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The identification of stem cells and growth factors as well as the development of biomate-
rials hold great promise for regenerative medicine applications. However, the therapeutic 
efficacy of regenerative therapies can be greatly influenced by the host immune system, 
which plays a pivotal role during tissue repair and regeneration. Therefore, understanding 
how the immune system modulates tissue healing is critical to design efficient regenera-
tive strategies. While the innate immune system is well known to be involved in the tissue 
healing process, the adaptive immune system has recently emerged as a key player. 
T-cells, in particular, regulatory T-cells (Treg), have been shown to promote repair and 
regeneration of various organ systems. In this review, we discuss the mechanisms by 
which Treg participate in the repair and regeneration of skeletal and heart muscle, skin, 
lung, bone, and the central nervous system.

Keywords: CD4+ regulatory T-cells, tissue repair and regeneration, stem cells, macrophages, heart regeneration

iNTRODUCTiON

The global number of individuals suffering from organ dysfunction as a result of acute injuries, 
chronic disorders, or aging has been on the rise and thus inadvertently places a high demand for 
organ transplantation. However, organ and tissue transplantation is obviously limited by the shortage 
of donors and side effects associated with the use of immunosuppressants (1), placing stress upon 
current methodology and creating a need for an alternative therapeutic avenue. By virtue of its 
self-renewal properties and capability in differentiating into multiple cell types, recent advances 
in human pluripotent stem cell research has offered a literally unlimited amount and varieties of 
therapeutic cells for transplantation (2, 3). Nevertheless, there is a lack of clinical evidence showing 
their long-term engraftment following transplantation possibly due to poor cell survival and chronic 
immune rejection (4, 5). Moreover, regenerative therapies stimulating endogenous regeneration 
such as growth factor-based strategies have shown mixed results in the clinic due to safety concerns 
and cost-effectiveness (6, 7). Therefore, it is necessary to find new ways to improve regenerative 
strategies and one of them is to control and utilize the host immune system. Nevertheless, in order 
to design immune-centric regenerative therapies, it is imperative to understand how the various 
immune components modulate tissue repair and regeneration.

Since decades, the immune system is well known to be implied in tissue repair and regeneration. 
For instance, inflammation following injury greatly contributes to tissue repair and scar formation, 
while excessive inflammation led by immune cells causes pathological fibrosis that debilitates tissue 
function and may lead to organ failure. Immune-mediated tissue healing processes are complex, 
yet, highly orchestrated. After injury, invading pathogens, necrotic debris, the clotting reaction, and 
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tissue-resident immune cells trigger an inflammatory response, 
which result in the recruitment of various immune cells. The 
activity of immune cells during wound healing can be separated 
in three phases (8): First, pro-inflammatory cells are recruited to 
the site of injury for host defense and phagocytosis of necrotic 
tissues. Second, the pro-inflammatory response is dampened 
via immune cells such as anti-inflammatory macrophages, while 
immune cells also directly participate in stimulating angiogenesis, 
myofibroblast activation, and tissue progenitor cell proliferation. 
Last, most immune cells exit the site of injury or are eliminated by 
apoptosis and the tissue homeostasis is restored. Nonetheless, the 
role of the various immune cells and their subsets as well as the 
mechanisms by which they regulate tissue healing remain largely 
elusive. It is, therefore, imperative to understand how tissue 
healing is controlled by the immune system and harnessing the 
endogenous regenerative capacity has recently become an active 
area of research.

An interesting observation supporting the critical role of 
immunity in regeneration (as opposed to tissue repair and scar-
ring) comes from the evolution of the immune system among 
species and during development. Compared to lower vertebrates 
such as amphibians and teleost fishes that are capable of com-
pletely regenerating many body parts, mammals have a limited 
regenerative potential. To explain this difference, it has been pos-
tulated that the loss of regenerative capacity in mammals is in part 
associated with maturation of their immune system compared 
to lower vertebrates (9, 10). The immune system also changes 
during development and throughout life. For example, some 
organs such as the mammalian heart is notorious for not being 
able to regenerate and the necrotic cardiac muscles are replaced 
by dysfunctional scar tissues after injury. However, accumulating 
evidence shows that the neonatal hearts of mammals including 
humans have a transient regenerative capacity compared to adults 
(11–13). Indeed, the mammalian adaptive immune system is 
relatively immature after birth, which coincides with the period 
of neonatal regeneration. In contrast to adults, neonates do not 
mount a robust fibrotic but a more angiogenic response that 
facilitates tissue regeneration after injury (10). Therefore, since 
immune cells regulate both fibrosis and angiogenesis during tis-
sue healing, targeting the immune system to promote neoangio-
genesis with minimal fibrosis would be an interesting approach to 
stimulate regeneration. Therefore, understanding how immunity 
regulates tissue fibrosis and neoangiogenesis would shed light on 
the development of potential therapeutics targeting endogenous 
tissue regeneration. During the last decade, innate immunity, in 
particular, macrophages and their various polarization states, 
has been considered as a central regulator of the tissue healing 
process. However, recent evidences suggest that the adaptive 
immune system is also a critical actor. In this review, we focus on 
the role of regulatory T-cells (Treg).

