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NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense medi-
ated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by 
nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, 
differentiation, and survival. Non-canonical signaling mediated by nuclear translocation 
of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial 
for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize 
important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate 
these mechanisms to autoimmune phenotypes described in what is now a substantial 
catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. 
Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB muta-
tions, and speculate on implications for understanding sporadic autoimmune disease.
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iNTRODUCTiON

NF-κB is family of proteins that mediate transcriptional regulation crucial to many biological 
functions (1). NF-κB was discovered and named for its action in regulating κ light chain expres-
sion in B cells. Remarkably, however, as elucidation of Drosophila immunity has demonstrated, 
NF-κB and its orthologs are highly conserved regulators of signaling and transcription crucial for 
cellular and humoral host defense even in orga nisms that lack adaptive immunity (2). In mam-
mals, the actions of NF-κB are complex and extensive, and encompass activation, proliferation 
in cells of the innate and adaptive immune system, and organogenesis of lymphoid tissue and its 
microarchitecture (3–5).

Under normal circumstances, NF-κB proteins are latent in the cytoplasm, poised for rapid 
responses after their inhibition is temporarily removed. Uninhibited NF-κB molecules then shuttle 
between nucleus and cytoplasm as transcriptionally active homo- and heterodimers (Figure 1). In 
addition to this fundamental inhibitory constraint, many other negative regulatory loops exist to 
either prevent, dampen, or terminate NF-κB signaling, including sequestration in multi-molecular 
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mediator; CBM, CARD/BCL-10/MALT1 complex; cTEC, cortical thymic epithelial cell; DC, dendritic cell; DUB, deubiquit-
inase; EAE, experimental autoimmune encephalomyelitis; ENU, N-ethyl-N-nitrosourea; Ep-CAM, epithelial cellular adhesion 
molecule; GC, germinal center; IκB, inhibitor of kappa B; IKK, inhibitor of kappa B kinase; LPS, lipopolysaccharide; mTEC, 
medullary thymic epithelial cell; MZ, marginal zone; NEMO, NF-κB essential modulator; NF-κB, nuclear factor kappa-light-
chain-enhancer of activated B cells; NIK, NF-κB-inducing kinase; nTreg, natural regulatory T cell; RANK, receptor activator of 
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antigens; UEA-1, Ulex europaeus agglutinin 1.
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FiGURe 1 | Activation of canonical and non-canonical NF-κB signaling pathways through membrane-bound extracellular ligands. TNFR and toll-like receptor (TLR) 
family members, as well as antigen receptors activate the canonical pathway; and regulation of B cell activating factor receptor (BAFFR), CD40, OX40, LTβR, and 
receptor activator of nuclear factor kappa-B (RANK) activate the non-canonical pathway. Triggering of canonical pathway results in activation of p50/p65 (RelA), 
while the non-canonical pathway signaling leads to activation of p52/RelB complexes. Both pathways require phosphorylation and activation of inhibitor of kappa B 
kinase (IKK) subunit(s) in order to release NF-κB molecules that are sequestered by an inhibitor, e.g., IκBα or p100. Phosphorylation and ubiquitination of the 
inhibitors by IKKs release NF-κB that translocate into nucleus in the forms of homodimers or heterodimers complexes and bind to the κB site of their target genes.
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complexes, posttranscriptional regulation, and posttranslational 
modifications of proteins by phosphorylation and ubiquitination 
(of various forms). Furthermore, many components of NF-κB, 
including both positive and negative regulators, are under tran-
scriptional regulation by NF-κB itself.

Despite this complex regulatory network, specific defects in 
individual molecules within the NF-κB pathway have been shown 
to disrupt cellular homeostasis, and immune pathology is an 
important consequence (1, 6). In this review, we will concentrate 
on how NF-κB contributes to immunological self-tolerance, and 
how defects in NF-κB contribute to autoimmune disease. Defects 
in NF-κB have also been shown to cause immune deficiency and 
autoinflammatory diseases, and somatic mutations are frequent 
drivers of lymphoid malignancy, for which authoritative reviews 
are available (7, 8). As will be discussed here, however, it is notable 
that in some cases, a single mutation confers both autoimmunity 
and immune deficiency, reflecting the complex regulatory actions 
of NF-κB.

OUTLiNe OF NORMAL NF-κB SiGNALiNG

The NF-κB family of transcription factors form hetero- and 
homodimers that regulate transcription by binding to a palin-
dromic DNA sequence, κB (1), located within promoters and 
enhancers of a large number of genes (9, 10). In vertebrates, there 
are five NF-κB family members, RelA, c-rel, RelB, NF-κB1, and 
NF-κB2. N-terminal Rel-homology domains (RHD, from v-Rel, 
reticuloendotheliosis viral oncogene homolog) are common to 
all and mediate κB binding and interactions with other proteins, 
including inhibitor of kappa B (IκB) (see below) (10–12).

