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There is now compelling evidence that tumor necrosis factor (TNF)–TNF receptor type II 
(TNFR2) interaction plays a decisive role in the activation, expansion, and phenotypical 
stability of suppressive CD4+Foxp3+ regulatory T cells (Tregs). In an effort to translate this 
basic research finding into a therapeutic benefit, a number of agonistic or antagonistic 
TNFR2-targeting biological agents with the capacity to activate or inhibit Treg activity 
have been developed and studied. Recent studies also show that thalidomide analogs, 
cyclophosphamide, and other small molecules are able to act on TNFR2, resulting in the 
elimination of TNFR2-expressing Tregs. In contrast, pharmacological agents, such as 
vitamin D3 and adalimumab, were reported to induce the expansion of Tregs by promot-
ing the interaction of transmembrane TNF (tmTNF) with TNFR2. These studies clearly 
show that TNFR2-targeting pharmacological agents represent an effective approach to 
modulating the function of Tregs and thus may be useful in the treatment of major human 
diseases such as autoimmune disorders, graft-versus-host disease (GVHD), and cancer. 
In this review, we will summarize and discuss the latest progress in the study of TNFR2-
targeting pharmacological agents and their therapeutic potential based on upregulation 
or downregulation of Treg activity.

Keywords: TnF receptor type ii, regulatory T cells, TnF receptor type ii agonists, TnF receptor type ii antagonists, 
immunotherapy

inTRODUCTiOn

CD4+FoxP3+ regulatory T cells (Tregs) play an indispensable role in maintaining immunological 
homeostasis and inhibiting autoimmune responses, while they also represent a major cellular mecha-
nism in immune evasion of tumors by dampening antitumor immune responses (1, 2). Consequently, 
Tregs have become important therapeutic target in the treatment of autoimmune diseases, graft-
versus-host disease (GVHD), transplantation rejection, and cancer.

We (Xin Chen and Joost J. Oppenheim) previously reported that tumor necrosis factor (TNF)-
alpha stimulates the activation and expansion of Tregs, and this effect of TNF is mediated by TNF 
receptor type II (TNFR2) (3). Moreover, we showed that the expression of TNFR2 correlated with 
suppressive function and phenotypical stability of Tregs (4–7). Our finding that TNF–TNFR2 
interactions play a decisive role in Treg function is now supported by compelling evidence from 
both human Treg studies (8–24) and mouse Treg studies (25–40) by other groups. Some of these 
independent studies also clearly show that the Treg-stimulatory effect of TNF–TNFR2 pathway 
can be therapeutically harnessed for the treatment of major human diseases, including cancer and 
autoimmune disorders (10, 12, 14, 16, 18, 20, 23, 24).
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TAble 1 | TNF receptor type II (TNFR2)-targeting pharmacological agents.

Category Class Agent Activity Reference

TNFR2 agonists Agonistic TNFR2 monoclonal 
antibodies (mAbs)

“TNFR2 antagonist” •	 Binds to and activates human TNFR2
•	 Stimulates the activation and expansion of homogeneous and highly functional regulatory T cells (Tregs) 

isolated from normal donors and patients with type 1 diabetes (T1D) (in vitro assay)

(10, 18)

MR2-1 (isotype: IgG1) •	 Binds to and activates human TNFR2
•	 Promotes the expansion of homogenous Foxp3+Helios+CD127low Treg population with highly  

suppressive capacity (in vitro assay and in humanized mouse study)

(20)

Tumor necrosis factor (TNF) 
muteins

TNF07 •	 Binds to and activates human TNFR2
•	 Expands Foxp3+ Treg cells from normal donors (in vitro assay)
•	 Selectively induces the death of autoreactive CD8+ T cells from T1D patients (in vitro assay)

(14)

STAR2 •	 Binds to and activates mouse TNFR2
•	 Stimulates proliferative expansion of Foxp3+ Tregs (in vitro assay)
•	 Selectively activates and expands Foxp3+ Tregs in WT mice (in vivo assay)
•	 Markedly prolongs the survival and decreases the severity of graft-versus-host disease (GVHD) 

(in vivo assay)

(38)

TNC-scTNF(R2) •	 Binds to and activates human TNFR2
•	 Protects TNFR2-expressing oligodendrocyte progenitor cells from death induced by oxidative stress 

