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Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical 
for cancer control. Cancer cells exhibit high mutational rates and therefore altered self 
or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to 
mount a proper immune response leads to cancer progression. mTOR signaling controls 
cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR 
signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor 
immunity and possibly promoting carcinogenesis.
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inTRODUCTiOn

Tumor bulk is a mass containing heterogeneous cell populations including malignant cancer cells, 
non-malignant cells, and supporting stroma (1). In addition to tumor cells, non-malignant cells 
and the supporting stroma play a dynamic and possibly tumor promoting role (2). Non-malignant 
cells in the tumor microenvironment include cells of the lymphoid and myeloid immune system 
(3). The supporting stroma is largely composed of cancer-associated fibroblasts (CAFs), vascular 
and lymphatic endothelial cells, and pericytes. Cells within the tumor “communicate” by secre-
tion of various factors to the tumor microenvironment, including matrix remodeling enzymes, 
cytokines, chemokines, growth factors, and metabolites (4, 5). This interplay between malignant, 
non-malignant, and stromal cells has functional consequences on tumor progression.

Target Of Rapamycin (TOR) is an evolutionarily conserved serine/threonine protein kinase. 
TOR controls cellular metabolism and growth and functions in two complexes: TOR Complex 
1 (TORC1) and TORC2 (6, 7) (Figure 1). Mammalian TORC1 (mTORC1) comprises mTOR, 
mammalian lethal with sec-13 protein 8 (mLST8), and regulatory-associated protein of mamma-
lian target of rapamycin (RAPTOR). mTORC1 is activated by growth factors, nutrients (amino 
acids), and cellular energy (8, 9), and is allosterically inhibited by rapamycin (10). Various 
growth factors regulate mTORC1 via a heterotrimeric tuberous sclerosis complex (TSC) com-
plex. Growth factors bind receptor tyrosine kinases (RTKs) and activate Phosphatidylinositol-
4,5-Bisphosphate 3-Kinase (PI3K), which generates Phosphatidylinositol-3,4,5-Trisphosphate 
(PIP3) (11). PI3K activity is counteracted by the tumor suppressor, phosphatase, and Tensin 
Homolog Deleted on Chromosome 10 (PTEN). mTORC1 promotes anabolic processes, such as 
protein and nucleotide synthesis and inhibits catabolic processes, such as autophagy (12–14). 
mTORC2 contains mTOR, mLST8, mammalian stress-activated map kinase-interacting protein 
1 (mSIN1), and Rapamycin-Insensitive Companion of mTOR (RICTOR), and is activated by 
growth factors in association with ribosomes (15) (Figure  1). mTORC1 and mTORC2 are 
frequently activated in human cancers and, as discussed below, reported to modulate the tumor 
microenvironment or respond to its changes.
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FigURe 1 | mTOR signaling promotes anabolism. Receptor Tyrosine Kinases (RTKs)- Phosphatidyl-Inositol-4,5-bisphosphate 3-Kinase (PI3K) activated by growth 
factor (like insulin). PI3K generates phosphatidylinositol-3,4,5-trisphosphate (PIP3) from the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2). 
Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN) counteracts PI3K activity (restoring PIP3 to PIP2). PIP3 recruits to the plasma membrane 
and activates phosphoinositide-dependent kinase 1 (PDK1) and AKT. PDK1 phosphorylates and activates AKT (pAKT-Thr308). pAKT-Thr308 phosphorylates and 
inhibits the TSC complex. The TSC complex, composed of tuberous sclerosis complex 1 (TSC1) and TSC2 and TRE2-BUB2-CDC16 domain family member 7 
(TBC1D7), activates the lysosomal RAS homolog enriched in brain (RHEB). RHEB interacts with and activates mTORC1. mTORC1 comprises mTOR, mammalian 
lethal with sec-13 protein 8 (mLST8), and regulatory-associated protein of mammalian target of rapamycin (RAPTOR). mTORC1 can also be activated by nutrients 
(such as amino acids). Cellular energy status also regulates mTORC1 through AMPK-mediated TSC or RAPTOR phosphorylation. mTORC1 promotes anabolism, 
among others, through ribosomal protein S6 kinase (S6K), eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1), and blocks cellular catabolism 
through Unc-51-like kinase 1 (ULK1). Through S6K-mediated IRS1 phosphorylation, mTORC1 negatively regulates mTORC2-AKT signaling. Rapamycin and its 
analogs (so-called rapalogues) acutely inhibit mTORC1 allosterically. The ATP-site competitive inhibitor(s) potently block both mTORC1 and mTORC2 signaling. 
mTORC2 is also activated by RTKs, and consists of mTOR, mLST8, mammalian stress-activated map kinase-interacting protein 1 (mSIN1), and rapamycin-
insensitive companion of mTOR (RICTOR). mTORC2 regulates the AGC kinase family members AKT, serum/glucocorticoid-regulated kinase (SGK), and protein 
kinase C (PKC). Prolonged rapamycin administration may block mTORC2 activity.
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CAnCeR CeLL-inTRinSiC mTOR 
ACTivATiOn MODULATing THe TUMOR 
MiCROenviROnMenT