NF-κB proteins are classified in two groups according to 
structure and function. p105 (NF-κB1) and p100 (NF-κB2) are 
precursor proteins that undergo partial proteolysis to remove 
their C-terminal ankyrin repeats, yielding p50 and p52, respec-
tively. p50 and p52 lack transactivation domains (TAD) unless 
heterodimerized with Rel or coactivator non-Rel proteins (13). 
By contrast, RelA (p65), RelB, and c-Rel are active in the absence 
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of proteolysis because they contain TAD that positively regulate 
expression of target genes (14, 15).

Differences in transcriptional activity of NF-κB dimers helps 
explain the plasticity of responses to both quantitative and quali-
tative variation in cell stimulation (16). p50/65 heterodimers 
are near ubiquitous, and positively regulate NF-κB target genes 
(10). By contrast p50 homodimers repress TNF-α transcription 
in response to lipopolysaccharide (LPS) (17–19). Homodimers 
of p50 are abundant in resting T  cells, but their expression is 
reduced after antigenic receptor ligation (20), when p50/p65 
become abundant in cell nuclei, reversing the NF-κB-dependent 
suppression of the target genes, i.e., IL-2 or IL-6 and iNOS in 
response to LPS (21). RelB does not homodimerise, but confers 
transcriptional activity when complexed with p52 or p50 (22). 
RelB constitutively localizes to the nucleus, but binding may 
be inhibited by association with p100 (23–25). Under some 
circumstances, RelB represses NF-κB activity by forming RelA/
RelB heterodimers that fail to bind DNA and sequesters RelA (9, 
26, 27). Similarly to RelB, c-Rel is expressed in lymphoid tissues, 
and both c-Rel homodimers and c-Rel/p50 heterodimers are 
detected predominantly in hematopoietic cells. c-Rel homodi-
mers and c-Rel/p65 are essential for B and T cells survival and 
effector cell function (28–30).

ACTivATiON OF NF-κB iN iMMUNiTY

In the absence of specific signals, NF-κB is maintained in latent 
form bound to IκB in the cytoplasm. The IκB family includes 
IκBα, IκBβ, IκBε, BCL-3, IκBζ, IκBNS, as well as unprocessed 
p100 and p105, which are all characterized by multiple ankyrin 
repeats (31). In addition to their IκB function, so-called atypical 
IκBs (IκBζ, IκB-NS, and Bcl-3) have intrinsic nuclear localization 
propensity where they bind preferentially to p50 (Bcl-3, IκBζ) 
and p52 (Bcl-3), which under different conditions can either 
promote or terminate NF-κB binding to DNA (32, 33). This 
mechanism has been well characterized for Bcl-3, which has a 
TAD and can act as a coactivator when associated with p50 or p52 
homodimers (34, 35), or by facilitating replacement of transcrip-
tionally inactive p50 homodimers with transcriptionally active 
heterodimers (36, 37). On the other hand, Bcl-3 can also function 
as a repressor by stabilizing p50 homodimers on κB site of the 
target genes. For example, Bcl-3 has been reported to mediate LPS 
tolerance in macrophages by stabilizing p50 homodimer on the 
TNF promoter (38–40).

NF-κB members are liberated by the action of the IκB kinase 
complex [IKKα, IKKβ and NF-κB essential modulator (NEMO), 
encoded by IKBKA, IKBKB and IKBKG], which leads to tempo-
rary degradation of IκBs (Figure 1). IKKγ (NEMO) is a regula-
tory subunit that does not have intrinsic catalytic activity but is 
important for kinase activation of IKKα and IKKβ (41). IKKα 
and IKKβ are serine/threonine kinases that share an N-terminal 
kinase domain and are responsible for phosphorylating several 
members of the IκB family (42, 43). Serine phosphorylation of 
IKKα and IKKβ [serines 177 and 181 for IKKβ; serines 176 and 
180 for IKKα (44, 45)] results in conformational change and 
kinase activation. Activated IKKβ operates within the inhibitor 
of kappa B kinase (IKK) complex to phosphorylate IκBα, leading 

to K48-linked ubiquitination and proteosomal degradation, 
which releases NF-κB factors for nuclear translocation (46, 47). 
Loss of IKKβ results in significant reduction of NF-κB activity in 
response to TNF-α and IL-1α, a defect that cannot be completely 
compensated for by IKKα. As result, Ikbkb deficiency confers a 
mouse phenotype similar to Rela deficiency (48, 49) (Table 1).