(in vitro assay)
•	 Unknown effect on human Tregs

(41)

EHD2-scTNFR2 •	 Binds to and activates mouse TNFR2
•	 Inhibits neuroinflammation and promotes neuronal survival in a mouse model of neurodegeneration in 

combination with a TNFR1 antagonist (in vivo assay)
•	 Unknown effect on mouse Tregs

(42)

Anti-TNF mAbs Adalimumab •	 A therapeutic humanized mAb binding to both soluble TNF (sTNF) and transmembrane TNF (tmTNF)
•	 Increases expression of tmTNF on monocytes from rheumatoid arthritis (RA) patients (in vitro assay)
•	 Promotes the binding of tmTNF (expressed on monocytes) to TNFR2 (expressed by Tregs of  

RA patients), resulting in selective activation and proliferation of Tregs (in vitro assay)

(16)

Infliximab •	 A therapeutic humanized mAb against TNF-α
•	 Increases the suppressive function of Tregs in autoimmune patients, at least partially caused by the 

elevated levels of TNF (in vivo assay)

(4, 15, 22)

Small molecule compounds Vitamin D3 •	 VD3-DCs induces induced Tregs (iTregs) through the interaction of tmTNF expressed by VD3-DCs and  
TNFR2 expressed by Tregs (in vitro assay)

(26)

TNFR2 antagonists Antagonistic TNFR2 mAbs “TNFR2 antagonist” •	 Blocks the binding of TNF to human TNFR2
•	 Markedly inhibits the expansion of Tregs and reduces the suppressive capacity of Tregs (in vitro assay)

(10)

Dominant anti-human TNFR2 
antagonistic Abs

•	 Block the binding of TNF to human TNFR2 and hamper TNFR2 signaling activation
•	 Inhibit TNF-induced expansion of human Tregs (in vitro assay)
•	 Induce the death of Tregs, especially those isolated from ovarian cancer tissue (in vitro assay)
•	 Induce the death of TNFR2-expressing OVCAR3 tumor cells (in vitro assay)

(23)

(Continued)
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To translate this basic research finding into therapeutic benefit, 
a number of agonistic or antagonistic TNFR2-targeting biological 
agents with the capacity to upregulate or downregulate Treg activ-
ity have been developed. Recent study also revealed that some 
small molecule compounds can suppress TNFR2 expression 
or eliminate TNFR2-expressing Tregs. Some pharmacological 
agents were found to induce Tregs by promoting interaction of 
transmembrane TNF (tmTNF) with TNFR2. In this brief review, 
recent reports of TNFR2-targeting pharmacological agents with 
the capacity to upregulate or downregulate Treg activity were 
reviewed, analyzed, and discussed (Table 1).

TnFR2 AGOniSTiC biOlOGiCAl AGenTS

Faustman’s group has screened a panel of monoclonal antibod-
ies (mAbs) against human TNFR2 generated from her own 
lab or purchased from commercial sources. They identified a 
potent agonistic TNFR2 mAb which was designated as “TNFR2 
agonist” in their study. In the presence of IL-2, “TNFR2 agonist” 
potently stimulated the expansion of Foxp3+ Tregs present in 
cultures of CD4 cells, accompanied by the upregulation of TNF, 
TRAF2, TRAF3, BIRC3 (cIAP2), and Foxp3 mRNA expression 
(10). Furthermore, this property of the “TNFR2 agonist” was 
harnessed to generate highly homogenous Foxp3+ Tregs. To 
this end, MACS-purified CD4+CD25+ cells were cultured under 
standard in  vitro human Treg expansion conditions (anti-CD3 
Ab, anti-CD28 Ab, IL-2, and rapamycin), with or without the 
“TNFR2 agonist.” Expanded Tregs in the presence of “TNFR2 
agonist” expressed markedly higher levels of Foxp3 and other 
characteristic Treg markers, and possessed more potent suppres-
sive capacity (10). More recently, Faustman’s group examined the 
effect of such “TNFR2 agonist” on the activation and expansion of 
Tregs isolated from patients with type 1 diabetes (T1D) (18). The 
results show that in vitro treatment with “TNFR2 agonist” stimu-
lated the activation of T1D Tregs which initially showed a resting 
phenotype. Furthermore, under the aforementioned standard 
Treg expansion culture condition, “TNFR2 agonist” promoted 
the homogenous expansion of Tregs isolated from T1D patients 
by magnetic beads (18). “TNFR2 agonist”-expanded T1D Tregs 
were more potent in the inhibition of autologous CD8+ T cells (18). 
A similar result was obtained by using MR2-1, a commercially 
available agonistic human TNFR2 mAb (mouse IgG1) by another 
group (He/Joosten and colleagues) (20). In this study, low purity 
MACS-isolated human Tregs were expanded with the aforemen-
tioned standard protocol. The treatment with MR2-1 resulted 
in the generation of more homogenous Foxp3+Helios+CD127low 
Tregs. The phenotype of resultant Treg cells remained stable, 
even in the pro-inflammatory environment. Importantly, Tregs 
expanded with MR2-1 maintained highly suppressive activity 
in a humanized mouse model (20). Thus, TNFR2 agonists can 
facilitate ex vivo expansion of Treg cells from less pure population 
for Treg-based immunotherapy.

