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Although much is known about the mechanisms by which pathogen recognition drives 
the initiation of T cell responses, including those to respiratory viruses, the role of patho-
gen recognition in fate decisions of T cells once they have become effectors remains 
poorly defined. Here, we review our recent studies that suggest that the generation of 
CD4 T cell memory is determined by recognition of virus at an effector “checkpoint.” 
We propose this is also true of more highly differentiated tissue-restricted effector 
cells, including cytotoxic “ThCTL” in the site of infection and TFH in secondary lymphoid 
organs. We point out that ThCTL are key contributors to direct viral clearance and TFH 
to effective Ab response, suggesting that the most protective immunity to influenza, and 
by analogy to other respiratory viruses, requires prolonged exposure to antigen and to 
infection-associated signals. We point out that many vaccines used today do not provide 
such prolonged signals and suggest this contributes to their limited effectiveness. We 
also discuss how aging impacts effective CD4 T cell responses and how new insights 
about the response of aged naive CD4 T cells and B cells might hold implications for 
effective vaccine design for both the young and aged against respiratory viruses.
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THE GENERATION OF MEMORY CD4 T CELL RESPONSES  
TO INFLUENZA

An effective immune response to respiratory pathogens, such as Influenza A virus (IAV), requires 
coordination between the innate and adaptive immune system. Host defense to influenza infection 
begins when lung airway epithelial cells, dendritic cells (DC), and alveolar macrophages alert the 
host to the presence of virus through the activation of pattern recognition receptors (PRR) (1). 
This triggers the production of inflammatory cytokines, which activates antigen-presenting cells 
(APC). APC migrate to secondary lymphoid organs where they present antigen to T and B cells as 
soon as 2 days postinfection (dpi) (2). In a primary infection, CD4 and CD8 effectors are the most 
important for clearing virus, with Ab arising later. Effectors soon contract and a cohort become 
memory T cells that can persist in the host long-term and provide durable protection against the 
same virus.

Thereafter, re-encounter with the same virus goes largely unnoticed since neutralizing long-
lived Ab, produced by long-lived plasma cells (LLPC), rapidly clears virus. However, when virus 
surface proteins hemaggluttinin (HA) and neuraminidase (NA) can mutate sufficiently and escape 
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FIGURE 1 | Continuing infection, producing abundant antigen and pattern recognition receptor (PRR)-activated APC, and we propose inflammatory cytokines, 
drives generation of memory cells and of highly differentiated ThCTL and TFH effectors and the memory they become. Providing such signals in a vaccine setting 
should result in longer-lasting more protective immunity. Known and likely roles for viral Ag and for PRR in the response to Influenza A virus are depicted.
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recognition by the Ab. IAV also escape when new strain with 
a distinct HA and NA subtype (heterosubtypic) develops or 
by a high dose of exposure that overcomes Ab. When virus is 
incompletely cleared, memory T cells and B cells are induced to 
mount a secondary response, making secondary effectors that 
can protect against a broader range of influenza strains (3). Most 
studies have focused on T  cell activation during priming, but 
it is unclear what continued signals are needed into the effec-
tor phase to generate memory. Although live virus is cleared 
between 10 and 13 dpi, viral antigen presentation is detected for 
up to 21  dpi (4), indicating Ag recognition could continue to 
drive T cell responses.

Indeed antigen presentation through 8 dpi drives effector CD8 
T  cells to expand and promotes memory formation (5, 6). We 
found that antigen presentation throughout the effector response 
was required for almost all CD4 T  cell memory generated by 
IAV infection (7, 8). Antigen recognition induced autocrine CD4 
effector IL-2 production that acted at days 6–8 postinfection at 
this “checkpoint” to downregulate Bim and to upregulate the 
IL-7Ra. These signals along with antigen recognition, promoted 
survival of CD4 effectors and drove their transition to memory  
(7, 8). Infection was not required at this stage, since antigen-
pulsed APC were sufficient to support optimal memory CD4 
T cell generation and maintenance that was able to protect a naïve 
host from an otherwise lethal influenza challenge (7). Antigen 
engagement at the memory checkpoint specifically upregulated 
the expression of CD25, Bcl-6, and phosphorylated STAT3 in the 
effector CD4 T cells (8). CD25 expression is needed for efficient 
IL-2R signaling, so that IL-2 can prevent effector cell death (9). 
Costimulation through CD27 is also important at this juncture 
(7) for the most efficient formation of CD4 memory, just as it 
is during priming (10). Correspondingly, a subset of DCs that 