CANONiCAL PATHwAY STiMULi

The canonical NF-κB pathway includes NFκB1 (p105), RelA 
(p65), and c-Rel and is activated by many ligands, including 
those that engage members of the tumor necrosis factor receptor 
superfamily, toll-like receptors (TLR), interleukin 1 receptor, and 
T and B  cell antigen receptors (Figure  1). Different receptor-
proximal signaling cascades connect these receptors to the IKK 
complex. TLR ligation activates a complex composed of TAK1, 
TAB 1, TAB 2, which phosphorylates IKKβ (106, 107). Activation 
of TNF receptor leads to interaction of series of adaptor proteins 
that contains TRAF-binding domains (108, 109). TRAF2 recruits 
the E3 ubiquitin ligases, cIAP1/2, which are necessary for IKK 
activation via recruitment of linear ubiquitination assembly 
complex (LUBAC) (directly) and TAK1 (indirectly) (110, 111). 
Ligation of B and T cell antigen receptors leads to phosphoryla-
tion of CARD11 by protein kinase C and assembly of the CARD/
BCL-10/MALT1 (CBM) complex.

MODiFiCATiON OF CANONiCAL 
SiGNALiNG

Posttranslational regulation by ubiquitination is crucial for 
NF-κB regulation. A series of ubiquitinating and deubiquitinat-
ing enzymes are known that both activate and modify NF-κB 
transcriptional regulation (112). The best characterized negative 
regulators of NF-κB are deubiquitinase (DUB) A20 (encoded by 
TNFAIP3), CYLD, and OTULIN (113–116).

TNFAIP3 is upregulated in response to TNF receptor and 
TLR ligation, and A20 negatively controls NF-κB-dependent 
gene expression (Figure 1) (117). A20 removes or modifies K63 
polyubiquitin from several substrates within NF-κB signaling, 
including TRAF6, NEMO, MALT1, and TNFR1 (118–120). In 
addition to its deubiquitin domain in the N-terminus, A20 also 
contains seven zinc finger domains in the C-terminus with E3 
ligase functions, enabling ubiquitin-editing. Thus, A20 replaces 
K63- with K48-polyubiquitin chains of RIPK1, flagging it for 
proteasomal degradation (99, 113). The importance of A20 in 
modifying NF-κB activity and immune responses was confirmed 
in A20-deficient mice that developed profound inflammation and 
cachexia, and died prematurely (117) (Table 1), and cell-specific 
deletion of A20 in myeloid cells, dendritic cells (DCs) or B cells, 
results in autoimmune phenotypes including polyarthritis and 
enteritis (Table 1) (121–124). Loss of catalytic activity might not 
account for this pro-inflammatory action, however, as specific 
introduction of a deubiquitination domain inactivating mutation 
resulted in a much less prominent inflammatory phenotype (125).

NF-κB is also modified by addition of methionine (M)1-
linked linear ubiquitin chains by the LUBAC that consists of 
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TABLe 1 | Summary of autoimmune phenotypes in mice with genetic manipulation of NF-κB.

Gene Protein Mutation B cell phenotype Regulatory T cell (Treg) phenotype Autoimmunity or inflammation Reference

Map3k7 TAK1 Conditional deletion 
(T cell)

Treg deficient Severe late colitis (50)

Conditional deletion 
(Tregs)

Peripheral Treg deficient Mild autoimmunity, splenomegaly and lymphadenopathy, 
renal hemorrhage

(51)

Deletion Reduced B cells Reduced T cells Liver failure, ascites, jaundice (52)

Card11 CARD11 L298Q [N-ethyl-N-
nitrosourea (ENU)]

Absent B1 cells, abnormal B cell 
maturation, defective B cell responses

Treg deficient Dermatitis with mast cell and eosinophil infiltrates. 
Concomitant defect in Tregs and conventional T cells

(53, 54)

L525Q (ENU) B1 cell deficiency, impaired B cell 
proliferation

Thymic Treg deficiency, reduced peripheral 
Tregs

Late onset dermatitis (55)

Deletion Natural regulatory T cell deficiency, Treg 
precursor deficiency

No autoimmune due to concomitant defect in T cell 
function

(56)

Malt1 MALT1 C472A Impaired B1 and marginal zone (MZ) B cells 
development

Defect in thymic Tregs with reduction in 
peripheral Tregs

Spontaneous autoimmune gastritis (57)

