1 (PD-L1) in DCs, which eventually results in enhanced numbers of 
regulatory T cells (Tregs).
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that HGF inhibited immunogenic DC function by stimulat-
ing IL-10 secretion (59), which leads to suppression of the 
DC function in an autocrine manner (71). In the EAE model, 
HGF was shown to confer DCs with suppressive competence 
resulting in induction of regulatory T cells (Tregs) (51, 59, 69). 
Noteworthy, HGF treatment of DCs was found to increase 
expression of programmed-death ligand 1 and IL-27, which 
are potent factors to mediate DC-driven generation of Tregs 
(69). In addition, DCs exhibited increased glucocorticoid-
induced leucine zipper (GILZ) expression upon HGF stimu-
lation. Notably, previous studies revealed GILZ expression 
to be a shared feature of tolerogenic DCs induced by IL-10, 
TGF-β, and glucocorticoids (72, 73) (which in turn can 
regulate HGF expression; see above). These results strongly 
indicate that HGF exerts immunoregulatory activities directly 
through Met-dependent regulation of DC function. However, 
an immunoregularory function of HGF/Met signaling in skin 
immunity has been scarcely explored.

MeT SiGnALinG in SKin inJURY AnD 
THe iMPACT On LC MiGRATiOn

The skin represents one of the largest organs of the human body 
that also establishes a direct interface between the organism 
and its environment. As such, the skin acts as a physical and 
an immunological barrier to protect the body from dangerous 
substances and pathogens (74). However, the skin can also be 
easily wounded and then becomes a main entry route for foreign 
pathogens. Again, it is highly conceivable that the mechanisms 
of tissue regeneration, including HGF/Met signaling, are inter-
related with immune regulatory mechanisms. Surprisingly, there 
are only a few studies revealing a role of the HGF/Met signaling 
pathway in skin injury and inflammation.

A study employing a mouse model with conditionally dis-
rupted Met gene in epidermal keratinocytes revealed an indis-
pensable role for the HGF–Met pathway in skin wound healing 
(75). Particularly, Met-deficient epidermal keratinocytes failed 
to restore skin wound re-epithelialization, while other growth 
factors and bioactive molecules were functional. Further studies 
provided additional mechanistic insights and thus corroborated 
the role of Met signaling in keratinocytes for wound healing 
(76–78). Interestingly, keratinocytes are a source of HGF upon 
skin injury in humans (79).

A previous study identified dermal fibroblasts as a major 
source of HGF in skin upon infection or stimulation with pro-
inflammatory cytokines (80) indicating a role for HGF/Met sign-
aling also in dermal tissue homeostasis. Indeed, in the tight-skin 
mouse, a genetic model of human systemic sclerosis HGF was 
shown to ameliorate dermal sclerosis (81). The tight-skin mouse 
model exhibits fibrosis and thickening of subcutaneous dermal 
tissue, which was diminished upon HGF treatment. Exogenous 
HGF was found to suppress expression of IL-4 and TGF-β 
mRNA (81), which has been suggested to impact on fibrogenesis 
and in the hypodermal thickness of tight-skin mice (81, 82).  
In particular, HGF was found to inhibit the production of IL-4 
in CD4+ T cells stimulated by allogeneic DCs, and it is tempting 
to speculate that this was due to Met-mediated activity of HGF 
on DCs.

Clear evidence for the role of Met signaling in skin DCs came 
again from studies using a conditional Met-knockout mouse 
model (83) in which DC-dependent contact hypersensitivity 
(CHS) reactions were addressed (53). Skin DC populations 
including LCs were found to express Met, and HGF stimulation 
effectively activated Met signaling and induced LC emigration 
from skin (Figure 2) (52, 53). By contrast, skin-resident DCs in 
Met-deficient mice upon activation failed to emigrate from skin 
toward the draining LNs although DCs displayed an activated 
phenotype (53). Consequently, Met-deficiency resulted in 
strongly impaired CHS reactions in response to contact allergens, 
which could be also achieved by pharmacological inhibition of 
Met signaling in wild-type control mice. Emigration of resident 
LCs from the skin upon stimulation requires a multitude of tissue 
remodeling capacities that allows detachment from surrounding 
tissue, adherence to and migration through ECM, and crossing 
tissue boundaries. Met signaling was found essential in migra-
tion of BM-derived DCs through ECM that requires matrix 
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metalloproteinase (MMP) activities for matrix degradation. 
Indeed, proteolytic activity of both MMP-2 and MMP-9 was 
found regulated by Met in BM-derived DCs (53), in line with pre-
vious studies that revealed a critical role of MMP-2 and MMP-9 
in LC migration (Figure 2) (84–86). In summary, these findings 
established Met signaling as a key mechanism of LC detachment 
from the epidermal tissue and emigration from the skin upon 
activation.