OveRview OF THe iMMUNe FUNCTiONS 
OF Treg DURiNG TiSSUe HeALiNG

Treg are required for maintenance of self-tolerance, prevent-
ing excessive inflammation and autoimmune diseases. The 
most reliable cell-specific marker of Treg is Forkhead box P3 

(FOXP3), which is essential for the maturation and function of 
Treg. Congenital deficiency in Treg, due to mutation of the Foxp3 
gene, causes fatal autoimmunity in mice, the scurfy phenotype, 
and enteropathy, X-linked (IPEX) syndrome in human (14, 15). 
Treg are normally present in lymphoid organs but have been 
shown to accumulate in damaged tissues to some extent. Long 
recognized as potent suppressors of the immune system, Treg 
have been recently rediscovered as indirect and direct regula-
tors of tissue healing, while the mechanisms are still largely 
unknown (16–18).

Uncontrolled inflammation after tissue injury can lead to 
impaired healing and tissue remodeling. In many tissues, Treg are 
recruited to the damaged site to facilitate inflammation resolu-
tion and to regulate immunity after injury (19). For instance, Treg 
can indirectly modulate regeneration by controlling neutrophils 
(20–22), inducing macrophage polarization (23, 24), and regulat-
ing helper T-cells (22, 25) (Figure 1) Moreover, Treg have been 
shown to directly facilitate regeneration via activating progenitor 
cells locally (16, 17).

Treg iNTeRACT wiTH iNNATe iMMUNe 
CeLLS TO CONTROL iNFLAMMATiON 
AFTeR TiSSUe iNJURY

Treg are able to control the functions of neutrophils and mac-
rophages, which have been widely shown to be involved in the 
tissue healing process. Neutrophils are among the first leukocytes 
recruited to the injury site, and they directly modulate tissue 
healing either positively or negatively. For instance, after skeletal 
muscle injury, it has been demonstrated that neutrophils impair 
restoration of muscle structures and function through the release 
of hypochlorous acid, NAPDH oxidase, and other cytokines  
(26, 27). A negative role of neutrophils has also been demon-
strated in a lung ischemia-reperfusion model, where neutrophils 
enhance the injury (28). However, in an inflammatory lung dis-
ease model, mice treated with intratracheal LPS, which induces 
neutrophil transmigration show activated β-catenin signaling in 
lung epithelial cells, triggering repair of the lung epithelium (29). 
Therefore, it is likely that neutrophils modulate tissue healing in 
a context-specific manner.

Treg have shown ability to modulate tissue healing via con-
trolling neutrophil behavior. For instance, an in vitro study has 
demonstrated that activated Treg promote neutrophils to secrete 
anti-inflammatory molecules including IL-10 and TGF-β, heme 
oxygenase-1, and indoleamine 2,3-dioxygenase (IDO). This is 
also preceded by inhibition of neutrophil’s IL-6 production, 
suggesting that Treg can modulate inflammation through inhibi-
tion of neutrophil activity (30). Concomitantly, Treg have been 
shown to induce neutrophil apoptosis and death both in vitro 
and in vivo (21, 31). For example, in an acute lung injury model, 
Treg mediate resolution of lung injury via TGF-β-induced neu-
trophil apoptosis (21). In addition, Treg can modulate neutrophil 
infiltration to the site of injury. For instance, deletion of Treg 
leads to increased infiltration of neutrophils after cardiac injury 
and subsequently results in impaired healing (20, 22). In a model 
of kidney ischemia reperfusion injury, Treg suppress infiltration 
of neutrophils and attenuate kidney injury via IL-10 secretion 
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FiGURe 1 | Treg promote tissue repair and regeneration by modulating inflammation. Treg have demonstrated the ability to promote tissue repair and regeneration 
by controlling both the innate and adaptive immune systems. Following tissue injury, a cascade of immune events is triggered (steps 1–6) until a new tissue is 
formed (steps 7–8). Treg are involved in all these different steps. At the onset of inflammation, Treg can neutralize inflammatory cytokine secretion (e.g., IL-6, IFN-γ, 
TNF-α, and IL-1β) by inhibiting neutrophil extravasation via IL-10. In addition, Treg are able to promote apoptosis of neutrophils and encourage phagocytosis of dead 
neutrophils by macrophages. Concomitantly, Treg further inhibit monocyte activity, survival, and stimulate macrophage polarization toward an anti-inflammatory 
phenotype (M2) via the release of anti-inflammatory cytokines (e.g., IL-4, IL-10, IL-13). Similarly, Treg have the natural ability to suppress CD4 and CD8 T cell-
mediated inflammation (via IL-10, TGF-β, and IL-35). Overall, these Treg-mediated mechanisms result in the inhibition of neutrophil, inflammatory macrophage, as 
well as CD4 and CD8 T-cell activity, which is generally favorable for tissue repair and regeneration. Dashed lines indicate a hypothetical mechanism. Red arrows 
indicate induction, while blue arrows indicate inhibition.
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(32). These studies indicate that Treg-mediated modulation of 
neutrophil behavior and activity is an important step toward 
regulating tissue healing.