Deletion Impaired follicular, B1, and MZ B cells 
development

Defect in thymic Tregs with reduced 
peripheral Tregs

Resistance to experimental autoimmune encephalomyelitis 
(EAE)

(58–60)

Bcl10 Bcl-10 Deletion Defect in follicular, B1, and MZ B cell Treg deficiency Increased susceptibility to bacterial sepsis (61–63)

Ikbka IKKα Conditional deletion (CD4) Treg reduction Increased susceptibility to colitis (64)

Deletion Severe skin and skeletal abnormalities (65, 66)

Ikbkb IKKβ Conditional deletion 
(T cell)

Defect in memory B cells and reduced 
germinal center (GC) B cells

Treg deficient No autoimmunity or inflammation (67)

Ikbkg IKKϒ Conditional deletion Treg deficiency Skin inflammation, epidermal granulocytic infiltration, liver 
apoptosis

(67, 68)

Map3k14 NF-κB-
inducing 
kinase

G855R (aly) Reduced B cells, defective GC formation Treg deficiency Spontaneous inflammation (69–72)

Deletion Treg deficiency Multi-organ inflammation (73)

Nfkbia IKBα Conditional altered κB 
enhancer

Defect in T cell development and activation; 
low naive T cell, high memory T cells; Treg 
defect independent of IKBa-mediated 
feedback regulation of NF-κB

Sjogren’s syndrome (74)

Deletion Anemia; thymic atrophy; small spleen and liver (75)

Nfkb1 p50 Deletion Defect in terminal B cell differentiation, 
mature B cell apoptosis, reduced 
transitional and MZ B cells

Sepsis in response to selective pathogens; chronic 
inflammation; premature aging and premature death

(76–80)

Deletion Defect in T1 to T2 transition, and in MZ 
B cells; reduced GC B cells in young mice, 
absent GC structure

Lymphoproliferative disease and multi-organ autoimmunity (81)

Nfkb2 p52 Deletion Defect in follicular MZ and MZ B cells; 
impaired GC formation

(82, 83)

(Continued)
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Gene Protein Mutation B cell phenotype Regulatory T cell (Treg) phenotype Autoimmunity or inflammation Reference

Rela RelA Conditional deletion (Treg) Reduced Treg precursors, decreased Tregs 
with impaired function

Severe multi-organ inflammation, lymphoproliferation (84, 85)

Relb RelB Deletion Defect GC formation Mild T cell depletion in spleen and lymph 
nodes

Multi-organ inflammation (86, 87)

Rel c-Rel Conditional deletion (Treg) Reduced Treg precursors, decreased Tregs 
with impaired function

Late onset mild inflammation (85, 88)

Deletion Defect B cell proliferation Defect T cell proliferation (28)

Bcl-3 Bcl-3 Conditional deletion 
(T cell)

Impaired Th1 differentiation, fewer 
pathogenic Th17-like cells

Resistance to colitis and EAE (89)

Deletion Increased MZ B cells, reduced follicular 
transitional B cells, defect GC formation

Susceptibility to T. gondii, multi-organ inflammation (90, 91)

Nfkbid IKBNS Deletion Treg deficiency Resistance to Th17-dependent EAE (92, 93)

Nfkbiz IKBƺ Deletion No effect on Treg, Impaired CD4 T cells and 
Th17 development

Resistance to TNFα- IL-17A- inducible psoriasis like skin 
inflammation, atopic dermatitis, resistance to EAE

(94, 95) (96)

Otulin OTULIN Conditional deletion 
(myeloid)

B cell hyperactivity Autoimmunity, multi-organ inflammation (97)

Conditional deletion 
(immune cells)

Multi-organ inflammation (97)

Tnfaip3 A20 Conditional deletion 
(B cells)

Increased B cell proliferation and activation, 
defect MZ B and B1 cells differentiation 

Treg expansion Autoimmunity (98)

Conditional deletion 
(dendrite cells)

Increased B cell activation and 
differentiation

Increased T cell activation and expansion SLE-like phenotype; IBD-like phenotype (99, 100)

Cyld CYLD Deletion Increased MZ B cells in aged mice Defect T cell development, hyper responsive 
to anti-CD3, -CD28

Spontaneous intestinal inflammation (101–103)

CYLDx7/8 naturally 
overexpressed

Increased mature B cell, enhanced B cells 
survival

Enhanced Treg, defect Treg function and 
survival

Large spleen and lymph nodes (104, 105)

