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The ability of cytotoxic lymphocytes (CL) to eliminate virus-infected or cancerous target 
cells through the granule exocytosis death pathway is critical to immune homeostasis. 
Congenital loss of CL function due to bi-allelic mutations in PRF1, UNC13D, STX11, 
or STXBP2 leads to a potentially fatal immune dysregulation, familial haemophagocytic 
lymphohistiocytosis (FHL). This occurs due to the failure of CLs to release functional 
pore-forming protein perforin and, therefore, inability to kill the target cell. Bi-allelic muta-
tions in partner proteins STXBP2 or STX11 impair CL cytotoxicity due to failed docking/
fusion of cytotoxic secretory granules with the plasma membrane. One unique feature of 
STXBP2- and STX11-deficient patient CLs is that their short-term in vitro treatment with a 
low concentration of IL-2 partially or completely restores natural killer (NK) cell degranula-
tion and cytotoxicity, suggesting the existence of a secondary, yet unknown, pathway for 
secretory granule exocytosis. In the current report, we studied NK and T-cell function in an 
individual with late presentation of FHL due to hypomorphic bi-allelic mutations in STXBP2. 
Intriguingly, in addition to the expected alterations in the STXBP2 and STX11 proteins, 
we also observed a concomitant significant reduction in the expression of homologous 
STXBP1 protein and its partner STX1, which had never been implicated in CL function. 
Further analysis of human NK and T cells demonstrated a functional role for the STXBP1/
STX1 axis in NK and CD8+ T-cell cytotoxicity, where it appears to be responsible for as 
much as 50% of their cytotoxic activity. This discovery suggests a unique and previously 
unappreciated interplay between STXBP/Munc proteins regulating the same essential 
granule exocytosis pathway.

Keywords: familial haemophagocytic lymphohistiocytosis, cytotoxic lymphocytes, immunodeficiency, apoptosis, 
natural killer cells, cytotoxic t cells, Munc18-2, Munc18-1

INtRoDUCtIoN

Natural killer (NK) cells and CD8+ T  cells, collectively known as cytotoxic lymphocytes (CLs), 
serve a vital role in immune surveillance by identifying virus-infected and malignant cells and 
eliminating them through perforin and granzyme-mediated apoptosis (1). The degranulation of 
CL secretory granules is a critical physiological process to enable perforin and granzyme release 
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into the immune synapse. Bi-allelic mutations in Munc13-4, or 
the partner proteins Syntaxin-11 or STXBP2, result in defective 
degranulation and cytotoxicity of NK  cells, leading to Familial 
Haemophagocytic Lymphohisitiocytosis (FHL) (2).

Syntaxin-11 and STXBP2 biochemically interact within the 
cell (3, 4) and are, therefore, likely to function at the same step 
in secretory granule exocytosis—the docking and fusion of the 
granules with the plasma membrane. Recent work by Spessott 
and colleagues confirmed that STXBP2 directly stimulates the 
Syntaxin-11-mediated fusion of membranes (5).

STXBP2-deficient patient NK  cells have severely reduced/
absent degranulation but, surprisingly, and for reasons that are 
not clearly understood, short-term in vitro treatment of NK cells 
from STXBP2 (or Syntaxin-11) deficient patients with a low 
concentration of IL-2 partially or completely restores NK  cell 
degranulation and cytotoxicity (3, 4, 6), suggesting the existence 
of a secondary pathway for secretory granule docking. Consistent 
with these observations, STXBP2/Syntaxin-11-deficient patients 
develop FHL slightly later than those who harbor mutations in 
non-redundant proteins, perforin, or Munc13-4 (7, 8).

In the current report, we studied NK and T-cell function 
in an individual with late presentation of FHL due to bi-allelic 
mutations in STXBP2. Intriguingly, in addition to the expected 
alterations in STXBP2, we also observed a concomitant reduc- 
tion in the STXBP1 protein, encoded by the paralog, STXBP1. 
Further analysis of human NK and T  cells demonstrated a 
functional role for STXBP1 in NK and cytotoxic T-cell cytotox-
icity and suggests a unique interplay between STXBP/Munc18 
 proteins regulating the same exocytic event.

