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The signaling lipid phosphatidylinositol 3,4,5, trisphosphate (PIP3) is an essential 
mediator of many vital cellular processes, including growth, survival, and metabolism. 
PIP3 is generated through the action of the class I phosphoinositide 3-kinases (PI3K), 
and their activity is tightly controlled through interactions with regulatory proteins and 
activating stimuli. The class IA PI3Ks are composed of three distinct p110 catalytic 
subunits (p110α, p110β, and p110δ), and they play different roles in specific tissues due 
to disparities in both expression and engagement downstream of cell-surface recep-
tors. Disruption of PI3K regulation is a frequent driver of numerous human diseases. 
Activating mutations in the PIK3CA gene encoding the p110α catalytic subunit of class 
IA PI3K are frequently mutated in several cancer types, and mutations in the PIK3CD 
gene encoding the p110δ catalytic subunit have been identified in primary immunode-
ficiency patients. All class IA p110 subunits interact with p85 regulatory subunits, and 
mutations/deletions in different p85 regulatory subunits have been identified in both 
cancer and primary immunodeficiencies. In this review, we will summarize our current 
understanding for the molecular basis of how class IA PI3K catalytic activity is regulated 
by p85 regulatory subunits, and how activating mutations in the PI3K catalytic subunits 
PIK3CA and PIK3CD (p110α, p110δ) and regulatory subunits PIK3R1 (p85α) mediate 
PI3K activation and human disease.

Keywords: primary immunodeficiency, oncogenic mutations, phosphoinositides, phosphoinositide 3-kinase, 
PiK3R2, PiK3R1, PiK3CA, PiK3CD

inTRODUCTiOn

Phosphoinositide 3-kinases (PI3Ks) are essential mediators of signaling downstream of cell-
surface receptors and play essential roles in numerous cellular processes, including growth, 
metabolism, and differentiation (1). PI3Ks generate the lipid phosphatidylinositol 3,4,5, tris-
phosphate (PIP3), which recruits signaling proteins containing PIP3 binding domains. Many 
signaling proteins are activated by PIP3, including AGC family Ser/Thr kinases, TEK family 
tyrosine kinases, and modulators of Ras superfamily GTPases, specifically Guanine nucleotide 
exchange factors (GEFs), and GTPase activating proteins (2). One of the most well studied  
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PIP3 effectors is the AGC protein kinase Akt, which plays key 
roles in regulating growth and metabolism (3).

The class IA PI3Ks are composed of three p110 catalytic subu-
nits (p110α, p110β, and p110δ), which form an obligate constitu-
tive heterodimer (4) with one of five p85-like regulatory subunits 
(p85α, p85β p55α, p50α, and p55γ). Class IA PI3Ks are activated 
downstream of receptor tyrosine kinases (RTKs) and other 
tyrosine phosphorylated receptors/adaptors, G-protein-coupled 
receptors (GPCRs), and Ras superfamily GTPases. The p110α 
and p110β catalytic subunits are ubiquitously expressed, while 
the p110δ and p110γ subunits share a more restricted immune 
cell-specific expression profile (5). Knockin genetic models and 
isoform-selective inhibitors have revealed the essential roles of 
specific PI3K isoforms, including p110α in insulin and growth 
factor signaling (6, 7), and p110δ and p110γ in mediating immune 
cell development and function (8–11).

Due to this fundamental role in a plethora of vital functions, 
the misregulation of PI3K signaling occurs in various human 
diseases (2). Underlying the importance of maintaining regu-
lated levels of PI3K activity, disease can be caused by overac-
tive and inactive PI3K signaling. The first clinically approved 
therapeutic Idelalisib specifically targeting p110δ was FDA 
approved in 2014 and has shown efficacy in the treatment of 
B cell-related malignancies (12–16). Even though p110δ inhibi-
tors have shown promise as therapeutics, careful consideration 
of unexpected complications is critical, as long-term inhibition 
of p110δ signaling can lead to B cell genomic instability through 
an Activation-induced cytidine deaminase (AID)-dependent 
mechanism (17).

Mutations in both catalytic and regulatory subunits fre-
quently activate lipid kinase activity through modification/
disruption of inhibitory interfaces between the two subunits. 
Fundamental to understanding how mutations in different 
catalytic and regulatory subunits modify PI3K signaling in 
different cells/tissues is understanding how class IA PI3Ks 
are regulated by their p85 regulatory subunits, and how they 
are activated downstream of different activating stimuli. This 
review will specifically focus on the molecular mechanisms of 
how class IA PI3Ks are regulated, and how both oncogenic and 
primary immunodeficiency mutations/deletions in catalytic 
and regulatory subunits lead to disease.