Prompted by the potential therapeutic effect on autoimmune 
diseases, Faustman’s group also generated soluble TNF (sTNF) 
muteins with TNFR2 agonistic effect, designated S95C/G148C 
or TNF07 (14). This stable TNF trimer, TNF07 double mutant, 
functioned as a TNFR2 agonist. It could trigger a strong TNFR2 
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signaling, with the capacity to expand Foxp3+ Treg cells and to 
selectively induce the death of autoreactive CD8+ T cells isolated 
from T1D patients (14).

Chopra/Beilhack and colleagues developed a novel nona-
meric TNFR2-specific variant of mouse TNF (STAR2), which 
was a selective agonist of mouse TNFR2 and had no capacity to 
bind to TNFR1 (38). STAR2 had in vitro and in vivo activity to 
stimulate the proliferation of Tregs in a TNFR2-dependent and 
IL-2-independent manner. Furthermore, pretreatment with 
STAR2 before allogeneic hematopoietic stem cell transplantation 
(allo-HCT) markedly prolonged the survival and decreased the 
severity of GVHD, in TNFR2- and Treg-dependent manner. A 
human TNFR2-specific STAR2 equivalent agonist also potently 
stimulated the expansion of Foxp3+ Tregs from healthy donors 
in vitro (38).

A number of TNFR2-targeting agents, such as TNC-scTNF(R2)
(a human TNFR2 selective agonist) (41) and EHD2-scTNFR2 (a 
mouse TNFR2 selective agonist) (42), were developed to examine 
their protective effect on neurodegeneration. It would be interest-
ing to ask if their neuroprotective effect is attributable to their 
capacity to activate and expand Tregs, and if they have beneficial 
effect in the inhibition of autoimmune diseases.

It was shown recently that TROS, a nanobody-based selective 
inhibitor of TNFR1, was able to inhibit mouse experimental auto-
immune encephalomyelitis (EAE) and this effect is attributable to 
the diversion of TNF to interact with TNFR2 (43). TNFR2 is also 
expressed by oligodendrocytes or astrocytes, with neuroprotec-
tive function through tmTNF–TNFR2 signaling to promote CNS 
cells differentiation and remyelination, and such effect of TNFR2 
signaling was based on its directly action on the cells in CNS 
(44–46). Therefore, selectively blocking TNFR1, thus favoring 
TNFR2, may represent another strategy to stimulate TNFR2+ 
Tregs in the treatment of autoimmune diseases and GVHD.