Case RepoRt

A 45-year-old female was admitted to hospital with mild pancy-
topenia and hepatosplenomegaly. Subsequently, CD3+ T-cell 
infiltrates were found in the bone marrow, with demonstration of 
a clonal population by T-cell receptor gene rearrangement analy-
sis suggesting T-cell lymphoma. CHOP (two cycles) and then 
CHEOP (four cycles) therapy were given with a partial response 
and an autologous stem cell transplantation was planned 2 weeks 
after stem cell mobilization with G-CSF (5 µg/kg for 10 days). She 
developed with rapidly progressive pancytopenia with Hb 90 g/L 
(reference range 115–165), platelets 8 ×  109/L (reference range 
150–400) and neutrophils 0.4  ×  109/L (reference range 2–7.5), 
ferritin >16,000  μg/L (reference range 30–150), and sCD25 
>60,000 U/mL (reference range <2,400). In this context, FHL was 
suspected; on further review, it was noted that her brother died in 
his mid 30s from an illness with some features of FHL. The patient 
also suffers from focal epilepsy. Subsequent Sanger sequencing of 
STXBP2 identified two mutations (encoding STXBP2 protein): 
c.1001C > T (p.P334L) and c.474_483del_insGA (p.C158Wfs*78). 
While the segregation analysis was not possible, given an apparent 
familial history of the disease (and the functional results shown 
below), it is highly likely that the patient had bi-allelic STXBP2 
mutations. No mutations were identified in UNC13D, STX11, or 
PRF1. Monthly Alemtuzumab (Campath) therapy for 6 months 
partially controlled her symptoms. At the time of writing this 
report, the patient was 4 months after a T-cell-depleted unrelated 

donor allograft with no evidence of HLH, but with the complica-
tion of multi-drug resistant CMV disease.

MateRIaLs aND MetHoDs

Reagents
Antibodies used were obtained as follows: rabbit polyclonal 
STXBP1, rabbit polyclonal STXBP2, rabbit monoclonal STXBP3 
(Abcam, Cambridge, UK); rabbit polyclonal Syntaxin-4, rabbit 
polyclonal Syntaxin-11 (Proteintech, Rosemont, IL); mouse mono-
clonal Syntaxin-1, rabbit polyclonal Syntaxin-3 (Synaptic Systems, 
Gottingen, Germany); mouse monoclonal β-actin (Sigma-Aldrich,  
St. Louis, MO, USA); mouse monoclonal myc-tag (9B11) (Cell 
Signaling Technology, Danvers, MA, USA); goat anti-mouse 
F(ab’)2 IgG PE-conjugated (eBioscience); human CD3-FITC, 
human CD8 PerCP-cy 5.5, human CD16-Pacific BlueTM (BD 
Bioscience, San Jose, CA, USA); human CD3 (Orthoclone OKT3), 
human CD28 and human CD107a/Lamp1-Alexa488 (Biolegend, 
San Diego, CA, USA). All chemicals were from Sigma-Aldrich 
(St. Louis, MO, USA). The PG13 retroviral packaging cell line was 
from American Type Culture Collection (Manassas, VA, USA).

Cell Culture
KHYG1 cells were maintained in RPMI (GIBCO, Life Technologies) 
supplemented with 10% (v/v) heat-inactivated FCS, 2  mM l- 
glutamine and 450 U/mL of human rIL-2. Human peripheral blood 
mononuclear cells (PBMCs) were maintained in RPMI supple-
mented with 10% (v/v) heat-inactivated FCS, 2 mM l-glutamine, 
0.1 mM non-essential amino acids, 1 mM sodium pyruvate.

t-Cell activation
Peripheral blood mononuclear cells from a healthy donor control 
and the affected individual were activated with 30 ng/mL of anti-
CD3 antibody and 600 U/mL IL-2 for 3 days and then cultured 
in the presence of 600 U/mL of human rIL-2.