Asides from neutrophils, Treg interact with other key innate 
immune cells involved in the inflammatory response such as 
macrophages. In addition to being scavengers that phagocytose 
cellular debris including apoptotic neutrophils and other cells, 
macrophages have been shown to play a pivotal role in tissue 
repair and regeneration. As a remarkable example, salamanders 
are well-known to be able to regenerate limbs, but depletion of 
macrophages leads to failure of limb blastemal formation and 
regeneration (33). Similarly, genetic ablation of macrophages 
during blastemal proliferation leads to failure of tail fin regenera-
tion in adult zebrafish (34). In mice, depletion of macrophages 
leads to excessive fibrosis and lack of neoangiogenesis, resulting 
in failure in neonatal heart regeneration after myocardial infarc-
tion (MI) or apex resection (11, 24). Likewise, macrophages are 
important for cardio protection driven by cardiosphere-derived 
cells (CDCs), a stem-like population derived from cardiac 
biopsies ex vivo. Indeed, systemic depletion of macrophages 
with clodronate abolishes CDC-mediated cardioprotection and 
inhibits their regenerative capability in adult hearts after MI (35).

Importantly, during tissue healing, there are at least two diffe-
rent subsets of monocyte-derived macrophages, namely M1 and 
M2 macrophages. M1 are pro-inflammatory macrophages usu-
ally induced by IFN-γ or TNF-α, while M2 are anti-inflammatory 
usually induced by IL-4/IL-13 or IL-10. In this context, Treg are 
important regulator of macrophage phenotypes and functions 

(36–38). For example, monocytes cocultured with Treg produce 
decreased level of TNF-α and IL-6 in response to LPS; and the 
inhibition is associated with secretion of IL-10, IL-4, and IL-13 
by Treg (39). Additionally, coculture of monocytes with Treg 
induces macrophages to polarize toward a M2 phenotype char-
acterized by the upregulation of CD206, CD163, and decreased 
expression of HLA-DR (40). Treg can attenuate tissue injury 
and help tissue repair also by modulating macrophage activity 
and survival. For example, in a chronic kidney disease model, 
Treg protect kidney injury through inhibition of macrophage 
activity, which is dependent on Treg-derived TGF-β (41). In this 
context, Treg also inhibit monocyte survival through the Fas/
FasL pathway (41).

Treg FACiLiTATe TiSSUe HeALiNG VIA 
ReGULATiON OF CONveNTiONAL  
T–CeLL ACTiviTieS

Mounting evidence suggest that conventional T-cells are most 
likely detrimental for tissue healing (42). For example, CD4- 
and CD8-deficient mice have improved renal function in renal 
ischemia reperfusion model. SCID mice, which lack lympho-
cytes have significantly decreased intestinal leakage of albumin 
compared to wild-type mice after mesenteric artery ischemia 
and reperfusion (43, 44). In a MI model, CD8+ cytotoxic T-cells 
can respond to cardiomyocytes after being exposed to autoan-
tigen in  vivo and kill healthy cardiomyocytes in  vitro (45, 46). 
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Moreover, Rag−/− mice, which lack T-cells have significantly 
smaller infarct size compared to control mice (47). In the context 
of bone, conventional T-cells may inhibit regeneration by pro-
moting osteoclast differentiation (48). In addition, recruitment of 
CD8+ effector T-cells is correlated with delayed fracture healing 
and osteogenesis, due to secretion of IFN-γ and TNF-α (49). 
Deletion of CD8+ T-cells in mouse osteotomy model enhances 
fracture healing while adoptive transfer of CD8+ T-cells results in 
impaired healing (49).

