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Nuclear factor kappa B (NF-κB) is a pluripotent and crucial dimer transcription factor 
that orchestrates various physiological and pathological processes, especially cell pro-
liferation, inflammation, and cancer development and progression. NF-κB expression is 
transient and tightly regulated in normal cells, but it is activated in cancer cells. Recently, 
numerous studies have demonstrated microRNAs (miRNAs) play a vital role in the NF-κB 
signaling pathway and NF-κB-associated immune responses, radioresistance and drug 
resistance of cancer, some acting as inhibitors and the others as activators. Although it is 
still in infancy, targeting NF-κB or the NF-κB signaling pathway by miRNAs is becoming 
a promising strategy of cancer treatment.

Keywords: microRNAs, nuclear factor kappa B, cancer, molecular therapy, nuclear factor kappa B-associated 
resistance

iNTRODUCTiON

Tumorigenesis is the result of multistep interactions of multi-factors and -genes, and the mecha-
nisms whereby the tumors occur need to be further explored. In recent years, cancer research has 
undergone a rapid development and achieved a major breakthrough. The 10 hallmarks that are 
involved in tumor growth and metastasis have been reported (1), and their complex progression 
ultimately induces incipient tumor cells to develop into tumorigenic and malignant cancer.

MicroRNAs (miRNAs), a class of endogenous and single-stranded RNA, are a subfamily of small 
non-coding regulatory RNA with a size of 18–22 nt, being involved in various physiological and 
pathological processes. Increasing studies have demonstrated that miRNAs play a significant role 
in tumorigenesis and progression, via directly or indirectly regulating the expression of various 
oncogenes or tumor suppressors (2–4). As a transcription factor, nuclear factor kappa B (NF-κB) 
expression is transient and tightly regulated in normal cells, but it is highly activated in cancer cells 
(5). NF-κB is not only involved in immune responses (6, 7), but it also plays an important role in the 
development and progression of tumor (8, 9), metastasis (10), and drug resistance (11). Recently, 
it has been demonstrated that miRNAs are involved in the regulation of NF-κB signaling pathway 
by different mechanisms (12–14). These interactions suggest that miRNAs and NF-κB can be used 

Abbreviations: NF-κB, nuclear factor kappa B; HCC, hepatic cellular cancer; ATL, adult T cell leukemia/lymphoma; TAD, 
transcription activation domain; TNF, tumor necrosis factor; RHD, Rel homology domain; TLR, toll-like receptor; IL, inter-
leukin; IRAK, interleukin-1 receptor-associated kinase; PEG3, paternally expressed gene 3; TAK, transforming growth factor-
β-activated kinase; SOCS, suppressor of cytokine signaling; TNIP, tumor necrosis factor alpha induced protein 3 interacting 
protein; CYLD, cylindromatosis.
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FigURe 1 | Structure of nuclear factor kappa B (NF-κB) and its activation mechanisms. (A) Homodimerization and heterodimerization of NF-κB1. Homodimer p50 
lacks transcriptional activation domains and is unable to bind to DNA. Heterodimers are repressed by IκB. (B) Homodimerization and heterodimerization of 
NF-κB2. Homodimer p52 lacks transcriptional activation domains and is unable to bind to DNA. Heterodimers are repressed by IκB. (C) Classical pathway of 
NF-κB activation. This pathway is mediated by IκB kinase complex (IKK), leading to phosphorylation and degradation of IκB. (D) Alternative pathway of NF-κB 
activation. This pathway involves IKKα activation via NF-κB-inducing kinase (NIK) and induces the phosphorylation of p100, leading to the generation and 
translocation of p52.
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as potential tumor diagnostic biomarkers and drug therapeutic 
targets in clinical treatment of cancer.