Munc18 Knockdown—KHYG1  
Human NK Cells
Target sequence selection and shRNA-miR30 construction was 
performed as described previously (9, 10). Each miR30-based 
STXBP1, STXBP2, and STXBP3 shRNAs were subcloned into the 
pLMS-eBFP, pLMP-mCherry, and pLMS-GFP retroviral expres-
sion, respectively. The following 21-mer sequences were used to tar-
get human STXBP1 (#1 5′-GCTGCAAGATGACAGACATCA-3′; 
#2 5′-GCAAGATGACAGACATCATGA-3’), human STXBP2 
(#1 5′-GGACAAGGCGAACATCAAAGA-3′, #2 5′-GGCGAA 
CATCAAAGACCTATC-3′, #3 5′-CCCTTTCCAGAGAAATAA 
ACT-3’), human STXBP3 (5′-GATCCAGAATGTAAAGATAG 
A-3’). A scrambled target sequence (5′- TCTCGCTTGGGCGA 
GAGTAAG-3’) was used as the control shRNA and expressed 
in each of the matching expression vectors pLMS-eBFP, pLMP-
mCherry, and pLMS-GFP. Amphotropic retrovirus was packaged 
in HEK293 cells, following calcium-phosphate transfection of the 
viral expression plasmid and amphotropic plasmid. The superna-
tant containing the virus was collected at 48 h post transfection 
and centrifuged at 2000  ×  g for 1  h onto RetroNectin-coated 
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(Takara Bio-USA Inc., Mountain View, CA, USA) 24-well plates. 
Following a 2-h incubation at 37°C/5%CO2, 5 × 105 KHYG1 cells 
were added to each well, centrifuged at 1000 × g for 1 h at RT and 
then incubated at 37°C/5%CO2. At 5–7 days post-transduction, 
flow cytometry was used to sort eBFP-, mCherry-, or GFP-
positive cells expressing the shRNAs.

CaR transductions
Amphotropic virus encoding the chimeric antigen receptor 
anti-erbB2 CD28ζ was produced from the PG13 packaging 
cells (11) and used to transduce activated T cells following the 
viral transduction protocol described for KHYG1 cells. CAR-T 
positive cells were isolated by flow cytometry using an antibody 
against the surface exposed c-myc epitope and anti-mouse 
PE-conjugated.

Munc18 Knockdown—primary Human 
CaR-t Cells
Peripheral blood mononuclear cells were isolated from a healthy 
donor control, transduced with virus expressing either scrambled 
shRNA or STXBP1 shRNA and sorted based on the expression of 
the BFP reporter. BFP+ cells were subsequently transduced with 
virus expressing the CAR-T. CAR-T negative and CAR-T positive 
cells were sorted based on the expression of the surface expression 
of the myc epitope. CAR-T negative CD3+CD8+CD4− cells were 
immuno-blotted for STXBP1 to determine knockdown. CAR-T 
positive cells were used to assess CAR-T killing function using 
51Cr release assay, and the effector/target ratio was normalized for 
% CD3+CD8+CD4− cells; CAR-T+CD4+ cells had marginal (<5%) 
cytotoxic activity compared to CAR-T+CD3+CD8+CD4− cells.

stXBp2-Knockout primary Human t Cells
Peripheral blood mononuclear cells from a healthy donor 
control were activated and transduced with FUCas9Cherry and 
doxycycline inducible sgRNA encoded in pFH1tUTG GFP vec-
tor (#1 5′- tcccGCCCTCGGGGCTGAAGGCGG-3′, #2 5′- tccc 
TGAGCTAGGCCGCTCTCGTC-3′, #3 5′-tcccACCACCGC-
CTTCAGCCCCGA-3′) (12). Following guide expression, by 
incubating the cells with doxycycline for 7 days, GFP and Cherry 
double-positive and double-negative cells were isolated by flow 
cytometry.