The negative role of conventional T-cells in tissue injury is 
most likely mediated by the expression of inflammatory cytokines 
such as TNF-α and IFN-γ (50–52), but Treg can suppress 
conventional T-cells through various mechanisms including 
secretion of anti-inflammatory cytokines such as IL-10, TGF-β, 
and IL-35 (53–56). For example, it has been shown that dele-
tion of Treg increase CD4+ and CD8+ cell number in the heart 
injury zone. In this context, both CD8+ and CD4+ T-cells show 
an increased secretion of IFN-γ and TNF-α, suggesting that Treg 
not only decrease the infiltration of conventional T-cells, but also 
attenuate their activity (22). Yet, the mechanisms by which Treg 
modulate tissue repair and regeneration are most likely tissue-
dependent. In the next sections, we will discuss the role of Treg in 
the repair and regeneration of various tissues including skeletal 
and heart muscle, skin, lung, bone, and the central nervous 
system (CNS) (Figure 2).

THe ROLe OF Treg iN TiSSUe-SPeCiFiC 
RePAiR AND ReGeNeRATiON

Skeletal Muscle
It has been shown that Treg accumulate in the skeletal muscle 
of acutely injured mice or in mdx model of Duchenne mus-
cular dystrophy (18, 57). Normal repair of skeletal muscle is 
found to require local expansion of Treg, since Treg ablation 
following treatment with diphtheria toxin in Foxp3DTR mice or 
following treatment with the depleting anti-CD25mAb targeting 
CD4+CD25hi Treg increases muscle damage in dystrophic mice 
(18, 57). Similarly, treatments that enhance Treg activities includ-
ing complexes of recombinant IL-2 with anti-IL-2 mAb pre-
vented muscle damage in dystrophic mice (18, 57). Comparing 
the transcriptome of Treg isolated from regenerating muscle 
and lymphoid tissues including spleen and lymph nodes, Treg 
from muscle, but not naïve Treg from lymphoid organ express 
the growth factor Amphiregulin that directly acts on muscle 
satellite cells in  vitro and improves muscle repair in  vivo (18). 
Depletion of Treg also leads to increased muscle inflammation 
characterized by an increased IFN-γ response and activation of 
M1 macrophages (57). Moreover, it has been shown in vitro that 
coculture of induced Treg with muscle satellite cells enhances 
muscle satellite expansion and inhibits their myogenic differ-
entiation (16). Nevertheless, direct evidence of Treg converting 
satellite cells into muscle has yet to be demonstrated.

To date, factors, which contribute to the accumulation of Treg 
in damaged tissues remain elusive. Nevertheless, IL-33 has 
been shown to facilitate recovery after CNS injury (58) and to 
drive accumulation of Treg in visceral adipose tissue of lean 

mice (59) and damaged muscle in young mice (60). IL-33 
acts on the suppression of tumorigenicity 2 (ST2) receptor of 
Treg. Treg devoid of ST2 due to Treg cell-specific ablation of 
the Il1rl1 gene show impaired recruitment to injured muscle, 
resulting in delayed muscle regeneration (60). Moreover, aged 
mice with more severely impaired muscle repair are found to 
have less IL-33-dependent accumulation of Treg after acute 
injury compared to young mice (60). Thus, IL-33 is important 
in mobilizing Treg in muscle and supplementation of IL-33 can 
reverse these effects and facilitate muscle regeneration in aged 
mice (16, 60).

Heart Muscle
Scarring of cardiac tissue after MI is likely the most deadly 
injury in humans (61). MI leads to a loss of large number of 
cardiomyocytes that are unable to regenerate, which ultimately 
progresses to cardiac failure. Cardiomyocyte death results in 
replacement by scar tissues and ventricular remodeling that fur-
ther compromises heart function. Early cardiac wound healing 
is characterized by infiltration of both innate (62) and adaptive 
(63) immune cells into the myocardium. In patients with acute 
MI, increased systemic markers of inflammation correlate 
with higher mortality (64). Moreover, infiltration of activated 
CD4+CD25+ T-cells has been observed in the infarcted and 
remote regions of myocardium and heart-draining lymph nodes 
in patients with MI (63, 65). It has also been found that T-cells 
become activated in patients with coronary artery disease or a 
history of MI (65, 66). Nevertheless, the role of T-cells during 
pathogenesis or healing of the human heart is yet to be identified.