miRNA BiOgeNeSiS AND iTS 
eXPReSSiON iN CANCeR

MicroRNAs are mainly transcribed by RNA polymerase II, and 
in the canonical pathway the resulting transcripts, known as 
primary miRNAs, are cleaved by Drosha-DGCR8 to produce 
precursor miRNAs (pre-miRNAs) that are exported to the cyto-
plasm by exportin-5 and Ran-GTP (15, 16). In the cytoplasm, 
pre-miRNAs are processed into miRNA duplexes by Dicer, and 
mature miRNAs are incorporated into the AGO2-containing 
small RNA-induced silencing complex, while the counterparts, 
known as miRNAs*, are degraded in most cases (2, 17, 18). In 
addition to the canonical pathway, a small part of miRNAs are 
derived from introns and spliced by spliceosome in a Drosha-
independent pathway (19). miRNAs can regulate mRNA stabi-
lity or translation by interacting with binding site(s) in the 3′ 
untranslated region (UTR) of targets.

Increasing literatures have documented that miRNAs are 
implicated in the pathogenesis of various malignancies (20, 21),  
and they represent key players in cancer development and meta-
stasis processes as well (22), such as thymic epithelial tumors 

(23), renal cancer (24), colorectal cancer (25), and so on. It is 
undoubted that miRNA expression profiles are different in the 
distinct tumors, and a specific set of miRNAs are upregulated 
or downregulated in the specific tumor cells (4). Although the 
correlation between miRNA dysregulation and cancer has been 
demonstrated, it is still not clear whether changed expression of 
miRNAs promotes carcinogenesis or the development of cancer 
causes ectopic expression of miRNAs. Therefore, understanding 
the functions of miRNAs and their targets in the relevant signal-
ing pathways is of great importance and may help us develop 
potential diagnosis and therapeutic approaches for cancer.

NF-κB SigNALiNg PATHwAY

Nuclear factor kappa B is a transcription factor that presents in 
the cytoplasm of a cell and regulates the expression of immune 
and growth genes (26, 27). It is heterodimeric or homodimeric 
combinations of five different protein subunits, including RelA 
(p65), RelB, c-Rel, NF-κB1 (p50/p105), and NF-κB2 (p52/p100) 
(Figures 1A,B), all of which commonly share a N-terminal Rel 
homology domain responsible for DNA binding and dimerization 
(28, 29). All 5 family members can potentially form 15 different 
homodimeric or heterodimeric complexes (30). The transcrip-
tion activation domain (TAD) is necessary for gene expression, 
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TABLe 1 | MicroRNAs (miRNAs) involved in the regulation of the nuclear factor kappa B (NF-κB) pathway in cancer.

miRNAs expression Cancer type Target Function Reference

miR-30e* Up Prostate/gliomas IκBα NF-κB activation (6, 41)
miR-146a/b Up Breast/epithelial ovarian/cancer Tumor necrosis factor receptor-associated factor 

(TRAF)6/interleukin-1 receptor-associated kinase 
(IRAK)1/myeloid differentiation factor 88 (MyD88)

NF-κB inhibition (13, 42, 43)

miR-940 Down Pancreatic ductal adenocarcinoma MyD88 NF-κB activation (44)
miR-514a-3p Down Testicular germ cell tumor Paternally expressed gene 3 NF-κB activation (40)
miR-133a Up Glioblastoma cell Death receptor 5 NF-κB activation (45)
miR-223 Up Lung cancer IκB kinase complex (IKK)α/β IκB phosphorylation (46)
miR-127-5p Down Hepatic cellular cancer (HCC) BLVRB p65 phosphorylation (47)
miR-31 Down Adult T cell leukemia/lymphoma NF-κB-inducing kinase NF-κB activation (48)
miR-26a/b Down HCC TAB 1/transforming growth factor-β-activated 

kinase 1
IKKβ activation (49)

miR-15b-5p Down Colorectal cancer IKK-α IκB activation (50)
miR-130a Up Cervical cancer Tumor necrosis factor-α NF-κB inhibition (51)
miR-429 Down Cervical cancer/HCC IKK-β/TRAF6 IκB activation (52, 53)
miR-k1, -k5,  
and -k9