CLASS iA Pi3K ReGULATiOn

The class IA regulatory subunits have three key roles: they 
stabilize the p110 catalytic subunit, they inhibit p110 catalytic 
activity, and they allow for the activation of activity downstream 
of proteins containing phosphorylated YXXM motifs through 
engagement of p85 SH2 domains (18, 19). While class IA cata-
lytic subunits require a regulatory subunit for stability, the p85 
subunits have been postulated to exist alone and can mediate 
cellular functions free of p110 (20, 21).

Both the class IA PI3K p110 catalytic subunit and p85 
regulatory subunit are large, dynamic multi-domain proteins 
(Figures 1A–C). p110 is composed of an adaptor-binding domain 
(ABD), which interacts with p85, a Ras-binding domain (RBD), 
which mediates interaction with Ras superfamily GTPases, a 

C2 domain, a helical domain, and a bi-lobed kinase domain, 
composed of an N-lobe and a C-lobe. All class IA regulatory 
subunits contain two Src homology 2 domains [referred to as 
nSH2 and cSH2 to denote N-terminal and C-terminal] connected 
by a coiled-coil domain known as the inter SH2 (iSH2). The main 
interface holding the PI3K heterodimer together is the very tight 
interaction of the ABD of p110 with the iSH2 domain of p85 
(22). Both p85α and p85β subunits also contain a Src homology 3 
domain (SH3) and a bar cluster region homology domain (BH). A 
comparison of class IA PI3K domain organization compared with 
other SH2 containing protein kinases including Src family and Syk 
family kinases reveals the large size and complexity of the p110/
p85 complex relative to other signaling kinases (Figures 1C,D).

Biochemical/biophysical studies have informed the molecu-
lar mechanism of how regulatory subunits bind and inhibit the 
different p110 catalytic subunits (18, 19, 22, 24, 25, 29–35).  
A number of inter- and intra-subunit interactions mediate 
inhibition of each of the class IA catalytic subunits (annotated 
on the domain schematic in Figure 1B). In all class IA PI3Ks, 
the ABD domain forms an intra-subunit inhibitory contact 
with the N-lobe of the kinase domain (32). How the ABD inter-
acts with kinase domain is mediated by the ABD–RBD linker, 
which packs against the ABD. The C2 domain of p110 forms 
an inhibitory contact with the iSH2 domain of p85 regulatory 
subunits. Intriguingly, different p110 subunits have diverse 
capabilities to be inhibited by this interaction, with p110β being 
less inhibited by the C2–iSH2 interaction (36), compared with 
p110α and p110δ.

The nSH2 forms inhibitory interactions with the C2, helical, 
and C-lobe of all class IA p110 catalytic subunits (22, 24, 29, 30). 
The C-terminal SH2 domain, which interacts with the C-lobe 
of the kinase domain, only inhibits p110β (25) and p110δ (30). 
This interaction cannot occur in p110α due to a loop extension 
that sterically prevents this inhibitory interaction. Intriguingly, 
the nSH2 and cSH2 domains have different inhibitory interfaces 
with p110, with the nSH2 interacting with p110 through its pY 
binding site, and the cSH2-p110 interface not directly involving 
the pY binding site. Upon interaction with pYXXM motifs in 
phosphorylated receptors and their adaptors, the nSH2 and 
cSH2 interfaces with p110 are disrupted. Different regulation 
of class IA PI3Ks by their regulatory subunits has important 
functional implications for how they can be activated by differ-
ent activating stimuli.