TABLe 1 | Continued
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HOIL-1L (RBCK1), HOIP (RNF31), and SHARPIN (112). 
LUBAC promotes canonical signaling in part through direct 
binding of the E3 ligase activity of the ring domains of HOIP 
to drive linear ubiquitination of NEMO and RIP1 (126), which 
promotes IKKβ phosphorylation and activation through TAK1 
(107, 127, 128). CYLD modifies canonical signaling by removing 
K63 and M1-polyubiquitin chains from NF-κB signaling proteins, 
including TRAF2, TRADD, NEMO, and TAK1 (Figure 1). CYLD 
appears to be particularly important in promoting necroptosis via 
RIPK1. CYLD deficiency results in several non-immunological 
phenotypes, but also inflammatory bowel disease, defects in 
thymic medullary epithelial cells (see below), and increased B cell 
activity (Table  1) (105, 129). OTULIN specifically hydrolyzes 
M1-polyubiquitins. In mice, germline deficiency of Otulin is 
lethal, but conditional myeloid deficiency results in profound 
sterile inflammation (Table 1) (97). Interestingly, after caspase-
mediated cleavage during apoptosis, the N-terminal fragment of 
HOIP also binds to the DUBs OTULIN and CYLD, which are 
down-regulators of LUBAC-mediated ubiquitination, providing 
a further regulatory feedback loop (130).

NON-CANONiCAL SiGNALiNG

NFκB2 (p100) and RelB participate in the non-canonical NF-κB 
pathway (Figure  1). Unlike the canonical pathway, which is 
poised for rapid response, the non-canonical pathway depends 
on constant protein synthesis (131). This might explain the 
preferential action of the non-canonical pathway in cellular 
homeostasis and organogenesis, whereas the canonical pathway 
mediates acute inflammatory responses and immune activation.

Non-canonical NF-κB activation is stimulated by a relatively 
small number of ligands, including lymphotoxin, CD40, B  cell 
activating factor (BAFF), and receptor activator of NF-κB 
(RANK). In resting cells, TRAF2 mediates ubiquitination of 
NF-κB-inducing kinase (NIK) in association with TRAF3 and 
cIAP1/2. NIK is maintained in limiting concentrations by rapid 
degradation after phosphorylation by TRAF6, but after receptor 
ligation, TRAF2-induced proteolysis and degradation of TRAF3 
and TRAF6 leads to NIK accumulation, which phosphorylates 
IKKα (132, 133). pIKKα is crucial for phosphorylation of p100, 
leading to proteosomal processing to p52 (134–140).

Non-canonical signaling activates complex regulatory loops 
because p100 exerts IκB activity by associating with p52, p65 
(RelA), c-Rel, and RelB. Interestingly, and by contrast with the 
IκB activity of the canonical counterpart p105, p52 is formed from 
recently synthesized p100. Elegant experiments have revealed 
that the balance between p100 activation and NIK degradation 
is maintained within a kappaBsome, which is a complex of NIK-
IKKα-p100 and RelB. Almost all p100 is maintained within the 
kappaBsome, since free cytoplasmic p100 undergoes complete 
degradation, whereas processing from within the kappaBsome 
yields p52 (141). RelB promotes formation of the kappaBsome, 
and competes with IKKα–NIK complexes to inhibit p100 activa-
tion and processing. In addition to promoting p100 processing, 
IKKα serves to limit activity and abundance of NIK within the 
complex, and p100 inhibits NIK degradation. RelB dimerizes 
with both p52 and p100 in the complex to permit the proper 

processing of p100. In the absence of RelB, p100 undergoes 
complete degradation (141, 142).

TRANSCRiPTiONAL ReGULATiON  
BY NF-κB

NF-κB lacks the enzymatic activity to directly regulate transcrip-
tional responses, and this is achieved through binding to transcrip-
tional co-regulators including histone acetyltransferases (HATs) 
and histone deacetylases (HDACs). For instance, acetylation of 
p65 at different lysines by HATs (and the associated binding pro-
teins) promotes its activity, while the co-repressor, HDACs, can 
deacetylate important sites on p65 and reverse the effect (143). 
NF-κB recruit these co-regulators to the enhancer region of the 
target genes, leading to conformational changes in chromatin to 
make genes accessible for transcriptional machinery (143–145).

Binding to HATs is also controlled partially by posttranscrip-
tional modifications (PTMs). For example, kinases including 
PKA, MSK1, and MSK2 phosphorylate p65 at Serine 276, which 
is crucial for the interaction of p65 with HATs (21, 26, 146, 147). 
Interestingly, this amino acid substitution only affects expres-
sion of a subset of the genes, which suggests other PTMs might 
contribute to p65-dependent chromatin remodeling (148). One 
example is Akirin2, which binds to HATs and IκBζ and facilitates 
recruitment of other co-regulators to p50 (149).