Up Kaposi’s sarcoma-associated 
herpesvirus-induced lymphoma

IκB-α/IRAK/MyD88 NF-κB activation (54, 55)

miR-30c-2-3p Down Breast cancer TRADD NF-κB regulation (56)
miR-9 Down/up Ovarian/gastric cancer NF-κB1 NF-κB activation/suppression (57, 58)
miR-451 Down HCC IKK-β IκB activation (59)
miR-218 Up Glioma cancer IKK-β NF-κB inactivation (60)
miR-210-3p Up Prostate cancer Suppressor of cytokine signaling 1/tumor necrosis 

factor alpha induced protein 3 interacting protein 1
NF-κB activation (61)

miR-19b-3p Up Nasopharyngeal carcinoma (NPC) TNFAIP3 NF-κB activation (62)
miR-125b Up NPC A20 NF-κB activation (63)
miR-668 Up Breast cancer IκBα NF-κB activation (64)
miR-20a Up Gastric cancer IκBβ NF-κB activation (65)
miR-199a Down Ovarian cancer IKKβ IκB activation (66, 67)
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but both NF-κB1 (p50/p105) and NF-κB2 (p52/p100) lack TAD 
(31). Thus, p50 and p52 cannot activate gene expression unless 
they associate with a NF-κB family member containing TAD or 
recruit a specific coactivator (29). In resting cells, NF-κB dimers 
are sequestered in the cytoplasm through combining inhibitory 
protein IκB (IκBα/β/γ) (Figures 1A,B). When cells are stimulated 
by various agents, such as bacteria, virus, cytokines, and tumor 
promoter, NF-κB is rapidly activated and translocated into the 
nuclear to promote the expression of genes by binding to κB sites 
(32). Generally, NF-κB is activated by two signaling pathways, 
a classical pathway and an alternative pathway (33). In the classi-
cal pathway, NF-κB activation is precisely mediated through the 
phosphorylation and polyubiquitination of IκB members and then 
degradation by proteasome (Figure  1C) (34). In the alternative 
pathway, p100 and p105 are processed and degraded to p52 and 
p50 by an IκB-independent pathway (Figure 1D) (35).

In normal cells, NF-κB is tightly controlled by regulating its 
inhibitor IκB. However, in cancer cells, NF-κB is highly activated 
and translocated to the nucleus to induce cell proliferation and 
immortalization by dysregulation of various signaling pathways 
(8, 36). These processes are also regulated by miRNAs that modu-
late the NF-κB signaling pathway.

RegULATiON OF NF-κB SigNALiNg  
BY miRNAs iN CANCeR

Nuclear factor kappa B is activated in various cancer types 
as an important inducible carcinogenesis mediator (37), 

making malignant tumor cells to evade apoptosis from cell 
cycle checkpoint (38). In recent years, increasing evidence 
has demonstrated that miRNAs and NF-κB play an impor-
tant role in tumor development and progression (6, 39, 40). 
Particularly, NF-κB can be directly or indirectly activated by 
miRNAs in cancer cells or oncogenic human virus-infected 
cells (Table 1).

NF-κB Activation by miRNAs in non-viral 
Tumors
Numerous pathways can induce the activation of NF-κB in 
different types of cancer. In addition, miRNAs also target the 
key components and regulatory proteins of the NF-κB signal-
ing pathway to modulate the activity of NF-κB, such as tumor 
necrosis factor (TNF), a secreted proinflammatory cytokine. 
For instance, significantly low expression of miR-9 promoted 
NF-κB1 overexpression, thus enhancing NF-κB activities and 
inducing ovarian cancer cell proliferation (57). In cervical 
cancer cells, upregulated miR-130a directly targeted the 3′ UTR 
of TNF-α and reduced its expression, and then downregulated 
TNF-α-activated NF-κB activity and enhanced miR-130a 
expression by a negative feedback loop of NF-κB/miR-130a/
TNF-α/NF-κB (51).