Oncogenic mutations drive tumorigenesis by activating various 
growth controlling signaling pathways (16). The PI3K–mTOR–
AKT signaling pathway is activated in the majority of tumors, 

due to upstream oncogenic mutation(s). Alternatively, parallel 
growth controlling (oncogenic) pathways, such as the MEK–
ERK, may also activate PI3K–mTOR–AKT signaling (12). Either 
way, PI3K–mTOR–AKT activation promotes cell growth and 
proliferation (Figure 1). In addition to the cell-intrinsic growth-
promoting effect, PI3K–mTOR–AKT activation appears to alter 
the tumor microenvironment.
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T LYMPHOCYTeS

T  cells play a critical role in adaptive and innate immunity. 
Antigen recognition and adaptive immunity involves, among 
others, CD4 +  and CD8 + T cells. While tumor eradication is 
largely mediated by cytotoxic CD8  +  T  lymphocytes (CTL), 
CD4  +  T  cells are critical in regulating and propagating the 
immune response, hence referred to as T helper cells (Th) (17). 
In solid tumors, the extent of T-cell infiltration is an important 
prognostic determinate. Increased CD4  +  and CD8  +  T-cell 
levels are associated with an improved clinical outcome (18).  
In colorectal tumors, increased density of T cells (i.e., Th1 adap-
tive immunity) correlated with reduced tumor recurrence, and 
provided a better prognostic tool than conventional histopatho-
logical methods (19). Conversely, tumors with a higher density of 
immune-suppressive cells (such T regulatory cells, as discussed 
below) exhibit a worse prognosis, in colorectal (19) and other 
tumor types (20). Thus, adaptive immunity plays a critical role in 
tumor progression and prognosis.

Various cytokines and chemokines attract immune cells 
to the site of inflammation (21). In addition to cytokines and 
chemokines, also metabolites in the tumor microenvironment 
(some of which are secreted by cancer cells) activate immune cells 
(22). Non-Alcoholic Fatty Liver Disease (NAFLD) is a metabolic 
disorder and a risk factor for hepatocellular carcinoma (HCC) 
(23). In NAFLD, increased linoleic acid levels disrupt adaptive 
immunity, specifically by depleting CD4  +  T  cells, which in 
turn promotes HCC (24). These data indicate that a metabolite 
accumulating in the tumor microenvironment may affect neigh-
boring T cells, disturb their function, and promote cancer. It is 
not fully understood what regulates linoleic acid accumulation, 
but hepatic fatty acid (FA) synthesis (including linoleic acid) is 
controlled by mTORC2 (25). Importantly, constitutively active 
hepatic mTORC2 signaling is oncogenic and promotes HCC 
(26), and is particularly important in case of NAFLD to HCC 
transition (27). Thus, it is likely that mTORC2-mediated FA (and 
perhaps lipid) synthesis in cancer cells modulates immunity.

mTORC2 mediates various cellular processes via AGC kinase 
family members AKT, serum/glucocorticoid-regulated kinase 
(SGK), and protein kinase C (PKC) (28, 29) (Figure  1). In a 
mammary gland tumor model, Rictor deletion disrupted sec-
ondary mammary ductal branching, cell motility, and survival. 
This effect was mediated by PKCα-Rac1, but not AKT (30), sug-
gesting an AKT-independent role of mTORC2 in motility and 
metastasis. mTORC2 phosphorylates and activates AKT (pAKT-
Ser473). Melanoma with increased pAKT-Ser473 correlated with 
reduced T-cell infiltration, possibly due to increased secretion 
of inhibitory cytokines by cancer cells, and exhibit resistance to 
immune checkpoint inhibitors (31). The mTORC2 target SGK is 
frequently expressed in tumors (32). In gastric tumors, increased 
expression of the SGK1 target, NDRG1, is suggested to stimulate 
IL-1 expression and promote angiogenesis (33). Taken together, 
these data suggest that increased PI3K–mTORC2–AKT signal-
ing in cancer cells may affect T cells and thereby tumorigenesis. 
It is possible that other immune cells in the tumor microenviron-
ment are also modulated by PI3K–mTORC2–AKT, as described 
further below.