In mouse models of CD4+ T-cell deficiency, including CD4 
or MHC-II knockout mice, or TCR specific for an irrelevant 
ovalbumin-derived peptide in transgenic OTII mice, CD4+ T cell-
deficient mice show increased cardiac inflammation, impaired 
wound healing, left ventricular remodeling, and impaired survival 
(63). Although myocardial antigens are minimally accessible by 
the immune system, both MhcII−/− and OT-II mice have a higher 
rate of myocardial ruptures and mortality than wild-type mice. 
This suggest that CD4+ T cells are activated after MI driven by 
recognition of cardiac autoantigens on MHC-II and facilitate 
healing of the myocardium in an antigen-specific manner (63).

Indeed, T-cells specific for myocardial proteins exist in mice. 
Both immunization with troponin or myosin-derived peptides, 
and adoptive transfer of myosin-derived peptides loaded 
dendritic cells induce myocarditis in susceptible mice (67, 68). 
CD4+ T-cells are also found to be reactive to troponin, a complex 
comprised of three regulatory proteins troponin-C, -I, and -T, 
which are integral to cardiac muscle contractility (69). Moreover, 
the cardiomyocyte-specific protein, α-myosin heavy chain (α-
MHC), is not expressed within the thymus of mice and human, 
and it resembles a non-self protein that activates CD4+ T-cells 
after MI (70). Thus, tolerance to α-MHC reactive T-cells is prob-
ably maintained by Treg to prevent autoimmunity after MI. The 
detrimental role of conventional CD4+ T-cells in MI healing most 
likely involves the adenosine receptor, since adenosine receptor 
depleted CD4+ T-cells are not able to recapitulate the injurious 
action of CD4+ T cells (47). In vitro activated Treg cells attenuate 
myocardial injury through expression of CD39, which promote 
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FiGURe 2 | Treg likely promote tissue repair and regeneration in a tissue-specific manner. Treg play an important role in the repair and regeneration of skeletal 
muscle, heart muscle, skin and hair, lung, bone, and central nervous system (CNS). (A) In skeletal muscle, IL-33 participates to Treg recruitment into the site of 
injury. Treg inhibit M1 macrophage-mediated inflammation, which promote transition to the resolution phase. Treg also directly activate satellite cell proliferation and 
differentiation through Areg. (B) In the heart, Treg are recruited via CCR5 signaling (e.g., CCL3 and CCL4) allowing inhibition of Th1 cell activity and inhibition of M1 
macrophages. (C) In skin and hair, mechanism of Treg recruitment is still unknown, but upon recruitment, Treg inhibit M1 macrophage inflammatory activity and 
promote wound closure and hair growth via the Jag1-Notch signaling pathway. (D) In the lung, Treg inhibit M1 macrophage inflammatory activity and encourage 
proliferation and differentiation of damaged alveolar type 2 epithelial cells (AECII) into AECIs. This step can be mediated by Areg or CD103 to E-cadherin ligand-
receptor binding. Alternatively, Treg could potentially activate progenitor bronchioalveolar stem cells (BASCs) to differentiate into AECII cells. Concurrently, Treg 
prevent fibrosis by inhibiting fibrocyte recruitment and proliferation via CXCL12. (e) In the bone, Treg are most likely recruited via CCL22, which act on inhibiting Th1, 
CD8+, and M1 macrophages to support osteoblast progenitor differentiation. (F) In CNS, Treg are recruited by IL-33 and play a reparative role by encouraging M2 
macrophage polarization to facilitate re-myelination and differentiation of oligodendrocytes. Treg may also directly act on oligodendrocytes via CCN3. Dashed lines 
indicate a hypothetical mechanism. Red arrows indicate induction, while blue arrows indicate inhibition.
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extracellular degradation of nucleotides to form adenosine (71). 
Therefore, Treg in heart may function through CD39-mediated 
adenosine formation.

Treg also improve healing after MI by modulating monocytes 
and macrophages (22). Treg depletion in Foxp3DTR mice or follow-
ing treatment with anti-CD25 mAb show increased infiltration of 
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M1 macrophages, reduced cardiac function, and pronounced left 
ventricular dilation after MI (22). On the other hand, preferential 
induction of Treg via treatment with superagonistic anti-CD28 
mAb leads to increased Treg infiltration into the infarcted 
myocardium after MI. The higher number of Treg promotes 
macrophages to polarize toward a M2 phenotype in the healing 
myocardium and reduce ventricular ruptures, which lead to bet-
ter survival (22). Mechanistically, CCR5 is associated with Treg 
recruitment as CCR5 knockout mice show impaired Treg infiltra-
tion as well as adverse remodeling and cardiac deterioration after 
MI (72). Therefore, CCR5-mediated Treg recruitment restrains 
inflammation, excessive matrix degradation, and adverse remod-
eling after MI (72).