Degranulation assays
CD107a/Lamp-1 externalization was used to determine NK and 
T-cell degranulation. Briefly, CAR-T cells were incubated in the 
presence or absence of MDA-MB-231 Her2 expressing target cells 
at 1:2 E:T ratio for 3 h at 37°C/5% CO2. NK cells were incubated 
with K562 targets at 1:2 E:T ratio for 3  h at 37°C/5% CO2 in 
the absence or presence of 100  U/mL of human IL-2. CD107a 
externalization was assessed in CD3−CD16+CD56+cells; spon-
taneous externalization of CD107a was assessed over 3 h in the 
absence of target cells.

DNa extraction, pCR, and sanger 
sequencing
Whole venous blood was obtained and genomic DNA extracted 
using a QIAamp DNA Maxi Kit (Qiagen, Valencia, CA, USA). 

Coding exons and splice sites of the STXBP1 gene (Chromosome 
9:130, 374, 486–130, 454, 995; NM_003165; ENST00000373302.7) 
were sequenced. Regions were amplified using gene-specific 
primers designed to the reference human gene transcript (http://
www.ncbi.nlm.nih.gov/gene). Primer sequences are available 
upon request. Amplification reactions were cycled using a stand-
ard protocol on a Veriti Thermal Cycler (Applied Biosystems, 
Carlsbad, CA, USA). Bidirectional sequencing of all exons and 
flanking regions, including splice sites was completed with a 
BigDyeTM v3.1 Terminator Cycle Sequencing Kit (Applied 
Biosystems), according to the manufacturer’s instructions. 
Sequencing products were resolved using a 3730xl DNA Analyzer 
(Applied Biosystems). All sequencing chromatograms were 
compared to published cDNA sequence; nucleotide changes were 
detected using Codon Code Aligner (CodonCode Corporation, 
Dedham, MA).

Cytotoxicity assays
Natural killer (NK) and CAR-T cell killing function was meas-
ured using standard chromium (51Cr) release assays, as described 
previously (13).

statistical analyses
Statistical analyses (as shown in the Figure legends) were per-
formed using GraphPad Prism 7 software.

ethics
Studies involving human cells were approved by the Peter 
MacCallum Cancer Centre Human Ethics Committee (approval 
number 12/73). The affected individual provided informed con-
sent for publication.

ResULts

The patient’s NK cell function was assessed using the Lamp-1 
externalization assay, a measure of degranulation, and 51Cr 
release assays that assesses NK cytotoxicity. Three measure-
ments were made, twice prior to her monthly Alemtuzumab 
injection (“during therapy”) and once 8  weeks after the last 
Alemtuzumab injection (“post-therapy”). At each of these 
time points, the patient’s naïve NK  cells showed marginal 
activity (Figures 1A–C). Overnight treatment with 100 U/mL  
IL-2 only partially restored NK  cell degranulation and cyto-
toxicity. In order to determine the functional consequence 
of STXBP2  mutations on primary human cytotoxic T-cell 
function, we employed a recombinant chimeric antigen T-cell 
receptor (CAR) technology. Primary CD3+CD8+ cells from 
the patient and healthy donors were transduced with an anti-
HER2 CAR-T construct, and their activity was assessed against 
HER2+MDA-MB-231 target cells. In comparison to the con-
trols, the patient cytotoxic T cells had reduced degranulation 
and cytotoxic activity (Figures 2A,B).