express CD70 post-priming has also been identified which 
correlate with CD27+CD8 effector expansion late into the IAV 
response (11).

The need for cognate interaction of effectors with Ag–APC 
during this phase potentially allows for the influence by Ag dose/
avidity and by co-stimulatory ligands on the APC dependent on 
pathogen-associated molecular patterns (PAMPs). This ensures 
that strong memory develops only when there is no longer 
infection at the early effector phase, when necessary because of 
unresolved threats (Figure 1). We suggest that defining pathways 
that drive optimum CD4 and CD8 T cell memory will inform 
vaccine design to produce more protective T cell memory.

TISSUE-RESTRICTED EFFECTOR 
RESPONSES PLAY KEY ROLES IN 
ANTIVIRAL IMMUNITY

CD4 T  cells responding to viral infections differentiate into a 
heterogeneous population of effector cells, with subsets that 
mediate viral clearance through distinct mechanisms including 
those that are cytokine-mediated (Th1, Th2, Th17) and that kill 
infected cells (ThCTL), as well as indirect mechanisms of help 
for B cell differentiation (TFH) in germinal centers (GC) (3, 9, 12). 
Protection against lethal challenge with influenza can be medi-
ated by synergy of CD4 T effectors acting via generation of Ab 
and by perforin-mediated lysis due to ThCTL (13).

It is well established that TFH are required for GC formation 
and that they support GC B  cell responses leading to isotype 
switching, somatic hypermutation, and selection of high affin-
ity with the production of LLPC and memory B  cells (14).  
As they recognize antigen on GC B  cells, the TFH in turn 
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become GC-TFH and later can become memory TFH (15, 16). 
The LLPC are responsible for producing the long-lived Ab that 
provides most rapid protection against viral infection. Thus, the 
tissue-restricted recognition of Ag by TFH is critical to GC-TFH 
development, for subsequent TFH memory and for long-lived 
Ab-mediated protection. The critical TFH functions and their 
transition to memory have been well reviewed (14–16). Under-
standing what signals from cognate interaction of TFH and  
GCB are needed and how long they are needed is crucial to 
maximizing immunity.

Another tissue-restricted CD4 effector population is the 
cytotoxic CD4 T cells, ThCTL (17, 18). ThCTL lyse target cells 
by the same mechanisms utilized by cytotoxic CD8 T  cells, 
including the perforin-mediated pathway. ThCTL are generated 
during influenza and many other viral infections (19). After IAV 
infection they are found in the lung and bronchoalveolar lavage  
(19, 20), suggesting they are restricted to the sites of infection. 
Two markers of ThCTL have been found: CRTAM and NKG2C/E. 
MHC Class I-restricted T  cell associated molecule (CRTAM) 
can be expressed by IAV-specific CD4 T  cells upon activation. 
CRTAM+ CD4 cells, upregulate expression of granzymes and 
display peptide specific cytotoxicity, indicating these cells are 
ThCTL (21). While CRTAM marks cytotoxic CD4 T  cells, its 
expression requires ex vivo activation, making tracking ThCTL 
more difficult.