miRNAs Involved in the Regulation of Myeloid 
Differentiation Factor 88 (MyD88)
Myeloid differentiation factor 88 is a critical adaptor protein in 
the toll-like receptor (TLR)/interleukin (IL)-1R receptor family 
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FigURe 2 | A role of microRNAs (miRNAs) in the nuclear factor kappa B (NF-κB) signaling pathways. These two pathways rely on tumor necrosis factor (TNF), 
toll-like, interleukin (IL)-1, and EGF receptors (A), and BAFF reporter and CD40 (B), respectively, and they are activated or repressed by miRNAs. Activated NF-κB 
promotes or restrains the expression of tumor-associated genes.
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signaling pathway. It was reported that miR-940 targeted the 3′ 
UTR of MyD88, being involved in the activation of NF-κB in 
pancreatic ductal adenocarcinoma (44). A low level of miR-940 
led to an elevated expression of MyD88 and promoted pancreatic 
ductal adenocarcinoma cell growth. Furthermore, miR-146a 
was also shown to target and reduce MyD88 expression, thus 
inhibiting the NF-κB activation in epithelial ovarian cancer, and 
directly regulating the sensitivity of ovarian cancer cells to drug 
therapy (42). Therefore, miRNAs can regulate NF-κB activities 
by targeting MyD88, which has a very important significance for 
tumor development.

miRNAs Involved in the Regulation of Tumor 
Necrosis Factor Receptor-Associated Factor (TRAF)
Tumor necrosis factor receptor-associated factors are a class of 
multi-functional intracellular signaling adaptor proteins, being 
involved in signal transduction of multiple receptor families, 

including apoptosis factor receptor family (TNFR), TLR family 
(68), interleukin-1 receptor family, NF-κB receptor activating 
factor family (RANK), and so on (Figure 2). TRAF interacts with 
downstream proteins in a cell and eventually initiates NF-κB acti-
vation through miRNAs. For example, miR-146a/b was identified 
as an inhibitor for TRAF6 and interleukin-1 receptor-associated 
kinase (IRAK)1 in breast cancer cells MDA-MB-231 and down-
regulated TRAF6 eventually gave rise to the suppression of 
NF-κB activities (43). In human testicular germ cell tumor, loss 
of miR-514a-3p upregulated paternally expressed gene 3 (PEG3) 
and consequently overexpressed PEG3 recruited TRAF2 to 
activate the NF-κB pathway (40). Moreover, it has been recently 
demonstrated that downregulated miR-429 markedly promoted 
proliferation and migration of hepatic cellular cancer (HCC) by 
targeting TRAF6 through the NF-κB pathway, while upregulation 
of miR-429 significantly suppressed HCC growth (52). Therefore, 
it is becoming clear that miR-146a/b, miR-514a-3p, and miR-429 
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may serve as a potential target for the treatment of HCC via 
regulation of TRAF.

miRNAs Involved in the Regulation of Transforming 
Growth Factor-β-Activated Kinase (TAK)1
Transforming growth factor-β-activated kinase 1 is a serine/thre-
onine protein kinase, which is activated by specifically binding  
to TAB 1–3 protein and ubiquitinated TRAF6, being involving 
in intracellular signal transduction, Iκβ activation, and NF-κB 
cascade activation (69). Emerging evidence implies that miRNAs 
regulate TAK1 expression to promote tumorous invasion, metas-
tasis, and chemoresistance. It was reported that miR-143 targeted 
TAK1 to attenuate development and progression of pancreatic 
ductal adenocarcinoma via NF-κB pathway (70). Similarly, 
miR-146a and miR-26b were also demonstrated to target TAK1 
to promote gastric cancer cell apoptosis (71) and suppress the 
NF-κB signaling and enhance the chemosensitivity of HCC (49), 
respectively. These data suggest that miR-143, miR-146a, and 
miR-26b act as a potent inhibitor of the NF-κB pathway.