RegULATORY T CeLLS (Tregs)

Regulatory T  cells suppress inflammation and are detrimental 
in tumor immunity. Genetic and pharmacological (rapamycin) 
abrogation of mTOR signaling induce Treg expansion via Foxp3 
expression (34, 35). Furthermore, Treg-specific conditional TSC 
deletion in mice (constitutively active mTORC1) propelled Treg 
differentiation and a strong effector-like phenotype, reversed by 
S6K1 knockdown (36), suggesting that mTORC1 is an important 
checkpoint in Treg homeostasis.

Programmed Death 1 (PD-1) and Cytotoxic T-Lymphocyte-
associated Antigen 4 (CTLA-4) immune checkpoints negatively 
regulate T-cell immune function. Immune suppression in the 
tumor microenvironment through PD-1 or CTLA-4 occurs in 
various tumors, and immune checkpoint inhibitors (anti-PD-1, 
anti-PD-L1, or anti-CTLA-4) amplify antitumor T-cell response 
(37). The surface protein PD-L1 is widely expressed in various 
tumors. PD-L1 binds to either the T-cell-expressed PD-1 or CD80 
receptors thereby inhibiting their effector responses. PD-L1 and 
PD-1 interaction induces differentiation of naïve CD4 + T cells 
into Tregs, leading to an immune suppressive environment. In 
addition to inhibiting T-cell effector function, cancer cell-intrinsic 
PD-1 expression may promote tumor growth (38). Thus, PD-1 axis 
has a twofold effect in tumorigenesis: first by inhibiting cancer cell 
clearance by T cells, and second, promoting cancer cell growth. 
In a lung carcinoma mouse model, mTORC1 increased PD-L1 
expression, allowing cancer cells to escape killing by immune 
cells (39, 40). Within the tumor, PD-L1 seems to be enriched in 
Tumor Initiating Cells (TICs) (also referred to as Cancer Stem 
Cells) (41–43). TICs are tumor cells with self-renewal capacity 
and considered to be more resistant to targeted cancer therapies. 
In syngeneic ovarian mouse model experiments, PD-L1 appeared 
to control the expression of canonical “stemness” genes, such as 
Oct4 and Nanog (44, 45). PD-L1 expression correlated with mTOR 
activation in human lung adenocarcinomas and squamous cell 
carcinomas (39), suggesting that oncogenic AKT-mTOR activa-
tion promotes immune escape through PD-L1 upregulation. 
Furthermore, anti-PD-1 therapy inhibited human melanoma 
xenograft growth and reduced S6 phosphorylation, suggesting 
that PD-1 in tumor cells activates mTORC1. Importantly, cells 
expressing high levels of PD-L1 appear to be more sensitive to 
the mTORC1 inhibitor rapamycin, further suggesting that some 
of the PD-L1 growth-controlling mechanisms are via mTOR 
signaling. Collectively, these data suggest a functional relation-
ship between mTOR signaling, PD-L1 expression, and resistance 
to targeted therapies (i.e., TICs). However, the mechanism(s) by 
which mTORC1 signaling regulates PD-L1 expression remains 
to be elucidated. We note that in addition to Treg and Th1, other 
T-cell subsets, such as Th17, may be involved in cancer immune 
response.

TUMOR-ASSOCiATeD MACROPHAgeS 
(TAMs)