NKG2A/C/E is a family of C type lectin receptors found on 
NK  cells and CD8 T  cells (22, 23). NKG2C/E, however, can 
be found on CD4 T cells directly ex vivo from infected mouse 
lungs (20). Isolating CD4 T  cells based on their expression of 
NKG2C/E, indicates that cytotoxic activity ex vivo, as well as 
increased expression of perforin and granzyme is found only 
in the NKG2C/E-expressing effectors. NKG2C/Epos ThCTL, 
readily degranulate and secrete high levels of IFNg when they 
recognize Ag, consistent with their potent antiviral activity (20). 
Although effector CD4 T  cells infiltrate the tissues throughout 
the body (24), ThCTL are only found in the lung and we find 
that they upregulate a gene expression program consistent with 
tissue residency (20). Further, Ab to CD4 injected intravenously 
to assess relative accessibility at the effector stage, indicates most 
ThCTL are inaccessible, suggesting they are within the lung tissue 
(20). This location in sites of infection is important as local lung-
resident memory CD4 T  cells promote better protection than 
splenic memory CD4 cells against IAV infection (25).

Due to their protective capacity, in both mice and humans 
infected with influenza (13, 26, 27), it is important to identify the 
factors that support generation of ThCTL. ThCTL do not require 
standard polarizing cytokines during initial activation, but do 
depend on IL-2 (17). We find that CD4 T cells need Blimp-1 as 
a transcription factor to enable the cytotoxic phenotype. Loss of 
Blimp-1 in CD4 T cells leads to reduced ThCTL in the lungs (20), 
and, in others studies, reduced ability to prevent weight loss after 
influenza (26). Bcl-6, a transcriptional repressor of Blimp-1, is 
in contrast critical for TFH generation (28–30), underlining the 
diverse transcriptional regulation of ThCTL versus TFH. We note 
that the restriction of ThCTL to sites of infection and their late 
appearance (20) suggest that they, like TFH, may require late cog-
nate interactions to direct their final differentiation (Figure 1).

INNATE RESPONSES REGULATE THE 
GENERATION OF THE ANTIVIRAL  
CD4 T CELL RESPONSE

The innate immune system plays a critical role in initiating the 
cascade of the adaptive responses to viruses. Toll-, RIG-I- and 
Nod-like receptors (TLR, RLR, or NLR) on the initial infected 
cells are triggered by PAMP to signal the first wave of inflamma-
tory cytokine production. These in turn activate various APC 
to effectively initiate T  cell priming. IAV infection activates 
innate pathways primarily via the PRR, such as TLR3, TLR7, 
RIG-I, and Nlrp3. Previous reviews have discussed the role of 
PRR-signaling in IAV infection in detail (31, 32). However, little 
is known beyond the role of the PRR pathways acting early in 
priming and initiation of T  cell responses (31–33). Here, we 
discuss recent advances in the fields of CD4 memory, TFH and 
ThCTL that are making it clear that PRR pathways play a more 
global role in shaping CD4 effector and memory responses.

We find that the generation of CD4 memory does not require 
infection during the effector phase, as activated APC presenting 
peptides are sufficient to drive in  vivo generated CD4 effec-
tors to become memory in uninfected mice (8). However, the 
role of PRR pathways in generating specialized CD4 memory 
responses such as TFH memory, ThCTL memory and CD4 TRM 
is only now being studied. The gamma-chain cytokines, IL-2, 
IL-7, and IL-15, each play important roles in T  cell memory 
(7, 34, 35). PRR pathways can induce high levels of IL-15 dur-
ing infection (35). While we know that constitutive levels of 
IL-15 and IL-7 maintain homeostatic memory CD8 and CD4 
T cell populations (35), the role of high levels of PRR-signaling 
such as that leading to type I IFN and other proinflammatory 
cytokines during active infection remains unclear. We find that 
IL-15 is required during the effector phase of the CD4 response 
for the generation of an IL-2 independent CD4 TRM population 
(36). Another study indicates local inflammatory cues from 
IL-12 and IFNβ, made by intestinal macrophages, are involved 
in differentiation and persistence of the CD8 TRM populations 
(37). While multiple PRR pathways promote T cell memory, the 
causal relationship between the memory subsets and the specific 
PRR has only been shown indirectly through the requirement 
for innate cytokines.