TnFR2 AnTAGOniSTiC biOlOGiCAl 
AGenTS

In addition to a TNFR2 agonist, Faustman’s group also identified a 
potent mAb antagonist of human TNFR2, designated as “TNFR2 
antagonist” in their study (10). In the standard Treg expansion 
culture condition, this “TNFR2 antagonist” markedly inhibited 
the expansion of Tregs and reduced the suppressive capacity of 
Tregs (10). More recently, Torrey/Faustman and colleague devel-
oped two potent dominant anti-human TNFR2 antagonistic Abs 
that outcompeted TNF, the natural agonist of TNFR2, and inhib-
ited TNF-induced in vitro expansion of human Tregs (23). These 
TNFR2 antagonists specifically bound to TNFR2 through F(ab) 
region, independent of Fc region or crosslinking of antibodies. 
Through binding to the antiparallel dimers of TNFR2 protein, 
the TNFR2 antagonists blocked the binding of TNF to TNFR2. 
Consequently, they inhibited TNF-triggered activation of nuclear 
factor-κB (NF-κB) pathways in Tregs, and suppressed conversion 
of tmTNFR2 to sTNFR2. These two TNFR2 antagonists could 
induce the death of Tregs in  vitro. Interestingly, Tregs isolated 
from ovarian cancer tissues were more sensitive to TNFR2 
antagonist-induced cell death (23), presumably attributable to the 

higher levels of TNFR2 expression on tumor-infiltrating Tregs 
(4). TNFR2 is also expressed on the surface of OVCAR3, an ovar-
ian cancer cell line. Intriguingly, TNFR2 antagonists could also 
induce the death of OVCAR3 tumor cells (23). Thus, this in vitro 
evidence strongly supports the idea that TNFR2 antagonists may 
represent novel cancer therapeutics by simultaneously targeting 
tumor-infiltrating Tregs and tumor cells.

Progranulin (PGRN), a glycosylated protein, has immunosup-
pressive and anti-inflammatory activity (47–49), presumably due 
to its capacity to promote the induction of induced Tregs (iTregs), 
as shown in an in  vitro study (50). Progranulin was initially 
reported as an endogenous TNFR2 antagonist (51). However, 
controversial results were reported (52, 53) and thus further study 
is needed to clarify its effect on TNFR2.

SMAll MOleCUle TnFR2 inHibiTORS

Thalidomide is a synthetic small molecule glutamic acid deriva-
tive (54) that was initially developed for alleviation of morning 
sickness of pregnant women in Europe several decades ago (55). It 
was withdrawn from the market because it caused developmental 
defects in newborns (55). The interest in using this compound as a 
therapeutic agent reawakened recently, due to its suggested effect 
in the treatment of erythema nodosum leprosum (ENL) (56, 57). 
This led to the discovery of immunomodulatory and anti-inflam-
matory properties of thalidomide and to clinical trials of thalido-
mide and its analogs in various malignancies (54). Thalidomide 
and its structural analogs (lenalidomide and pomalidomide) are 
now classified as immunomodulatory drugs (IMiDs) (54). It has 
been well established that thalidomide and its analogs are able to 
inhibit TNF protein synthesis through downregulation of NF-κB, 
destruction of TNF mRNA, and targeting reactive oxygen species 
and α1-acid glycoprotein (58–61). Thalidomide and its analogs 
also have the capacity to inhibit the surface expression of TNFR2 
on T cells without reducing the expression of total TNFR2 protein 
(62), which is associated with the inhibition of intracellular TNFR2 
transport to the cell surface (13). Giannopoulos et  al. showed 
that, in patients with chronic lymphocytic leukemia, thalidomide 
treatment reduced the number and function of Tregs (63, 64), 
presumably by blockade of TNF–TNFR2 interaction. Moreover, 
Plebanski’s group reported that, in acute myeloid leukemia (AML) 
patients, combination therapy with lenalidomide and a demeth-
ylating agent, azacitidine, downregulated TNFR2 expression on 
CD4 T cells and reduced the number of TNFR2+ Tregs, resulting 
in enhanced effector immune function (13). However, it was 
reported that treatment with thalidomide and its analog actually 
increased the number of Tregs in patients with multiple myeloma 
(MM) (65, 66), which may be attributable to the elevated serum 
levels of TNF after treatment (62, 66). Furthermore, thalidomide 
was reported to promote de novo generation of iTregs (67), which 
is consistent with current understanding of responses of iTreg to 
TNF–TNFR2 stimulation (29, 68). Thus, the effect of thalidomide 
on TNFR2+ Tregs is likely to be disease- and condition-specific, 
which should be clarified by future study.