NF-κB AND SeLF-TOLeRANCe

Canonical and non-canonical NF-κB pathways are crucial for 
T and B  cell activation, regulation of inflammatory effector 
responses, antigen presentation and regulation of tissue-specific 
cellular targets of immunity. We will concentrate our attention on 
mechanisms that regulate lymphocyte self-tolerance, since these 
are most relevant to autoimmunity. These actions can be divided 
into those that act intrinsically within lymphocytes, and those 
that are mediated by lymphocyte extrinsic actions, particularly 
for thymic selection.

THYMiC DeveLOPMeNT

The thymus is derived from the endoderm of the third pharyngeal 
pouch. Mature thymic epithelium is made up of cortical thymic 
epithelial cells (cTEC) and medullary thymic epithelial cells 
(mTEC). Unlike other epithelia, thymic epithelium lacks apical 
polarity, and cells are dispersed in a three-dimensional reticular 
meshwork (150). The two best understood mechanisms of central 
T cell tolerance are negative selection of self-reactive conventional 
T cells (Tconv), and selection of regulatory T cells (Tregs). Both 
mechanisms depend on maturation of mTECs, and expression of 
autoimmune regulator (Aire), which in turn regulates expression 
of tissue specific antigens (TSA) (151–153).

Both mTECs and cTECs have been postulated to arise from 
CD205+ β5t+ and CD45− bipotential precursors (154). SSEA-1+ 
Claudin3/4+ expression identifies a self-renewing population of 
CD80lo MHCIIlo mTEC precursors (155), which exhibit some 
epithelial stem cells characteristics. cTECs are characterized by 
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epithelial cellular adhesion molecule (Ep-CAM) β5t, CD205, 
and Ly51 expression (156). Mature mTECs are UAE-1+ Ly51−, 
MHCIIhi, CD80hi, CD40+, and express Aire. mTECs are respon-
sible for maintenance of T  cell tolerance via negative selection 
of αβ T cells (157, 158), and positive selection of FOXP3+ Tregs, 
by virtue of promiscuous expression of tissue specific antigens 
(TSA) (154, 159, 160). Terminally differentiated mTECs (which 
form Hassall’s corpuscles) are marked by loss of AIRE, MHCII, 
and CD80, acquisition of desmogleins 1 and 3, and of involucrin, 
a global marker of epithelial terminal differentiation (161).

NF-κB AND DeveLOPMeNT OF  
THYMiC ePiTHeLiUM

Thymus development depends on an unusual hematopoietic–
epithelial interplay between epithelial cell precursors and nascent 
lymphocytes (162). Interestingly, lymphocytes exert a similar 
influence on development of the specialized epithelium overlay-
ing Peyer’s patches (M cells) (163). In both thymus and Peyer’s 
patches, epithelial development is at least partially dependent 
on NF-κB activation by RANKL and other ligands, delivered by 
lymphocytes (164–166). Selection of developing T cells depends 
on lymphocyte–epithelial interactions within the thymus, and 
interactions between immature T  cells and thymic epithelium 
regulates T cell development by negative selection of self-reactive 
Tconv, and positive selection of regulatory Tregs (157, 161, 167).

Signaling via the non-canonical NF-κB pathway appears to 
regulate mTEC maturation and the size of the mTEC compartment, 
but not necessarily specification of the mTEC lineage. This action 
hinges on NF-κB activation by ligation of TNF receptor super-
family members RANK, CD40, and LTβR (86, 166, 168). Single 
positive thymocytes, γδ T cells, invariant NK cells, and lymphoid 
tissue inducer cells are all sources of RANKL and CD40L (165, 
166). Fate-mapping studies have provided more information on 
the sequential actions of non-canonical stimuli for development 
and maintenance of mTECs. Thus, RANK operates after mTEC 
precursors have differentiated and coincides with onset of RelB 
expression (169). RelB appears to act cell-intrinsically to deter-
mine mTEC numbers (86, 168), while RelB expression mediates 
the non-canonical pathway, it is also modified by RelA and c-Rel, 
and therefore, mTEC development can be influenced by canoni-
cal NF-κB signaling (170). Late mTEC differentiation is also 
disrupted by altered CYLD function, suggesting that regulation of 
RANK signaling via TRAF6 deubiqutination might be important 
during late mTEC development (171), possibly by regulating RelB 
induction by the canonical NF-κB pathway.