Skin and Hair
Layers of murine and human skin contain a large number of 
resident Treg (73–75). During a short-defined window of post-
natal development, Treg migration to neonatal skin is important 
for the establishment of immune tolerance to commensal 
microbes (73). Upon entry to the skin through CCL20/CCR6 
mediated migration, Treg localize and accumulate in hair fol-
licles (76). Marked accumulation of CD4+ T-cells are observed 
in wounded skin with peaked infiltration at day 7 following 
injury. Interestingly, the majority of CD4+ T-cells are highly 
activated Treg characterized by increased expression of CD25, 
CTLA-4, and ICOS (77). Treg depletion following treatment 
with diphtheria toxin in Foxp3DTR mice after skin wounding 
results in significant attenuation of wound closure accompanied 
by increased tissue granulation and overlying eschar, indicating 
that Treg facilitate skin wound healing (77). Treg depletion also 
leads to an increased number of IFN-γ producing T-cells with 
augmented accumulation of proinflammatory macrophages in 
wounded skin. Moreover, ablation of epidermal growth factor 
receptor (EGFR) signaling in Treg using the Foxp3-Cre;EGFRfl/fl 
mouse model results in reduced Treg infiltration in the wounded 
skin and significantly delayed wound closure, indicating that the 
EGFR pathway plays a role in Treg activation and function dur-
ing skin wound healing (77).

In alopecia areata disease displaying phenotype of hair follicle 
regeneration, genome-wide association studies have revealed 
single nucleotide polymorphisms in genes including Cd25, Ctla4, 
Eos, and Foxp3, which are important in differentiation and func-
tion of Treg (78–80). Treg in skin preferentially localize to hair 
follicles (81, 82) and are more abundant in the resting telogen 
than growing anagen phase during hair follicle cycling (17). More 
importantly, in the telogen phase, Treg display a highly activated 
phenotype. Transient or constant ablation of Treg in Foxp3DTR 
mice following treatment with diphtheria toxin leads to mark-
edly reduced anagen induction in skin and subsequently reduced 
hair regrowth, indicating the important role of Treg in facilitating 
hair follicle regeneration by promoting the telogen-to-anagen 
transition (17). Immunofluorescence microscopy on dorsal skin 
derived from Foxp3GFP reporter mice further revealed that Treg 
preferentially localize to hair follicular stem cell niche, promoting 
proliferation and differentiation of hair follicular stem cells (17). 
By comparing the transcriptome of Treg derived from telogen 
skin and skin-draining lymph nodes, Treg of the skin expressed 

more Jag1 lymph node-Treg. Conditional ablation of Jag1 in Treg 
of Foxp3-Cre+/+;Jag1fl/fl mice significantly attenuates hair follicular 
stem cell proliferation, suggesting that the Jag1–Notch signaling 
pathway is essential in facilitating Treg-mediated hair follicle 
regeneration (17).

Lung
As microbes and other airborne materials can be frequently 
aspirated into the lung, pulmonary disease is easy to develop 
when the pulmonary immunity fails to protect the lungs during 
infections (83). However, the role of Treg during lung infec-
tions has been investigated in mouse models and has resulted 
in contradictory findings. It has been shown that patients with 
acute respiratory distress syndrome have increased Treg in their 
bronchoalveolar lavage fluid, suggesting that Treg play a role 
in the disease (21). In preclinical models of lung injury, T-cell 
deficient mice (Rag-1−/−) showed delayed lung resolution gov-
erned by high lung permeability as well as elevated number of 
neutrophils and macrophages, indicating that T-cells may play a 
reparative role during lung injury resolution (21). Moreover, fur-
ther analysis has shown that infiltration of CD4+CD25+FOXP3+ 
Treg in the alveolar compartment increases upon LPS instillation 
(21). Furthermore, adoptive transfer of wild-type CD4+CD25+ 
splenocytes following intratracheal LPS instillation into Rag-1−/− 
mice successfully facilitates lung injury resolution, suggesting 
that Treg could serve as a rescue therapy after acute lung injury 
(21). Indeed, Treg play a central role in lung resolution, since 
adoptive transfer of Treg from wild-type into Rag-1−/− mice has 
shown to decrease the number of fibrocytes in LPS-treated lungs. 
Mechanistically, Treg reduce lung epithelial CXCL12 concentra-
tion which is responsible for CXCR4+ fibrocyte recruitment (84). 
In addition, Treg mediate resolution by stifling pro-inflammatory 
macrophage response and ultimately promote bronchioalveolar 
stem cells (BASCs) proliferation (84).