SiGnALinG inPUTS

The ability of PI3K isoforms to mediate signaling in different 
tissues is a balance between differential PI3K expression and 
their unique ability to be activated by GPCRs, Ras superfamily 
GTPases, and phosphorylated receptors/adaptors. All class IA 
isoforms can be activated by proteins containing phosphoryl-
ated YXXM motifs, as this leads to SH2-mediated recruitment 
of regulatory subunits, and disruption of SH2 inhibitory con-
tacts (22, 29, 30, 35) with the p110 catalytic subunits. p110α is 
more sensitive to activation downstream of a phosphopeptide 
derived from platelet-derived growth factor receptor than either 
p110β or p110δ in vitro (29), and this is likely due to the absence 
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FiGURe 1 | Model of class IA phosphoinositide 3-kinase (PI3K) complex of p110δ/p85α and comparison with other SH2-regulated kinases. (A) Cartoon model  
of the complex of p110δ/p85α, with key features annotated. (B) Domain schematic of p110δ and p85α with binding interfaces indicated by the double-sided arrow 
and inhibitory interfaces indicated by the numbered lines. Activators of PI3K [Ras and phosphorylated receptors (pY)], and their sites of interaction are indicated.  
The cSH2 domain of p85 only inhibits the p110β and p110δ isoforms and does not inhibit p110α. (C) Structural model of p110δ/p85α generated from multiple 
structures (23–25). The domains are colored according to the scheme shown in panel (B). The p110 catalytic subunit is shown as a surface, and the p85 regulatory 
subunit shown in cartoon representation. Inhibitory intra- and inter-domain interfaces are annotated, and an inhibitor bound in the active site is shown in sticks.  
(D) Structures of the inhibited forms of SH2-regulated protein kinases involved in immune signaling, Hck (26), BTK (27), and ZAP70 (28) are shown along with 
cartoon representations indicating how SH2 domains inhibit kinase activity. This shows the various mechanisms of how SH2 domains can inhibit kinase activity,  
and the key differences in how p85 SH2 domains inhibit PI3K lipid kinase activity.
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of the cSH2 inhibitory interface, which makes the cSH2 more 
accessible to interact with pYXXM motifs. In vivo evidence in 
support of free SH2 domains being more available to pYXXM 
motifs is that the E545K mutant of p110α, which disrupts the 
nSH2–helical interface (described in the following section), 
is more readily recruited to phosphorylated insulin receptor 
substrate proteins (37).

Class IA PI3Ks are activated downstream of the Ras super-
family of GTPases through interactions with the RBD domain 
present in p110 catalytic subunits (38, 39). The Ras superfamily is 
large and diverse, composed of five main families (Ras, Rho, Rab, 
Ran, and Arf) (40). The PI3K isoforms are differentially activated 
downstream of Ras superfamily members (39, 41), with p110α 
and p110δ being activated downstream of Ras family GTPases, 
and p110β being activated downstream of Rho family GTPases. 
Ras activates PI3K through enhanced membrane interaction, 
with Ras activation being strongly synergistic with activation 
downstream of phosphorylated receptors (42, 43). Mutant p110α 
deficient in its ability to be activated by Ras leads to decreased 
oncogenic transformation, tumor maintenance, and angiogenesis 
downstream of mutant Ras (44–46).

Class IA PI3Ks can synergize direct and indirect inputs down-
stream of specific upstream stimuli. p110β is unique in being 
activated downstream of phosphorylated receptors/adaptors, 
GPCRs, and Rho family GTPases (47). The ability of p110β to 
integrate signals from RTKs and GPCRs is critical in its signal-
ing role in myeloid cells (48). p110α is sensitive to activation 
downstream of insulin receptors due to it being both directly 
and indirectly activated through RTK-mediated activation of 
Ras. The ability of different isoforms to be activated downstream 
of different upstream stimuli plays a key role in determining 
the capability for activating somatic point mutations to mediate 
human disease.

MUTATiOnS OF PIK3CA, PIK3CD, AnD 
PIK3R1 in CAnCeR, DeveLOPMenTAL 
DiSORDeRS, AnD PRiMARY 
iMMUnODeFiCienCieS

Class iA Pi3Ks in Cancer  
and Developmental Disorders
The importance of PI3K activity being properly regulated in 
human health is underscored by a vast array of human diseases 
caused by mutations in class IA PI3Ks (mutations in class I 
PI3Ks in immune disorders and developmental disorders are 
summarized in Table S1 in Supplementary Material). Mutations 

can arise in the germline de novo or be inherited in an autosomal 
dominant or recessive manner, and can also arise somatically 
in specific tissues. Somatic point mutation frequency in can-
cer in both PIK3CA (49) and PIK3R1 (20, 50) is indicated in 
Figures 2C,D. Intriguingly, de novo germline and postzygotic, 
somatic mosaic mutations in similar locations in PIK3CA and 
PIK3R2 (p85β) also lead to overgrowth and developmental dis-
order syndromes (51–56), revealing that the same mutant can 
lead to cancer and/or developmental disorders. There are two 
hotspot regions in PIK3CA located at the nSH2–helical interface 
(E542K and E545K) and the C-terminus of the kinase domain 
(H1047R) involved in membrane binding (Figures  2B,C). 
However, in addition, there are numerous rare mutations 
distributed throughout the primary sequence, primarily local-
ized at the ABD–kinase interface, ABD–RBD linker, C2–iSH2 
interface, and the regulatory arch of the kinase domain which 
is situated over the active site (Figures 2A,B). Rare mutations 
activate lipid kinase activity, induce oncogenic transformation 
(31, 57, 58), and are found in endometrial cancers (59).