As expected, bi-allelic mutations in STXBP2 resulted in 
a significant loss of STXBP2 protein relative to the control 
(Figure 2C). Consistent with previous reports, we also observed 
a decrease in the cognate t-SNARE Syntaxin-11, but not cog-
nate Syntaxin-3. Interestingly, we found a significant decrease 
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FIGURe 1 | Bi-allelic mutations in STXBP2 impair natural killer (NK) degranulation and cytotoxicity, which is partially restored by IL-2. Peripheral blood mononuclear 
cells (PBMCs) were isolated from a healthy donor control (Control) and an FHL5 patient and incubated for 16 h in the absence (-IL-2) or presence (+IL-2) of  
100 U/mL of human IL-2. (a) PBMCs were incubated for 3 h in the absence (−K562) or presence (+ K652) of K562 target cells. NK degranulation was assessed  
by measurement of CD107a surface labeling in the CD16+ cell populations. Data are representative of two independent experiments. (B,C) PBMCs taken during 
therapy (B) or after therapy (C) were incubated with 51Cr-labeled K562 target cells for 4 h at the indicated effector to target cell ratios (normalized for the% of 
NK cells). NK cytotoxicity was determined by the release of 51Cr from target cells. Data are representative of two independent experiments.
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in the level of STXBP1 and its cognate t-SNARE Syntaxin-1. 
No differences in STXBP3 or syntaxin-4 protein levels were 
observed, suggesting a specific disruption to the STXBP2 and 
STXBP1 pathway/s (Figure  2C). Sequencing of the 19 coding 
exons and splice sites of the STXBP1 gene in our patient did not 
reveal any pathogenic mutations nor were any single nucleotide 
polymorphisms detected. To replicate these findings in a recom-
binant setting, we knocked out STXBP2 in primary human 
CD8+ T  cells using CRISPR/cas9, using three guide RNAs. 
The results confirmed our original observation, demonstrating 
significant protein reductions in STX11, STXBP1, and STX1 
protein levels as a consequence of STXBP2 loss (Figure  2D). 
A previous STXBP2/Syntaxin-11 structural study by Hackman 
et al. (14) demonstrated that, similar to STXBP2, STXBP1 was 
also capable of binding to Syntaxin-11, albeit at a lower affinity. 
They speculated that STXBP1 could compensate in the absence 

of functional STXBP2. Our data suggests that this may not be 
the case since STXBP1 protein expression appears to be depen-
dant on STXBP2.

To ascertain the role of the STXBP1 protein in CLs func-
tion, we used the human NK cell line, KHYG1, which we have 
previously shown is a suitable model for assessing the NK cell 
granule death pathway (15). Knockdown of STXBP1 using two 
different shRNAs resulted in a >90% reduction in STXBP1 
protein levels (Figure 3A), and both knockdown cell lines had 
significantly decreased NK cell-mediated killing of target cells 
compared with control cell lines (Figure 3B). We observed no 
significant loss of function in STXBP2 knockdown NK  cells, 
which was likely due to the presence of IL-2 (600  U/mL)  
in the culture media (Figures S1A,B in Supplementary Material). 
STXBP3 knockdown also had no effect on NK  cell func-
tion (Figures  3C,D), which demonstrates STXBP isoform 
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specificity in the CL-mediated killing pathway. To substantiate 
our  findings further, we knocked down STXBP1 in primary 
human CD3+CD8+ T  cells that were also transduced with 