The TLR9 adjuvant CpG acts on TLR9/MyD88 signaling in 
both DC and B cells to promote optimum TFH generation (37). 
Type I IFN produced by PRR-signaling, also promotes the TFH 
genetic program. Type I IFNα/β induced Bcl-6, CXCR5, and 
PD-1 expression in CD4 T cells that were activated in vitro by 
Ab to CD3 and CD28, by a STAT-1-dependent pathway (38). 
During persistent LCMV infection, chronic Type I IFN supports 
TFH formation (39). On the other hand, another study showed 
that the absence of STAT3 in CD4 T  cells during an acute 
LCMV infection resulted in reduced TFH differentiation caused 
by increased Type I IFN production, thus suggesting that Type 
I IFN indirectly inhibited TFH differentiation (40). Type I IFNs 
have widely variable effects on T  cell activation depending on 
whether they are present before activation, during activation 
or after activation and depending on whether they are present 
acutely or chronically (41). Thus, it is likely that the disparate 
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impacts of Type I IFN on TFH generation in the studies above are 
due to differences in model systems used.

CD4 T cells stimulated in vitro in the presence of IFNα and 
IL-2 have increased cytotoxic potential (26). CD4 T cells in the 
lungs of IFNAR-deficient mice also expressed lower levels of 
Granzyme B and perforin, suggesting ThCTL generation also 
may depend on inflammatory cytokines. In support of roles for 
inflammation acting on T effectors, gene profiling following IAV 
infection indicate innate cytokines including Type I and Type III 
IFNs, are produced well into the effector phase of the response 
(42). Since innate inflammatory cytokines, such as Type I IFN, 
can be pathological (43) it makes sense that their production 
requires PRR activation, present only during continuing infection 
and that they could, then help further drive the differentiation 
of specialized effector CD4 T cells to ensure pathogen clearance.

Innate pathways also play an indirect role in promoting 
continued antigen presentation by inducing inflammation and 
enhancing APC activation. A recent study showed that type 1 
IFN has differential effects on APC subsets by inducing different 
levels of co-stimulatory ligands, such as various TNFSF ligands, 
CD80, and CD86 on inflammatory APCs versus classical DCs, 
which control priming of CD4 T cells (44). Expression of many 
of these TNFR ligands such as OX-40, CD27, and 4-1BBL have 
been correlated with protective antiviral T cell responses (45, 46).

PATHOGEN RECOGNITION PROMOTES  
T CELL AND B CELL IMMUNITY

In addition to the roles of PRR-stimulation in driving the final 
differentiation of TFH, discussed above, we recently showed that 
PRR-activated DC, acting as APC for CD4 T cells, could greatly 
augment both TFH generation, generation of IL-21 secreting CD4 
effectors. This indirectly enhances generation of GCB cells and 
most importantly of long-lived Ab in response to inactivated 
IAV vaccine (47). Vaccines, especially traditional inactivated or 
subunit flu vaccines often result in weak, barely protective Ab 
levels and low frequency T cell memory, especially when given 
to the elderly (48). In contrast, live infection is able to generate 
very long-lived and effective immunity of all types, suggesting 
that vaccines will need to be modified to provide the key signals 
inherent in live infection in order to improve efficacy. We found 
that when peptide-pulsed DC were activated by TLR-signaling 
and used to prime CD4 T cells specific for IAV, high levels of 
inflammatory cytokine were produced during the CD4:Ag/APC 
interaction. This enhanced otherwise weak helper T and B cell 
responses by an IL-6 dependent mechanism. This effect was 
apparent even in an unmanipulated mouse, where TLR-activated 
DC, presenting inactivated IAV, enhanced B cell IgG Ab response 
over several months (47). PRR activation in conjunction with 
BcR-triggering also can directly activate B  cells and promote 
their differentiation to AbSC. This synergistic signaling drives 
T-independent B  cell responses, but can also be involved in 
conventional B cell (B2) responses (48, 49). Thus, the presence 
of PRR signals acts at multiple levels in DC and in B  cells to 
promote the initial B cell response, and we propose also later to 
promote TFH, LLPC, and memory B cells.