miRNAs Involved in the Regulation  
of IκB Kinase Complex (IKK)
The IKK includes three kinase subunits, one being the regula-
tory subunit NEMO, also known as IKKγ, and the rest two 
being serine–threonine kinases (IKKα and IKKβ). They are 
a signal integration hub for IκB phosphorylation and NF-κB 
activation (72, 73). Recent studies have showed that abnormal 
expression of IKK promotes proliferation and invasive ability 
of cancer cells by miRNAs. miR-218 was able to downregulate 
IKK-β expression and inactivated the NF-κB signaling, leading 
to dramatic reduction of the migratory and invasive ability 
of glioma cells (60). In ovarian cancer, downregulated miR-
199a, a regulator of IKK-β expression, promoted a functional 
TLR–MyD88–NF-κB pathway and induced ovarian cancer 
cells to secret proinflammatory cytokines and enhance tumor 
progression (66). As a key tumor suppressor, miR-15b-5p was 
also markedly downregulated in colorectal cancer. It promoted 
NF-κB activation through negative regulation of IKK-α that 
induce IκB phosphorylation (50). In HCC cells, markedly 
downregulated miR-451 promoted the tumorigenicity by direct 
targeting of IKK-β. On the contrary, upregulation of miR-451 
resulted in downregulation of cyclin D1 and c-Myc through the 
inhibition of NF-κB pathway, thus decreasing proliferation of 
HCC cells (59).

miRNAs Involved in the Regulation of IκB  
and Other NF-κB-Associated Components
The activation of NF-κB is universally achieved via first IκB 
phosphorylation by IKKβ and degradation by ubiquitination. 
In cervical cancer, the downregulated miR-429 elevated IKKβ 
expression and promoted NF-κB activation by phosphorylat-
ing IκBs (53). Nevertheless, miR-30e* was hyperexpressed in 
prostate cancer and targeted IκBα (61), thus increasing free 
cytoplasmic NF-κB to translocate into the nucleus to regulate 
the expression of cyclin D1 and consequently enhancing tumor 
proliferation and growth (6). Similarly, the expression of miR-
210-3p was also elevated in prostate cancer cells, particularly in 

bone-metastatic prostate cancer cells, and it was directly targeted 
multiple negative regulators of the NF-κB signaling pathways, 
including suppressor of cytokine signaling 1 and tumor necrosis 
factor alpha induced protein 3 interacting protein 1, resulting in 
constitutive activation of the NF-κB signaling, and promoting 
EMT of bone-metastatic prostate cancer cells (61). In the lung 
cancer cells, overexpression of miR-223 was found to signifi-
cantly promote tumor progression through activating NF-κB, but 
the mechanisms are still elusive (46). In gastric cancer, miR-20a 
directly targeted cylindromatosis and IκBβ, promoting activa-
tion of the NF-κB pathway and its downstream targets, such as 
livin and survivin, which potentially induced chemoresistance  
(65, 74). Moreover, it was reported that overexpression of 
Polycomb regulated the non-canonical NF-κB pathway by inhib-
iting miR-31 to upregulate the NF-κB-inducing kinase expres-
sion level in adult T cell lymphoma (48). In HCC, downregulated 
miR-127-5p induced the overexpression of BLVRB to promote 
NF-κB activity and enhance HCC cell growth (47). Similarly, 
miR-30c-2-3p also acted as one of the strongest negative regula-
tors and activated NF-κB signaling through downregulation of 
TRADD in breast cancer (56).

In some cases, the NF-κB signaling pathway can regulate 
the levels of miRNAs by controlling relative protein expression 
to participate in cancer occurrence (75). It has been reported 
that there are four NF-κB-binding sites in the miR-130a gene 
promoter region and miR-130a is upregulated upon NF-κB 
binding, which leads to the downregulation of PTEN to pro-
mote cervical cancer cell growth (76). The ectopic expression 
of NF-κB disturbs oncogenic miR-221 and miR-222 expression 
in prostate carcinoma and glioblastoma cell lines, possibly by 
NF-κB binding to two sites in the upstream of miR-221/222 
promoter (77).