anti-HER2 CAR and demonstrated that the STXBP1-deficient 
T cells had significantly lower cytotoxic function than control 
T cells (Figures 3E,F).
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FIGURe 2 | STXBP2 mutations inhibit T-cell degranulation and perturb the expression of the STXBP1 isoform. (a) Peripheral blood mononuclear cells 
(PBMCs) were isolated from a healthy donor control (CAR-T Control) or an FHL5 patient (CAR-T FHL5 Patient) and incubated with 30 ng/mL of anti-CD3 
antibody and 600 U/mL of IL-2 for 3 days. Cells were transduced with virus expressing a CAR specific for the Her2 antigen. CAR transduced PBMCs were 
incubated for 3 h in the absence (−Her2 Targets) or presence (+Her2 Targets) of MDA-MB-231 target cells overexpressing human Her2. CD8+CAR− T-cell 
degranulation was assessed by measurement of CD107a surface labeling in the CD8+ cell populations. The right panel shows the % of cells labeled for 
CD107a after incubation with Her2 targets. Data represent the mean ± SEM (n = 3 experiments). (B) CAR-T-expressing Control and FHL5 cells were 
incubated with 51Cr-labeled MDA-MB-231 Her2 expressing target cells for 4 h at the indicated effector to target cell ratios (normalized for the % of CD8+ 
T cells). CAR-T cytotoxicity was determined by the release of 51Cr from target cells. Data are representative of two independent experiments. The right panel 
shows the cytotoxicity of FHL5 CD8+ T cells in the absence (CAR−) and presence (CAR+) of CAR expression. Data are representative of two independent 
experiments. (C) PBMCs were isolated from a healthy donor control (Control) or an FHL5 patient and incubated with 30 ng/mL of anti-CD3 antibody and 
600 U/mL of IL-2 for 3 days. CD3+CD8+ T cells were isolated by flow cytometry and whole cell lysates were blotted for STXBP1, STXBP2, STXBP3, STX1, 
STX3, STX4, STX11, and actin (loading control). Molecular weight standards (KDa) are indicated. The right panel shows the protein expression (% of Control) 
for each of the proteins in the FHL5 samples after each blot was normalized for actin expression. Data represent the mean ± SD (n = 2–3 experiments).  
(D) PBMCs were isolated from a healthy donor and incubated with 30 ng/mL of anti-CD3 antibody and 600 U/mL of IL-2 for 3 days. Cells were transduced 
with virus expressing Cas9 and the sgRNAs #1, #2, and #3. GFP+ Cherry+ and GFP− Cherry− control (Ctl) cells were isolated by flow cytometry and whole cell 
lysates were blotted for STXBP1, STXBP2, Syntaxin-11, Syntaxin-1, and actin (loading control). Molecular weight standards (KDa) are indicated. The panel 
below shows the protein expression (% of Control) for each of the proteins after each blot was normalized for actin expression. Data represent the average  
of three guides ± SEM (n = 3).
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FIGURe 3 | STXBP1 depletion impairs natural killer (NK) cytotoxicity. (a,B) KHYG1 cells were transduced with virus expressing a scrambled control shRNA or two 
different shRNAs targeting STXBP1 (#1, #2). Cells expressing the shRNAs were sorted based on the expression of the BFP fluorescent reporter. (a) Whole cell 
lysates were blotted for STXBP1 and actin (loading control). Molecular weight standards (KDa) are indicated. (B) Control and STXBP1 shRNA KHYG1 cell lines were 
incubated with 51Cr-labeled K562 target cells for 4 h at the indicated effector to target cell ratios. Data represent the mean ± SEM (n = 3–4 experiments). Data have 
been normalized to maximal killing observed in the control scrambled shRNA cell line at 10:1 E/T ratio (set at 100%). (C,D) KHYG1 cells were transduced with virus 
expressing a scrambled control shRNA or a shRNA targeting STXBP3. Cells expressing the shRNAs were sorted based on the expression of the GFP fluorescent 
reporter. (C) Whole cell lysates were blotted for STXBP3 and actin (loading control). Molecular weight standards (KDa) are indicated. (D) Control and STXBP3 
shRNA KHYG1 cell lines were incubated with 51Cr-labeled K562 target cells for 4 h at the indicated effector to target cell ratios. Data represent the mean ± SEM 
(n = 7 experiments). Data have been normalized to maximal killing observed in the control scrambled shRNA cell line at 10:1 E/T ratio (set at 100%). (e,F) PBMCs 
were isolated from a healthy donor control, transduced with virus expressing either scrambled shRNA or STXBP1 shRNA and sorted based on the expression of  
the BFP reporter. BFP+ cells were subsequently transduced with virus expressing the CAR-T. CAR-T− and CAR-T+ cells were sorted based on the expression of 
the surface expression of the myc epitope. (e) Whole cell lysates from the CAR-T− cells were blotted for STXBP1 and actin (loading control). Molecular weight 
standards (KDa) are indicated. (F) CAR-T+ cells were incubated with 51Cr-labeled MDA-MB-231 Her2 expressing target cells for 4 h at the indicated effector to 
target cell ratios. CAR-T cytotoxicity was determined by the release of 51Cr from target cells. Data represent the mean ± SEM (n = 3 experiments).
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DIsCUssIoN

In the current study, we have made the unexpected observation 
that congenital deficiency of the STXBP2 protein may also affect 
the expression of STXBP1. Further analysis identified an unsus-
pected functional role for STXBP1 in secretory granule-mediated 
NK and T-cell cytotoxicity.