Mutants located at the ABD–kinase, C2–iSH2, and nSH2–
helical interfaces activate lipid kinase activity through disrup-
tion of these inhibitory contacts. Intriguingly, there appears 
to be allosteric long range coupling between these sites, as 
disruption of the C2–iSH2 interface also leads to disruption of 
the ABD–kinase interface (31). Mutations within the regulatory 
arch (a region composed of the two most C-terminal helices, 
kα10 and kα11, residues 1017–1049) appear to work through 
a separate mechanism, where conformational changes induced 
by these mutations drive increased membrane recruitment  
(31, 60). The regulatory arch lies directly over the active site of 
the enzyme (Figure 2A). Different mutations induce oncogenic 
transformation through different mechanisms, with the H1047R 
mutant requiring p85-mediated recruitment to RTKs, and no 
longer requiring Ras for transformation, while the E545K 
mutation still requires input from Ras, and no longer requires 
p85-mediated RTK activation (58). This is consistent with the 
putative mechanism of Ras activation, where Ras drives mem-
brane recruitment, and H1047R evades this requirement due to 
enhanced membrane binding (42, 43).

Somatic cancer-associated point mutations in PIK3R1 are 
similarly localized at regulatory interfaces (Figures 2B–D), with 
the most frequent mutation occurring at the C2–iSH2 interface 
(N564K/D). These mutants primarily activate PI3K signaling 
through p110α activation (50, 61, 62). Loss of p85α is also a 
driver of cancer as it acts as a tumor suppressor, and oncogenic 
transformation due to loss of p85α is also driven by p110α (63). 
Several deletions/truncations identified in PIK3R1 also can 
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FiGURe 2 | Oncogenic and primary immunodeficiency mutations in PIK3CA, PIK3CD, and PIK3R1. (A) Cartoon schematic of the complex between p110α and 
p85α with key regulatory features annotated. (B) The locations of oncogenic mutations in PIK3CA are shown on a structural model of p110α and p85α (24), with  
the frequency of mutations annotated according to the legend [frequency derived from the Catalogue of Somatic Mutations in Cancer (COSMIC), http://cancer.
sanger.ac.uk/cosmic]. The proteins are colored according to the cartoon in panel (A). Regulatory interfaces [N-terminal SH2 domain (nSH2)–helical, C2–inter SH2 
(iSH2), regulatory arch, and adaptor binding domain (ABD)–kinase] are boxed and numbered. Boxed regions 1–4 represent mutation hotspots in key regulatory 
regions. These are enlarged in panel (H) in the context of patient mutations in p110δ and p85α. (C,D) Frequency of somatic mutations in PIK3CA and PIK3R1 
shown on the primary sequence, with the domain schematic indicated below. The locations boxed on the structure in panel (B) are also indicated on primary 
sequence. (e) Cartoon schematic of the complex between p110δ and p85α with key regulatory features annotated. (F) The locations of primary immunodeficiency 
mutations in PIK3R1 are shown on a structural model of p110δ and p85α (23). Boxed regions 1–4 represent mutation hotspots in key regulatory regions. These are 
enlarged in panel (H) in the context of patient mutations in p110δ and p85α. (G) Domain schematic of p110δ and p85α with locations of immune-linked mutations  
in PIK3CD and PIK3R1 indicated. (H) Zoom in on molecular details of activating phosphoinositide 3-kinase (PI3K) delta syndrome mutations in p110δ and p85α, 
focused on the regulatory interfaces boxed in panel (F), with all mutated residues and their interacting residues shown as sticks.
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mediate oncogenic transformation through different mecha-
nisms. Truncations at the C-terminus of the iSH2 domain can 
still interact with p110 subunits and disrupt inhibitory contacts 
(62), leading to increased PI3K activity. Intriguingly, oncogenic 
truncations also occur N-terminal to the iSH2 domain, and they 
are unable to bind p110 subunits. These truncations are proposed 
to function through modification of free p85 interactions with 
binding partners (20, 21, 64), including the antagonist of PI3K 
signaling, the phosphatase PTEN.