As well as RelB deficiency, deficiencies of NIK, IKKα, LTβR, 
NF-κB2 (p100), and Bcl-3 result in mTEC deficiencies of varying 
severity (172–174). Interestingly, the thymic defect observed 
with Nfkb2 deficiency is less marked than that observed with 
Relb deficiency (175). mTEC-specific deletion of LTβR results in 
disordered thymic architecture, but not altered negative selection, 
although negative selection is defective when LTβR is deleted from 
thymic DCs (159). Indeed, distinguishing the actions of defects 
in mTECs from those in DCs requires construction of chimeras 
in which the mutation is confined to either hematopoietic or 

stromal compartments, which has not yet been performed for all 
mutations.

Bcl-3 action appears to be redundant with NF-κB2 for mTEC 
development (176). Thus, mice doubly deficient for Bcl3 and Nfkb2 
lack mTECs, thymic Aire expression, and some thymic DCs, and 
they develop severe organ-specific autoimmunity. NIK is crucial 
for non-canonical NF-κB activation, but the mechanism of Bcl-3 
is less obvious. While Bcl-3 is an atypical IκB, it does not regulate 
RelA or c-Rel. Uncertainties regarding the mechanism of Bcl-3 
notwithstanding, there is solid empirical evidence for a crucial 
cell-intrinsic action of non-canonical signaling for maintaining 
mTECs, and for central T cell tolerance. In addition, several find-
ings suggest that these actions are modified by regulation of RelB 
expression and activation via the canonical pathway.

NF-κB DeFeCTS CONFeR 
SUSCePTiBiLiTY TO TiSSUe-SPeCiFiC 
AUTOiMMUNiTY

Deficiency of Aire leads to widespread tissue-specific inflam-
mation in man and mouse as a result of impaired expression 
of TSA by mTECs (158, 177, 178). This discovery represented 
a landmark in autoimmunity research, providing empirical 
evidence that negative selection mediated by antigen expres-
sion in mTECs is a bulwark against autoimmune disease (160). 
NF-κB signaling is important for Aire expression independently 
of mTEC development and homeostasis. The conserved non-
coding sequence 1 (CNS1) located 3′ to the Aire transcription 
start site is an Aire enhancer, and contains two NF-κB-binding 
motifs, one with a preference for RelA and c-Rel, and the other 
for RelB (179, 180). There is compelling evidence for the inter-
action of RelA with CNS1, implicating the canonical NF-κB 
pathway in Aire expression. CD40 and RANK ligation appears 
to be important for Aire induction by NF-κB, whereas Aire 
expression is independent of LTβR (181).

More recently, FEZF2 was also identified as a transcriptional 
regulator of TSA expression in mTECs. NF-κB has been implicated 
in Fezf2 expression, although the relative importance of LTβR 
and RANKL remains controversial (159, 182). Fezf2 deficiency 
results in a pattern of organ-specific autoimmunity targeted at 
lung, kidney, liver, and intestine, but not retina or pancreas, which 
is observed in Aire deficiency (182). PRDM1 is the most recent 
addition to transcriptional regulators of TSA in mTECs, and 
while the regulation of expression PRDM1 in mTECs is unclear, 
it is known to be induced by RANKL-mediated NF-κB signaling 
in other tissues (183, 184).

As might be predicted from its crucial action on mTECs, 
Relb deficiency results in multi-organ inflammation, indicating 
that non-canonical signaling acting to regulate mTEC develop-
ment is crucial for maintaining self-tolerance and prevention 
of organ-specific autoimmunity (86, 168). The autoimmune 
phenotypes of Relb mutants and related strains are summarized 
in Table 1. The severity of the autoimmune phenotype conferred 
by Relb deficiency may reflect its importance not only for mTEC 
development but also on Aire expression. Mice deficient in NIK 
(Map3k14−/−) also develop autoimmunity, providing additional 
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evidence that the non-canonical pathway regulates self-tolerance 
(70, 71). Similarly, autoimmune phenotypes have been induced 
by deletion of CD40L, RANKL, or LTβR, the ligands crucial for 
inducing non-canonical signaling for mTEC maturation and 
maintenance (166, 185, 186).

Mice rendered deficient in Nfkb2 also display modest defects 
in central tolerance and an autoimmune phenotype of inflam-
matory infiltrates in lungs, liver, kidneys, and pancreas, together 
with autoantibodies, thus resembling the phenotype of Aire 
deficiency (175). In this case, reciprocal bone marrow chimeras 
confirmed the defect was in the radio-resistant stroma, and 
further analysis revealed a numerical defect in Ep-Cam+ (G8.8) 
and Ulex europaeus agglutinin 1+ mTECs, a cell-for-cell defect 
in LTβR-induction of Aire, and a reduction in expression of 
Aire-dependent TSA. No numerical or functional Treg defect 
was observed. Interestingly, and by contrast with complete 
NF-κB2 deficiency, specific deficiency of p52 conferred only a 
T-cell dependent antibody response with no overt autoimmune 
phenotype (83, 187, 188).