Granule/vesicle docking and fusion events at the plasma 
membrane are regulated by at least three Sec1/Munc18-like (SM) 
isoforms in mammalian cells: STXBP1 (n-Sec1/Munc18-1), 
STXBP2 (Munc18-2), and STXBP3 (Munc18-3). STXBP1 expres-
sion/function was originally thought to be restricted to neuronal 
tissue (16), however, subsequent work has since reported roles for 
STXBP1 in other cell types, including pancreatic beta cells (17) 
and mast cells (18).

There are certain cellular pathways where single SM isoforms 
have been shown to regulate discrete trafficking events. Loss 
of STXBP1, for example, results in a complete block in neuro-
transmission, despite the presence of both STXBP2 and STXBP3 
paralogs in neurons (19). By contrast, both STXBP1 and STXBP2 
proteins appear to be important in mast cell degranulation, sug-
gesting that their role may be partly redundant or complementary 
across the hematopoietic cell lineage (18).

In this study, we have serendipitously uncovered a role for STXBP1 
as a regulator of NK and cytotoxic T-cell granule exocytosis. One 
previous study proposed a similar role for this protein based on its 
biochemical interaction with Syntaxin-11 in vitro (14). In the current 
study, STXBP2 deficiency led to reduced levels of Syntaxin-11 as has 
been previously reported. However we also observed a concomitant 
protein reduction in STXBP1 and its partner t-SNARE Syntaxin-1, 
suggesting a greater protein interdependency between these STXBP/
Syntaxin complexes. Our functional analyses revealed that STXBP1 
played a role in NK and T-cell cytotoxicity in the presence of IL-2. 
Since NK and T cells require IL-2 for their growth, we were unable 
to investigate the role of STXBP1 in the absence of this cytokine. 
Given the lack of naive NK cell cytotoxicity in the patient described 
here, we hypothesize that STXBP1 remains “silent” in the absence 
of IL-2 and only acts in an IL-2 dependent manner to facilitate 
cytotoxic secretory vesicle docking and target cell killing. Of note, in 
the current case study, the patient had a significantly reduced level 
of STXBP1, and this may potentially explain why NK cell function is 
only partially restored in the presence of IL-2.

STXBP1 plays a non-redundant role in neurotransmission: 
genetic deletion of STXBP1 results in embryonic lethality in 

mice (19), and de novo mono-allelic mutations in humans invari-
ably result in epileptic encephalopathy (a rare form of Dravet 
syndrome) (20). It is, therefore, not surprising that STXBP1 
mutations have never been associated with primary immunode-
ficiency. Importantly, in the current study, the loss of STXBP1 
protein was greater than 70% (Figure 2C), strongly suggesting 
that the observed phenomenon is cell-type specific. Interestingly, 
a link between STXBP1 and STXBP2 protein expression has been 
previously described in vitro (21), where loss of STXBP1 resulted 
in an upregulation of STXBP2 protein, potentially as a compensa-
tory event. By contrast, at least in the current clinical case, the loss 
of STXBP2/syntaxin-11 also destabilized the STXBP1/syntaxin-1 
protein complex, suggesting that there may be a greater interplay 
between individual Munc18/Syntaxin complexes that act in 
concert to orchestrate the same exocytic event.

CoNCLUDING ReMaRKs

In the current study, we have identified STXBP1 as an important 
player in CL function. Although it did not compensate for the 
loss of STXBP2 in naïve NK  cells, STXBP1 appears to play an 
important role in activated NK and cytotoxic T cells and may be 
responsible for as much as 50% of their cytotoxic activity. Future 
studies using a larger cohort of individuals with STXBP2 mutations 
will determine whether the reduction in STXBP1 protein levels in 
our STXBP2-deficient FHL case is a more general phenomenon, 
and will help to unravel the complexity of CL secretory machinery.
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