Mutations in PIK3R1 leading to decreased PI3K signaling 
are also found in patients with developmental disorders, with 
autosomal-dominant or de novo mutations in the cSH2 (R649W, 
K653*, and Y657*) leading to insulin resistance, and dramati-
cally decreased PI3K signaling (65–71). This condition is defined 
as SHORT syndrome (Short stature, hyperextensibility of joints 
and/or inguinal hernia, ocular depression, Rieger anomaly, and 
teething delay) and is caused by the inability of the cSH2 domain 
to interact with phosphorylated RTKs, as mutation of R649  
disrupts the FLVR motif critical for SH2 binding to phosphoryl-
ated pYXXM motifs.

Class iA Pi3Ks in Primary 
immunodeficiencies
Activating, autosomal-dominant and de novo mutations in 
PIK3CD and PIK3R1 have been discovered in patients with pri-
mary immunodeficiencies, and this condition is called activating 
PI3K delta syndrome (APDS), which is also referred to as PASLI 
(p110 delta activating mutation causing senescent T cells, lym-
phadenopathy, and immunodeficiency). Mutations in PIK3CD, 
referred to as APDS1, are found in similar locations to oncogenic 
mutations in p110α, with mutations discovered at the ABD 
(E81K), ABD–RBD linker (G124D), C2–iSH2 interface (N334K, 
R405C, and C416R), nSH2–helical interface (E525K and E525A), 
and at the C-terminus of the kinase domain (R929C, E1021K, 
and E1025G) (Figures 2E–H) (72–86). Biochemical experiments 
have revealed, similar to p110α mutations, that activation occurs 
due to disruption of p85-mediated regulatory inputs and confor-
mational changes that promote membrane binding (83, 87). The 
most prevalent mutation in APDS1 is E1021K (similar location to 
H1047R in p110α); however, APDS mutations in p110δ are more 
frequently found distributed throughout the primary sequence 
compared with p110α (Figures 2C,D,G). In line with this obser-
vation, E1021K leads to a smaller increase in p110δ lipid kinase 
activity compared with H1047R p110α. It is likely that additional 
mutations in PIK3CD will be discovered that mimic previously 
discovered oncogenic mutations in PIK3CA, highlighting the 
need to sequence the entire PIK3CD gene in patients presenting 
with complex immunodeficiencies.

Mutations in PIK3R1, referred to as APDS2, have also been 
identified in a number of immunodeficiency patients, with the 
most frequent mutation resulting in a splice variant that removes 
exon 11 (resulting in a p85α with region 434–475 deleted, located 
at the N-terminus of the iSH2 domain) (88–92). In vitro, this dele-
tion leads to increased activation of p110δ compared with p110α, 
and this is mediated through disruption of all p85 regulatory 
inputs for p110δ, and only partial disruption of p85 regulatory 

inputs for p110α (87). This mutant may decrease protein stability 
of p110 subunits, and there have been reports of these patients 
having symptoms consistent with both SHORT syndrome and 
APDS (92, 93). This may be due to increased p110δ signaling, 
and decreased p110α signaling caused by decreased stability of 
p110α. Activating point mutations in the iSH2 domain of PIK3R1 
at the C2–iSH2 interface (N564K) also cause APDS2 symptoms 
(86). This mutant is also found in solid tumors, and it appears 
in certain  situations it can drive p110α-mediated oncogenesis 
or drive p110δ-mediated immunodeficiency. Loss of function 
mutations in PIK3R1 also occur in immune disorders, with 
patients identified with autosomal recessive nonsense mutations 
in PIK3R1 (W298*, R301*) leading to agammaglobulinemia, and 
severe defects in B-cell development (94, 95).

COnCLUSiOn

Tremendous advances in our understanding of PI3K structure, 
function, and regulation have occurred in the last decade. 
Detailed cellular and mice studies have revealed unexpected 
mechanisms of how PI3Ks are activated. The discovery of 
patients containing PI3K mutations in cancer, developmental 
disorders, and immunodeficiencies has revealed the key role 
of these enzymes in disease. PI3K-specific inhibitors have been 
developed, and the first PI3K inhibitor, selective for p110δ, has 
entered the clinic for treatment of blood cancers (14, 96), and 
other PIK3CD-specific inhibitors have showed efficacy in the 
treatment of APDS (97, 98). PI3K inhibitors may also be useful 
in targeting the tumor microenvironment (99), and in promoting 
tumor-specific immune responses (100). However, many PI3K 
inhibitors have failed in clinical trials for cancer, and there is still 
extensive work that needs to be done to understand PI3K signal-
ing in human disease. For example, why do the same mutations 
occur in both cancer and immunodeficiencies, what are the other 
factors that predispose the same mutation toward a particular 
disease? Continued examination of PI3K signaling will be essen-
tial to fully understand its role in human disease and may reveal 
unexpected paths to novel therapeutic development.
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