AGED T AND B CELL RESPONSES 
BECOME MORE DEPENDENT ON  
PRR PATHWAYS

Animals undergo a dramatic shift in their immune responses as 
they age. The number of naive T cells (50) and naive follicular 
B cells (FOB) decreases and remaining naive cells are less respon-
sive (51). So while previously established T and B memory cells 
often remain largely functional, responses to new viruses or 
strains of viruses not previously encountered is compromised. 
Our studies show that aged CD4 T cells have reduced respon-
siveness to IL-6 (47, 52) leading to weak generation of helper 
subsets. Providing high Ag doses on PRR-activated APC, mark-
edly enhanced aged naive CD4 helper responses and indirectly 
improved B cell responses by a mechanism dependent on APC 
produced IL-6 (47). This study provided clear evidence that PRR 
signals acting on APC were responsible for improved CD4 helper 
responses and supported the concept that greater PAMP signal-
ing is required to prime naive T cells as they age.

We wondered if the reduced responses by B cells in the aged 
could also be enhanced by high Ag dose and PAMP stimula-
tion. We also noted that T-independent B  cell responses, do 
not require the age-compromised T helper cells, might provide 
immune protection in the aged. A subset of B  cells termed 
“age associated B cells” (ABC) that lack both CD23 and CD21 
increase with age in mice (53). Studies showed that some of 
the ABC can develop from antigen-experienced FOB suggest-
ing they are memory-like B cells (54). However, we find that 
most ABC in unimmunized mice express only surface IgD 
and IgM and lack the expression of key B cell co-stimulatory 
and activation markers, suggesting they are naive (51). These 
sIgD+ ABC transferred to RAG-deficient mice, were driven 
by IAV infection into AbSC specific for IAV (51), indicating a 
T-independent pathway to Ab production. ABC identified in 
models of autoimmunity are dependent on BcR, TLR-7, and 
TLR-9 stimulation (53, 55), and memory ABC populations 
are implicated in mediating autoimmunity (56, 57). Thus like 
CD4 T  cells, the ABC may require strong PRR-signaling to 
respond effectively. We propose that pathogens such as respira-
tory viruses can induce sIgD+ ABC to generate protective Ab 
responses even in the aged (51). We are investigating whether 
the sIgD + ABC response to IAV infection can indeed contrib-
ute to a protective Ab response and if this is dependent on high 
levels of Ag and PAMP signals.

SPECULATIONS AND IMPLICATIONS  
FOR VACCINES

It has become increasingly clear that vaccines, especially inac-
tivated, subunit, or recombinant protein vaccines, often result 
in weak, barely protective Ab levels and low frequency T  cell 
memory, and they are even less effective in the elderly (48, 58). 
On the other hand, LAIV are able to elicit superior lung specific 
responses and TRM (59). Various studies have indeed shown that 
that local antigen presentation and local inflammation are key 
factors that drive tissue-resident memory (60, 61). Live infection 
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is able to generate effective immunity of all types that often lasts 
several decades or more, suggesting that modifications to vac-
cines to provide key signals inherent in live infection should be 
able to improve vaccine efficacy (62). Here, we suggest that strong 
signals like those from replicating pathogens, including high 
doses of antigen persisting to the peak of the immune response, 
along with high levels of PAMPs acting on innate and B cells, 
are necessary to optimally trigger T  cell effector and memory 
generation and B cell response. Replicating viruses that facilitate 
high and continued levels of antigen presentation and inflamma-
tion, in addition to tissue localization of the immune response 
induced by intranasal administration, may be key factors that 
determine superior vaccine induced protection. Though further 
definition of these pathways is needed to best inform vaccine 
strategies, we propose that they can ultimately be used to drive 
generation of increased immunity against respiratory viruses.
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