Histone deacetylase inhibitor panobinostat is effective in 
the treatment of MM in combination with bortezomib and 
dexamethasone (69). A recent study found that low doses of 
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panobinostat could reduce the expression of Foxp3 and inhibit 
the suppressive function of Tregs (70). Furthermore, Govindaraj 
et al. reported that the combination treatment with panobinostat 
and azacitidine reduced the proportions of TNFR2+ Tregs in 
the blood and bone marrow of AML patients (12). One of the 
mechanisms may be the disruption of the AML bone marrow 
niche by panobinostat and azacitidine, resulting in reduced blast 
cell levels and preventing Treg induction by blast cells (12). The 
reduction of TNFR2+ Tregs and consequently increase of IFNγ 
and IL-2 production by effector T cells (Teffs) is attributable to 
the clinical beneficial effect of patients with AML (12). This study 
indicates that epigenetic therapeutics may represent a strategy 
to eliminate TNFR2+ Treg activity and to enhance antitumor 
immune responses.

Cyclophosphamide (CY) is a DNA alkylating agent which is 
commonly used as a cytotoxic chemotherapy in cancer treatment 
(71). CY at low dosages can inhibit immunosuppressive function 
of Tregs (72), and a single dose of CY depletes the maximally 
suppressive Tregs in PROb colon cancer bearing mice, resulting 
in the activation of antitumor immune responses (73). Moreover, 
van der Most et al. reported that, in a mouse model of mesothe-
lioma, CY treatment depleted TNFR2hi Tregs (74). This effect of 
CY was based on its capacity to induce the death of replicating 
Tregs which co-express TNFR2 and Ki-67 (4, 74). Furthermore, 
CY in combination with etanercept, a therapeutic TNF antago-
nist, markedly inhibited the growth of established CT26 tumor 
in mice, by eliminating TNFR2-expressing Treg activity through 
blockade of TNF–TNFR2 interaction (75).
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Triptolide (TPT), an immunosuppressive compound isolated 
from Chinese herb Tripterygium wilfordii Hook F., was reported 
to inhibit TNF as well as TNFR2 expression in the colon of 
mouse colitis model (76). TPT was also reported to decrease 
the number of Tregs and consequently inhibited the growth of 
mouse tumor (77). Thus, it would be interesting to investigate if 
TPT and other naturally occurring compounds have the capac-
ity to downregulate Treg activity by blockade of TNF–TNFR2 
interaction.

PHARMACOlOGiCAl AGenTS THAT 
PROMOTe THe inTeRACTiOn OF tmTnF 
AnD TnFR2

TNF binds and signals through two structurally related function-
ally distinct receptors: TNFR1 and TNFR2 (78). Once synthesized, 
TNF is expressed initially as a cell surface type II polypeptide 
consisting of 233 amino acid residues (26 kDa). Transmembrane 
TNF is then cleaved by TNF-alpha converting enzyme into a sTNF 
consisting of 157 amino acid residues (17 kDa) (79). Soluble TNF 
predominantly binds and activates TNFR1, while tmTNF prefer-
entially binds and activates TNFR2 (80). Therefore, agents which 
have the capacity to enhance the expression of tmTNF or pro-
mote the interaction of tmTNF and TNFR2 may also selectively 
activate and expand Tregs. This is exemplified by a recent study 
reported by Nguyen/Ehrenstein showing the paradoxical effect 
of adalimumab in the expansion of Tregs (16). Adalimumab is 
a therapeutic anti-TNF mAb which is effective in the treatment 
of rheumatoid arthritis (RA) and other autoimmune diseases 
(81). This Ab was developed to bind to both sTNF and tmTNF, 
aiming to block the interaction of TNF with its receptors (82). It 
was reported that adalimumab treatment increases the number 
of Tregs in RA patients (83). A recent in vitro study found that 
adalimumab bound to tmTNF expressed by monocytes from RA 
patients. This resulted in the upregulation of tmTNF expression, 
consisting with in vivo observations that adalimumab treatment 
enhanced TNF expression by monocytes from RA patients (16). 
Furthermore, adalimumab promoted the binding of tmTNF 
expressed by monocytes to TNFR2 expressed by Tregs of RA 
patients, consequently enhanced the activation and proliferation 
of Tregs (16). This study suggests that targeting of tmTNF–TNFR2 
interaction may represent a novel strategy in the treatment of 
autoimmune diseases, especially in those patients that do not to 
respond to conventional anti-TNF treatment, by mobilization of 
TNFR2+ Tregs (84). Coincidentally, these findings also clarify why 
adalimumab is more effective in the treatment of Crohn’s disease 
(85), than etanercept which merely inhibits the effect of sTNF 
without the concomitant stimulation of Tregs (85, 86).