The adult lung has a remarkable regenerative potential after 
injury (85, 86). The alveolar compartment comprises largely 
(90–95%) of alveolar type I cells (ATI) involved in gas exchange 
and to a lesser amount (7%) of type II cells (ATII), which are 
involved in immune regulation, repair, and recovery (87). These 
cell types derive from BASCs found at the bronchioalveolar duct 
junction (88). In a left unilateral pneumonectomy mouse model, 
surgical removal of the left lung induces mass expansion in the 
intact lobes of the remaining right lung (89). This extravagant 
alveologenesis process is shown to be dependent on lung epithe-
lial proliferation, specifically through ATII cells responsible for 
maintaining ATI number through differentiation (89). In acute 
lung injury or partial pneumonectomy models, it has been shown 
that epithelial proliferation during lung recovery is significantly 
impaired after specific elimination of Treg in Foxp3DTR mice 
following diphtheria toxin treatment (90). Lung epithelial prolif-
eration is strongly correlated with Treg number after injury and 
Treg promote ATII proliferation through binding of their surface 
integrin CD103 to E-Cadherin expressed by epithelial cells (90). 
Furthermore, the growth factor amphiregulin (Areg) expression 
by Treg also seems to play a non-redundant role in lung repair 
(18). Rapid increase in expression level of Areg in lung tissues 
is observed at day 3 postviral infection. Using Foxp3-Cre;Aregfl/fl  
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mice in which Areg is specifically ablated in Treg, it has been 
shown that the immunosuppressive function of Treg is preserved 
during antiviral immune responses. However, in the absence of 
Areg production by Treg, impaired recovery of lung function has 
been found in Foxp3-Cre;Aregfl/fl mice. Interestingly, by cocultur-
ing Treg with IL-18 or IL-33, it has been shown that Areg is 
induced by activation of IL-18R or ST2, instead of being activated 
through the TCR signaling pathway (91).

Bone
The adaptive immune system has been shown to play an impor-
tant role in bone regeneration. Compared to most tissues, bone is 
capable of healing without scar tissue formation. The homeostasis 
of bone is mediated mainly by the interaction between osteoblasts 
which form bone and osteoclasts which resorb bone. Osteoblasts 
are principally differentiated from progenitors such as mesen-
chymal stem cells (MSC), while osteoclasts originate from bone 
marrow-derived monocytes. Interestingly, MSC can induce Treg 
from naïve T-cells and promote Treg proliferation through HO-1 
(92). While CD3+ T-cells support peripheral blood mononuclear 
cell differentiation into osteoclasts in vitro, Treg inhibit such a dif-
ferentiation through paracrine signaling of TGF-β and IL-4 (93, 
94). Moreover, the number of Treg in peripheral blood is inversely 
correlated to serum marker of osteoclastogenesis in normal human 
and rheumatoid arthritis patients. In vivo experiments have also 
shown that Treg protect TNF-α-induced bone destruction and 
ovariectomy-induced bone loss (95, 96). Treatment with superag-
onistic anti-CD28 mAb ameliorates TNF-α-induced arthritis and 
increases bone mass in wild-type mice. The protective role of Treg 
in bone loss is most likely the result of impaired osteoclast dif-
ferentiation and bone resorption via inflammatory cytokines. For 
example, in an actinobacillus actinomycetemcomitans-induced 
canine model, Treg are recruited to the site of injury by CCL22 
and decrease bone resorption through reducing inflammation 
(97). Interestingly, Treg may also directly promote osteoblast 
differentiation from progenitor cells. For instance, it has been 
demonstrated that Treg facilitate MSC-based bone regeneration 
by inhibiting CD4+ conventional T-cells, which secrete IFN-γ and 
TNF-α (52, 98).