Tumor-associated macrophages originate from expansion of 
tissue-resident macrophages or are recruited to tumor site (by 
chemotactic factors), and are present at multiple stages of tumor 
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progression (2). Macrophages are not a homogenous population 
and can be subdivided into M1 and M2. M1 macrophages produce 
Th1 cytokines, promoting phagocyte-dependent inflammation 
and thereby an antitumor response. M2 macrophages enforce 
antibody response, but inhibit several phagocytic functions, 
therefore seemingly enabling a growth-tolerant tumor micro-
environment. TAMs predominantly exhibit M2 phenotypes, 
therefore considered tumor-promoting. Several factors can 
promote polarization of TAMs to M2 during cancer progression, 
including IL-4, IL-10, TGF-β, and M-CSF (46). TAMs promote 
tumorigenesis by modulating lymph- and angiogenesis (47), but 
more recently, TAMs were shown to express PD-1. The pres-
ence of TAM expressing PD-1 steadily increases with cancer 
progression and results in an overall reduction in cancer cell 
phagocytosis (48). Because macrophages activation and func-
tion is, at least in part, controlled by PI3K–mTOR–AKT (49), it 
would be valuable to examine whether the observed reduction 
in phagocytosis is related to mTOR signaling. Furthermore, 
mTOR regulates macrophage polarization (50), and M1 and 
M2 macrophages exhibit dependency on distinct metabolic 
pathways. While M1 macrophages upregulate glycolysis and 
lipogenesis, M2 macrophages upregulate beta-oxidation. This is 
important because metabolic shifts are coupled to macrophage 
function (51, 52). For instance, IL-4 activate AKT and thereby 
inducing M2 gene transcription, possibly via ACLY expres-
sion and regulation of histone acetylation (53), indicating 
that mTOR signaling couple metabolic inputs to modulate 
immune response. Moreover, PI3K–AKT appears to recruit 
immune-suppressive monocytes to tumors via monocyte che-
moattractant protein-1 (MCP-1) expression, in a mechanism 
that potentially involves TGFβ1 (54). MCP1 plays a similar role 
in other tumors (55), but whether PI3K–AKT induced MCP1 
expression can be generalized to other tumors remains to be 
investigated. mTORC2 appears to be particularly important for 
differentiation of M2 macrophages (as opposed to M1), as not 
only monocytes recruitment but also monocyte polarization is 
involved in tumor progression (56); therefore, mTORC2 plays a 
dual immunosuppressive role.

Antigen-presenting cells (APCs), especially dendritic cells 
(DCs), are crucial in mounting antitumor immune response 
(57). Indeed, abrogation of mTORC2 signaling in the professional 
APCs, DCs, led to enhanced tumor eradication possibly via 
engagement of CTLs (58). Rapamycin administration augmented 
the expression of costimulatory molecules and enhanced DC life 
span, via modulation of glucose metabolism (59). These data 
suggest that mTOR signaling in APC cells imposes an immuno-
suppressive environment.

MYeLOiD-DeRiveD SUPPReSSOR  
CeLLS (MDSCs)

Myeloid-derived suppressor cells are a heterogeneous popula-
tion defined as CD11b + Gr1 + cells. Based on Ly6G and Ly6C 
expression, MDSCs can be further classified as granulocytic or 
monocytic subsets, respectively. Both CD11b  +  Ly6G  +  and 
CD11b + Ly6C + cells play immunosuppressive roles. The allosteric 

mTORC1 inhibitor, rapamycin, inhibits MDSC accumulation in 
tumors and skin allografts (60). In breast cancer, accumulation of 
MDSCs in tumors occurred via G-CSF. Rapamycin administra-
tion or Raptor deletion (a core-component of mTORC1) reduced 
G-CSF levels (61), suggesting that mTORC1 in tumor cells 
attracts MDSCs by upregulating G-CSF. Increased G-CSF levels 
also correlated with elevated mTOR activity in human tumors. 
Interestingly, there is correlation between presence of TICs, 
elevated mTORC1 signaling, and G-CSF production. Moreover, 
rapamycin administration leads to reduced TIC levels (61). These 
data suggest that mTOR activity in a subset of cells within the 
tumor mass (i.e., intra-tumoral heterogeneity) mediates MDSC 
accumulation.

OTHeR CeLLS OF THe TUMOR 
MiCROenviROnMenT: CAFs

Fibroblasts are not only involved in the deposition of stromal 
extra-cellular matrix (ECM) but also in the secretion of growth 
factors. CAFs seem to play a role in cancer progression and 
initiation, particularly in stroma-rich tumors like pancreatic 
cancers (62, 63). In pancreatic tumors, CAFs are also involved 
in resistance to anticancer drugs (64). Interleukin-6 (IL-6) is 
linked to resistance-to-cancer drug therapies (65), possibly via 
its downstream effector pSTAT3 (66). In pancreatic CAFs, the 
somatostatin receptor sst1 inhibits mTOR-mediated IL-6 protein 
synthesis, thereby counteracting mTOR/IL-6-driven resistance 
to anticancer drugs (67). How mTOR regulates IL-6 expression 
in stromal cells remains to be investigated, but this mechanism 
seems to involve the quintessential mTORC1 target, 4E-BP1 (67). 
In lung carcinoma, paracrine IGF-II secretion by CAFs activated 
insulin growth factor receptor 1 (IGF1R) signaling in cancer 
cells, possibly activating a TICs (stemness)-like phenotype (68). 
Conversely, in irradiated tumors, IGF-II secreted from CAFs 
appears to block mTORC1 signaling in neighboring cancer cells. 
mTORC1 inhibition allowed autophagy initiation and thereby 
tumor regrowth (69). It seems counterintuitive that mTOR inhi-
bition allows tumor growth, but possibly under stress or nutrient-
poor conditions autophagy initiation provide the required 
nutrients. Nevertheless, this hypothesis needs to be examined 
in other cancer models. Yet, liver specific Raptor knockout mice 
(abrogated mTORC1 signaling) developed more HCC when 
challenged with the hepato-carcinogen diethyl-nitrosamine, as 
compared with wild-type mice (70). These data suggest that “too 
low” mTORC1 activity may also be oncogenic. Taken together, it 
is likely that the response to drug therapies is not only dependent 
on stromal cells and their secretome but also on the conditions in 
which therapies are given.