MeT-DRiven eMT in LCs AS A 
ReGULATOR OF SKin iMMUniTY

The regulation of LC mobilization and migration by HGF/Met 
signaling upon inflammatory activation results in a series of 
phenotypic conversions comprising, e.g., detachment from sur-
rounding tissue and activation of MMPs resulting in interstitial 
migration and crossing of tissue boundaries. Collectively, all 
these phenotypic alterations have a striking analogy to a Met 
signal-driven mechanism identified during embryonic develop-
ment, wound healing, and invasive growth of tumors known as 
EMT (8, 13, 14, 87–89). The genetic program underlying this 
process leads to the transient conversion of immobile epithe-
lial cells into a migratory mesenchymal phenotype. Thus, we 
propose the concept that a genetic program similar to EMT 
is accomplished by Met signaling in LCs (29, 53). Similar to 
Met-driven EMT of epithelial cells, LCs need to disrupt their 
physical contact to neighboring cells mediated by adherens 
and tight junctions. A major molecular hallmark of EMT is the 
loss of E-cadherin expression. EMT is further characterized 
by the downregulation of various other factors involved in 
formation of adherens and tight junction structures, includ-
ing zonula occludens (ZO) proteins, cytokeratins, occludins, 
claudins, and EpCAM leading to the disassembly of cell-to-cell 
contacts (88–90). Cells simultaneously acquire a mesenchymal 
phenotype, including the expression of N-cadherin, vimentin, 
integrins, and MMPs and reorganization of their cytoskeleton, 
which collectively enable cell migration. Again, it has been well 
recognized that the Met-driven stimulation of proteolytic MMP 
activity advances tumor cell dissociation and scattering (87–89). 
The EMT program is controlled by an intricate network of tran-
scriptional regulators including basic helix–loop–helix factors 
(e.g., Twist1) and zinc finger and E-box binding proteins (ZEB) 
1 and 2 [reviewed in Ref. (89–91)].

Langerhans cells in skin express a broad range of epithelial-
like adhesive molecules that permit the functional integration 
into the keratinocyte layer. This includes tight junction proteins, 
such as claudin-1 and ZO-1 (92, 93), which have been shown 
to maintain tight junction integrity during antigen uptake 
(93). Furthermore, human LCs derived in a well-established 
in  vitro model showed in addition expression of occludin, 
ZO-3, JAM1, and cytokeratins (CK8 and CK18) (94), and it 
is highly conceivable that this is also true in  vivo. LCs also 
express adherens junction proteins that mediate homophilic 
binding to other cells, including E-cadherin, EpCAM/TROP1, 
and TROP2 (95–97), and the specific impacts of E-cadherin 

and EpCAM on LC motility, migration, and function have 
been well recognized (98–100). Remarkably, the maturation 
of activated LCs toward a migratory phenotype revealed 
downregulation of E-cadherin and EpCAM, accompanied by 
upregulated expression of N-cadherin and the EMT regulators 
ZEB1 and ZEB2 (98, 101, 102). These findings, together with 
the regulation of MMPs in DCs described earlier, support the 
notion that a Met-driven EMT program is accomplished after 
LCs are activated (29).

COnCLUDinG ReMARKS

In summary, Met signaling in skin resident DCs including LCs 
appears to be a critical determinant for maintaining normal 
immune function and as an important constituent that inter-
laces tissue regenerative functions with the appropriate immune 
responses that must be accomplished after tissue injury, infection, 
or inflammation. Other studies suggest a protective role of HGF/
Met signaling against autoimmunity by directing DCs toward a 
tolerogenic phenotype. This and a number of further activities 
of HGF/Met signaling on other immune cells suggest the HGF/
Met pathway as a potential target for treatment of inflammatory 
and autoimmune disorders, including skin diseases and trans-
plantation (103, 104). Due to the critical role of Met signaling for 
tumor invasion and metastasis, drug targeting of the Met recep-
tor and/or pathways is highly considered as a potential means 
for therapy of a number of epithelial cancers. Consequently, 
attempts to block Met-induced migration of tumor cells may lead 
to altered immune functions in cancer patients and thus pos-
sibly to increased susceptibility to infection and/or development 
of autoimmune disorders. Conversely, approaches to promote 
immune tolerance via HGF/Met in immune cells could concur-
rently stimulate potential tumor cells toward invasive growth. 
The knowledge of the HGF/Met signaling mechanisms in DCs is 
still in its infancy and must be extended to (i) develop save Met-
based therapies in the future and (ii) corroborate the concept that 
a Met-driven execution of an EMT program in DCs is indeed a 
generic mechanism.
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