NF-κB Activation by miRNAs  
in viral Tumors
For some oncogenic viruses, their infections can activate the 
NF-κB signaling pathway by altering cellular endogenous miR-
NAs. High-risk human papillomavirus (HPV) infection leads to 
aberrant expression of tumor suppressive miRNAs of infected 
cells and oncogenicity. HPV E6 and E7 oncoproteins regulate 
the expression of miR-34a and miR-15a/miR-16-1 via degrading 
tumor suppressor proteins such as p53 and pRB, respectively 
(78). As a transcription factor, p53 is directly degraded by E6 
oncoprotein, which binds to a p53-binding site in the miR-34a 
promoter region and mediates its expression (79). E7 oncoprotein 
releases E2F from the pRB–E2F complex and degrades tumor 
suppressor pRB (80). Free E2F binds to the promoter regions and 
regulates the expression of miR-15a/miR-16-1 and miR-106b-25 
(81). Moreover, several studies have reported that the expression 
of HPV early protein E1, a viral helicase, activates DNA dam-
age response pathways. Its key regulator, ataxia telangiectasia 
mutated, has a function in reduction of IκBα by phosphorylation 
and activation of the NF-κB signaling pathway (82). Afterward, 
the activated NF-κB binding to the miR-221 promoter region 
induces its overexpression (83). It is likely that the infection by 
high-risk types of HPV causes aberrant cellular miRNA expres-
sion and then promotes the formation of cervical cancer (78). In 
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addition, upregulation of miR-221 also promotes HCV infection 
in a NF-κB-dependent manner in HCV-associated HCC (84).

In the other hand, viral miRNAs can also regulate immu-
noreactions through targeting the NF-κB signaling pathway. 
Kaposi’s sarcoma-associated herpesvirus miR-k9 and miR-k5 
regulated NF-κB activation by targeting IRAK and MyD88 to 
repress IL-6 and IL-8 expression and enhance viral infection (54).  
On the contrary, miR-k1 directly repressed the expression of IκBa, 
enhanced the transcriptional activities of NF-κB, and inhibited 
viral lytic replication (55). However, these studies on the inter-
actions between viral miRNAs and intracellular NF-κB are still 
seriously inadequate. Therefore, uncovering NF-κB fun c tions via 
elucidating molecular mechanisms underlying a role of miRNAs 
in the persistence and pathogenesis of viral infection-induced 
cancer is extremely important.

NF-κB-ASSOCiATeD ReSiSTANCe iN 
CANCeR AND miRNAs-TARgeTiNg 
THeRAPY

Chemotherapy, radiotherapy, and targeted therapy are the 
effective ways for the treatment of tumors, but drug- and radio-
resistance inevitably limits therapeutic effects of long term (85, 
86). Recently, growing evidence has shown that NF-κB is not 
only involved in the development and progression of cancer but 
also exerts the main function in modulating antitumor immunity  
(87, 88). Meanwhile, it has been reported that the NF-κB signal-
ing pathway can be activated by most chemotherapeutic agents 
and radiation therapy, and may be a causative factor for drug 
resistance (89–91). Even for some cancer cells, transient exposure 
to a low-dose of doxorubicin could enhance drug resistance via 
activation of the NF-κB signaling pathway (92). TRAIL is a prom-
ising specifically targeted anticancer agent, but it can stimulate 
the activation of NF-κB to promote the proliferation of cancer 
cells (93). Moreover, TRAIL activates a positive feedback loop 
that sustains the acquired drug resistance by inducing NF-κB-
dependent overexpression of miR-21 and miR-100, which both 
target TRAF7 to further activate the NF-κB signaling (39, 94). 
Recently, miR-133a was found to be upregulated in the human 
glioblastoma cell lines M059J and M059K, and it strongly 
promoted TRAIL resistance by suppressing death receptor 5 
expression and activating NF-κB signaling (45). For nasopharyn-
geal carcinoma (NPC), radiotherapy is the primary treatment 
strategy, but significantly upregulated miR-19b-3p decreases 
NPC radiosensitivity by targeting TNFAIP3 to increase NF-κB 
activity (62). Meanwhile, miR-125b was also found to enhance 
radioresistance through targeting A20 and then activating the 
NF-κB in NPC (63). Another example for radioresistance is 
miR-668 that directly targets the NF-κB inhibitor IκBα to activate 
NF-κB, and then enhances radioresistance of human breast can-
cer MCF-7 and T-47D cells (64). Thus, combinatory treatment 
using anticancer chemotherapy drug and NF-κB inhibitors could 
revert drug resistance and reduce tumor growth.