mTOR On THe ReCeiving enD  
OF CAnCeR iMMUniTY

mTOR signaling is also on the receiving end of cues coming from 
the tumor microenvironment. For example, non-tumorigenic 
(stromal) cells of the tumor microenvironment secrete MCP1 to 
activate the mTOR pathway in neighboring breast cancer cells (71).  
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FigURe 2 | Tumor microenvironment modulation through mTOR. mTOR inhibition induces memory cytotoxic CD8 + T lymphocytes (CTL) formation while reducing 
effector CTL function, critical for cellular antitumor response. In dendritic cells, lifespan and the expression of costimulatory molecules is increased upon mTOR 
suppression, leading to improved foreign-antigen recognition. On the other hand, metabolic NK-cell function, essential for antitumor response, is diminished upon 
mTOR inhibition. Myeloid derived stem cells (MDSC), regulatory T cells (Tregs), tumor-associated macrophages (TAM), and cancer-associated fibroblasts (CAF) 
contribute to tumor immune-evasion and tumor growth. The immune-suppressive environment generated through MDSC is limited through mTOR blockage by 
restraining MDSC accumulation. Similarly, anti-inflammatory TAM may be skewed toward a more pro-inflammatory profile upon mTOR inhibition. CAF secrete 
various cytokines promoting tumor growth and therapy resistance, counteracted by mTOR blockage. In contrast, Tregs are preferentially differentiated upon mTOR 
downregulation. Within the majority of cancer cells, the PI3K–mTOR–AKT pathway is upregulated, driving PD-L1 expression maintaining an immune-suppressive 
state within the tumor microenvironment: a process that may be interrupted through mTOR inhibition. However, not all therapeutic targets of mTOR inhibition seem 
to be beneficial, such as reducing effector CTL function and T-Reg differentiation. Accordingly, rationale exists to combine anti-PD-1/PD-L1 or anti-CTLA-4 and 
mTOR inhibitors, alleviating reduced CTL effector function and Treg differentiation.

Moreover, metabolic activation of natural killer (NK) cells is 
dependent on IL-15 stimulation to prompt intracellular mTOR 
signaling (72). NK  cells are suggested to play a pivotal role in 
cancer control and are increased in metastatic melanoma (73). 
Conversely, TGF-β represses mTOR signaling, both in mice 
and humans, to inhibit NK  cell activation (74), suggesting an 
mTOR-dependent immune suppressive role for TGF-β in tumor 
microenvironment. Additionally, genetic activation of mTORC1 
(mutated TSC) causes impairment of NK cell development (75). 
Notably, mTOR also regulates Th1 and Th2 differentiation; and 
while mTORC1 is distinctly critical for Th1 and Th17 differen-
tiation, mTORC2 seems to promote Th2 differentiation (76). 
Furthermore, mTORC1 regulates CD8 + T-cell effector function 
(77), thereby allowing better clearance of tumor cells. Although 
mTORC2 seems to be dispensable for the effector function of 
CD8 + T cells, it is critical for generation of CD8 + memory cells 
(77). Further studies are required to examine how extracellular 

signals affect mTOR in T cells; nonetheless, the data demonstrate 
that mTOR signaling differentially regulates T cells.

CLiniCAL iMPLiCATiOnS

Various mTOR inhibitors are in ongoing clinical trials and the 
FDA-approved rapalog everolimus is used in various cancer cell 
types (10). Because mTOR signaling plays a key role in cancer 
and immune cell function (78), it is possible that some of the 
anticancer effect of mTOR inhibitors is via immune modulation 
(Figure 2). Indeed, rapamycin is clinically used for prevention 
of renal graft rejection and is traditionally considered as a 
“pure” immunosuppressant, possibly by blocking T-cell activa-
tion. However, as discussed above, mTOR seems to play a more 
complex role in immunity. Under certain conditions, mTOR 
inhibition poses an immune-activating function, such as induc-
tion of memory CD8 + T cell (77) that may in turn increase the 
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COnCLUSiOn
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