Central Nervous System
In mice deficient for CD4+ or CD8+ T-cells, remyelination is 
inhibited after lysolecithin injection, suggesting that CD4+ and 
CD8+ T-cells are required in remyelination of the CNS (99). In 
a myelin oligodendrocyte glycoprotein-induced experimental 
autoimmune encephalomyelitis mouse model, Treg are found 
to expand in peripheral lymphoid compartment and accumu-
late in CNS (100). Even though infiltrating Treg fail to control 
autoimmune inflammation, it has been demonstrated that they 
promote myelin regeneration (25). Moreover, Treg-deficient 
mice show impaired remyelinataion and oligodendrocyte dif-
ferentiation that can be rescued by adoptive transfer of Treg. 
IL-33 has been found to promote Treg recruitment into injured 
tissues, facilitating recovery after CNS injury. In addition, mice 
lacking IL-33 have impaired recovery after CNS injury, which is 
associated with reduced myeloid cell infiltrates and decreased 
induction of M2-assiociated genes at the injury site (58). Treg 

also promote oligodendrocyte progenitor cell differentiation 
and myelination in  vitro and ex vivo. Interestingly, through 
proteome profiling of Treg conditioned media, nephroblastoma 
overexpressed, also known as CCN3, has been found to mediate 
Treg-driven oligodendrocyte progenitor cell differentiation and 
CNS myelination (25).

FUTURe PeRSPeCTiveS

Recently, exploring the function of the immune system during 
tissue repair and regeneration has gained a lot of interest in regen-
erative medicine. Nevertheless, we still have sparse knowledge 
on how immunity—in particular the adaptive immune system—
controls the tissue healing process. For instances, what are the neo 
antigens, if any, released to initiate adaptive immunity-mediated 
tissue healing? Similarly, is adaptive immunity-mediated tis-
sue healing an antigen-specific process? If so, how are T-cells 
recruited, activated and function in response to self-antigens dur-
ing injury that are different from responding to non-self antigens? 
Currently, the development of treatments targeting the immune 
system is hindered by the lack of markers that specifically define 
distinct subsets of immune cells. Recent advances in single-cell 
genomics could offer unprecedented delineation of lineage-
specific markers and function of various subsets of immune cells 
operating during tissue repair and regeneration.

Furthermore, it is still unclear why scars are absent in some 
tissues such as in bone, but are forming in others such as in heart. 
Understanding how both innate and adaptive immune cells 
interact with tissue-resident progenitor cells and myofibroblasts 
would shed light on developing therapeutic strategies for improv-
ing healing and regeneration in the clinic. Moreover, accumulat-
ing evidence has shown that the function of the immune system 
declines with age (101, 102). Given that the immune system 
plays a crucial role in tissue repair and regeneration, whether the 
reduced tissue repair capacity is related to a degenerated immune 
system during aging awaits further investigations.

Overall, studies investigating the role of Treg during tissue 
regeneration have been largely based on the use of Foxp3DTR 
mouse model (17, 18, 22, 25, 57, 77, 90). However, one caveat of 
using such model is that the mice develop spontaneous systemic 
autoimmunity when Treg are depleted for long term (103). 
Careful data analysis should also include gain-of-function experi-
ments such as adoptive transfer of purified Treg into Rag1−/− mice 
to determine the role of Treg in tissue repair and regeneration.

From a regenerative point of view, one could control tissue 
Treg to promote regeneration. Treg of adipose tissues, skeletal 
muscle, and colonic lamina propria are the best characterized 
tissue Treg that maintain organismal homeostasis (104). Similar 
to regenerative Treg as aforementioned, IL-33 has been reported 
to expand tissue Treg in colonic lamina propria (105) that are well 
equipped to participate in local repair responses with expression 
of the tissue repair factor, amphiregulin. The exact role of these 
tissue Treg in intestinal regeneration awaits further investigations. 
Nevertheless, manipulating Treg for alleviating inflammatory 
diseases has been tested in several clinical trials. For instances, the 
use of low dosage of IL-2 in selective expansion of Treg in human 
patients (106) as well as ex vivo expansion and adoptive transfer 
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of Treg to treat Type 1 diabetes have been reported and tested in 
the clinic (107–109). Further studies are needed to investigate if 
these Treg-mediated strategies can also be utilized for inducing 
tissue regeneration.

Although it has been reported that superagonistic anti-CD28 
mAb increases Treg infiltration or activities in mice, the use 
of humanized superagonisticanti-CD28 antibody TGF1412 
caused cytokine storm, leading to organ failure in a previous 
trial (110). Furthermore, even though IL-33 plays an important 
role in recruitment and function of Treg in mice (60), IL-33 is 
dispensable in humans as individuals lacking IL-33 have no obvi-
ous health problems such as autoimmunity, indicating that the 
pro-regenerative function of IL-33 on Treg could also be different 
between mice and humans (111). Therefore, novel strategies in 
empowering Treg-mediated tissue regeneration for potential 
clinical uses would be needed in the future.
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