Infliximab (Remicade) is a therapeutic chimeric mAb against 
TNF used in the treatment of autoimmune diseases (87). A recent 
study shows that, in patients with sarcoidosis, surface expression 
of TNFR2 on CD4+CD25hi “Tregs” was higher in responders 
to therapy, as compared to those non-responders (22). Since 
TNFR2 expression is associated with suppressive function of 
Tregs (4, 15), this study suggests that infliximab treatment may 
also increase the suppressive function of Tregs in autoimmune 
patients.

It was reported that tolerogenic dendritic cells (DCs), desig-
nated as VD3-DCs, were induced by the treatment with 1 alpha, 
25-dihydroxyvitamin D3 (VD3). Such DCs expressed high levels 
of TNF and PD-L1 upon LPS stimulation and were able to induce 
functionally suppressive Tregs (88). A subsequent study by the 
same group (Kleijwegt/Roep and colleagues) found that VD3-
DCs expressed high levels of tmTNF. Furthermore, induction of 
Ag-specific Tregs by VD3-DCs depended on the interaction of 
tmTNF expressed by VD3-DCs and TNFR2 expressed by Tregs, 
since blockade of binding of tmTNF to TNFR2 abrogated the 
induction of suppressive function of Tregs (26). In this study, 
Tregs induced by VD3-DCs were converted from naïve CD4 
T  cells (26). Thus, the possibility that VD3-DCs can also pro-
mote the activation and expansion of naturally occurring Tregs 
(nTregs) in a tmTNF–TNFR2 dependent manner, especially in 
the physiologically relevant in vivo settings, should be addressed 
in a future study. Furthermore, since CD8+Foxp3+ Tregs also 
expressed high levels of TNFR2 on their surface and TNF signal-
ing is required for the generation of CD8+Foxp3+ Tregs (89), it 
would be interesting to investigate if they can be generated or 
expanded by tmTNF-expressing VD3-DCs.

COnClUSiOn

Although the first of the TNFR2 inhibitors identified was thalido-
mide (62), recent research actually focused on the development 
of TNFR2-targeting biological agents. This may be because the 
difficulty to block TNF–TNFR interaction with a small molecule, 
due to the large contact surface area (90), and due to the apparent 
advantage of biological therapeutics, such as high target specific-
ity, well-understood mechanism and minimal toxicity (91, 92). 
Nevertheless, cell-permeable small molecules may also effectively 
block TNFR2 signaling pathways, and consequently inhibit 
Treg activity induced by TNF–TNFR2 interaction. So far, three 
signaling pathways of TNFR2 in T lymphocytes, e.g., IKK/NFκB, 
MAPK (Erk1/2, p38, JNK), and PI3K/Akt pathways, have been 
reported (93–95). The effect of small molecule inhibitors specific 
for major components of these pathways on Treg activity should 
be investigated. Thoroughly understanding of TNFR2 signaling 
pathways in Tregs, especially those different from Teffs, is a key 
to identify or design selective Treg inhibitors and thus merits 
future study. Moreover, it has been shown that TNFR2-specific 
TNF muteins have the capacity to activate and expand Tregs (38). 
Since LTα homotrimer can also bind to TNFR2 (96), it would be 
interesting to investigate if TNFR2-specific mutant LTα have the 
capacity to preferentially activate Tregs.

In addition to being constitutively and predominantly 
expressed by highly suppressive Tregs (4), TNFR2 can also 
be induced and upregulated on CD4+Foxp3− Teffs upon TCR 
stimulation (28, 97). However, the level of TNFR2 expressed by 
Teffs is much lower than its expression on Tregs (6, 9, 23, 28). 
This may explain why TNFR2 antibody mimetics preferentially 
bind to Tregs (21). Nevertheless, TNFR2-targeting agents on the 
function of Teffs should be carefully evaluated in the future study. 
Furthermore, in addition to T cells, TNFR2 is also expressed by 
other cell types, such as endothelial cells (98), microglia and 
selected neuronal subtypes (99, 100), oligodendrocytes (101), 
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