Activation of NF-κB affects the transcription of over 400 genes 
and promotes cells to involve antiapoptotic responses, metastases 
and drug resistance (28, 95, 96). Targeting NF-κB or the NF-κB 

signaling pathway by miRNAs will be a promising strategy for 
the treatment of cancer. For the overexpressed miRNAs regulat-
ing the NF-κB signaling, antagonists (anti-miR or antagomiR or 
antisense oligonucleotides) and modified chemically antisense 
oligonucleotides against corresponding miRNAs are effective 
tools to decrease the expression levels of endogenous miRNAs. 
Antagonists have been demonstrated with a strong potential 
to effectively downregulate targeted miRNAs in cancer (97).  
An inhibitor of miR-223, one of the highly expressed miRNAs in 
lung cancer cells, significantly decreased cell viability and inva-
sion by repressing the expression levels of IKKα/β and NF-κB 
(46). Overexpression of miR-21, an antionco-miRNA, effec-
tively reduced the proliferation and migration of human colon 
carcinoma cells. Further studies revealed that elevated miR-21 
reduced the phosphorylation of ERK1/2 (98). As phosphorylated 
ERK1/2 is associated with NF-κB in the nucleus, it is supposed 
that the NF-κB activity will be decreased in the treated cells. 
In a diametrically opposite approach, miRNA mimics, a class 
of artificially synthetic miRNAs, are applied to restore loss of 
function of miRNAs in cancer cells (99). For example, miR-520b 
mimics sharply reduced breast cancer cell migration by targeting 
HBXIP and IL-8 via a network, in which HBXIP accelerates cell 
migration by activating NF-κB-mediated IL-8 expression (100). 
In ovarian carcinoma cells, the transfection with miR-141 mimics 
was able to inhibit KEAP1, which can bind to IKKβ to activate the 
NF-κB signaling pathway, and then enhanced resistance to cispl-
atin (101). Another therapeutic method is the “miRNA sponge 
effects.” It refers to robust overexpression of artificial small RNAs 
using viral vectors such as lentiviruses or adenoviruses encoding 
miRNA mimics or antagonists, which restore the loss of miRNAs 
or decrease endogenous miRNAs (102, 103).

It is known that the first miRNA mimics MRX34 has already 
entered at the clinical treatment phase for the treatment of 
human pancreatic cancer in 2013 (85). Moreover, both miR-
200c EDVs vectors and miR-29b mimics are also at a preclinical 
stage, and the results have shown that miR-200c enhances radi-
osensitivity (104) and miR-29b mimics by cationic lipoplexes 
transfection significantly inhibits tumor growth (105), but 
their possible long-term side effects should be further analyzed. 
Therefore, targeting NF-κB might not only directly decrease 
cancer invasiveness and metastases but also restore tumor 
cell sensitivity to chemotherapy and radiotherapy. Although 
miRNAs-targeting therapy attracts more and more attention, 
dose-dependent toxicity, off-target regulation, biosafety, and 
so on are still big challenges that need to be solved in the next 
few years.

PeRSPeCTiveS

As important transcriptional regulators, miRNAs can upregu-
late or downregulate many target genes involved in the NF-κB 
signaling pathway via negative or positive feedback loops, which 
are responsible for cancer initiation, development, progression, 
metastasis, and drug resistance. Therefore, miRNAs have been 
applied as molecular therapy targets, diagnosis markers, and 
prognostic indicators for cancer. Restoration or repression of 
miRNA expression levels has been showed a high potential for 
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tumor therapy in cells and animal models. However, the clinical 
applications of miRNAs are greatly limited due to the multi-
target, off-target, and instability. Therefore, further studies will be 
required to confirm the prognostic side effects of miRNA mimics 
and antagonists.

Furthermore, based on the current knowledge, many stud-
ies have just focused narrowly on the specific effects of a given 
miRNA targeting a specific mRNA by bioinformatic prediction 
algorithms, rather than exploring the “bigger picture” of gene 
expression regulation. With the depiction of this “bigger picture,” 
it is expected that NF-κB-targeting miRNAs are a promising 
potential target for various cancer treatment.
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