NF-κB AND Treg SeLeCTiON

NF-κB appears to be important for maintaining Treg function 
via mTEC development, thymic dendritic cell development, and 
T-cell-intrinsic actions (Table 1). TCR ligation and co-stimula-
tion, particularly via CD28, activates the canonical NF-κB path-
way, which appears to be important for FoxP3 induction (189). 
Engagement of TCR and CD28 activates the CBM complex, via 
the upstream and mediators, TAK1 and PKCθ. Deficiency in each 
of these signaling components alone also results in Treg deficiency 
(54–56, 190, 191). Activation of the canonical pathway induces 
c-Rel, which binds the conserved non-coding sequence (CNS)-3 
enhancer of FoxP3 to promote its expression (192, 193). Thus, 
c-Rel deficiency results in a similar Treg deficiency, while Tregs 
are preserved in the face of p50 deficiency (88). Furthermore, 
constitutive activation of IKKβ appears to be sufficient to drive 
Treg development even in the absence of TCR ligation (194).

NF-κB, Treg HOMeOSTASiS AND 
SUSCePTiBiLiTY TO AUTOiMMUNiTY

Once selected, ongoing NF-κB signals appear to be necessary to 
maintain Tregs and prevent end-organ inflammation. Comparison 
with Tconv reveals that there is greater accumulation of canoni-
cal NF-κB components in nuclei of Tregs (84). CD28 signals are 
important for Treg homeostasis in the periphery. Disruption 
of CD80/86 with CTLA4Ig results in a loss of Tregs (195, 196). 
T cell-intrinsic defects in the canonical pathway do not, however, 
always result in autoimmunity or organ-specific inflammation, as 
Tconv also exhibit a defect in activation.

Resting Tregs are predominantly located in secondary lym-
phoid organs due to specific chemokine receptor expression, 
while activated Tregs migrate into sites of inflammation and are 
characterized by a greater array of suppressive functions, includ-
ing IL-10, Lag-3, TIGIT, CD73, and PD-1 expression (197). 
NF-κB also regulates Treg activation. Acquisition of the effector 

phenotype depends on TCR ligation (198). RelA appears to play 
a dominant role in maintaining effector Treg function in the 
periphery. Rela (p65) deletion is embryonic lethal, but recent evi-
dence from conditional deficiency indicates that p65 is crucial for 
maintaining Treg lineage stability and activity (Table 1) (84, 85).  
Treg-specific p65 deficiency confers a multi-organ inflammatory 
phenotype. c-Rel deficiency confers a less prominent inflamma-
tory phenotype (199). In addition to Treg homeostasis, canonical 
signaling appears to specify whether Tregs adopt either resting 
(CD62Lhi CD44lo) or activated/effector (CD62Llo CD44hi) phe-
notypes (200).

NF-κB CONTRiBUTeS TO B CeLL 
HOMeOSTASiS AND SeLF-TOLeRANCe

In mouse models, B cell survival depends on signals via BCR and 
BAFF (201–203), implicating signaling though canonical and 
non-canonical NF-κB pathways. Several mechanisms normally 
operate to eliminate autoreactive B cells (204). In the bone marrow, 
high affinity ligation by antigen results in receptor internalization, 
attenuation of NF-κB-mediated induction of Bcl-2, increased 
Bcl-2-interacting mediator (BIM), and reduced expression of 
regulation of B  cell activating factor receptor (BAFFR). V(D)J 
recombination continues by virtue of ongoing RAG1/2 expres-
sion resulting in receptor editing but if immature B cells remain 
autoreactive they undergo clonal deletion. Receptor editing is 
marked by enhanced canonical signaling (205).

Clonal anergy represents a third mechanism by which auto-
reactive B cells enter the periphery with diminished capacity for 
activation. B cell anergy is characterized by reduced BCR expres-
sion, which attenuates canonical NF-κB survival signals and 
BAFFR expression is reduced, while pro-apoptotic signals such as 
BIM continue (206). BAFFR signals predominantly through the 
non-canonical pathway, and enhances B cell survival via induc-
tion of Bcl-2, PIM2, and PKCδ (207, 208). These actions reduce 
the risk of activation and survival of autoreactive B cells. BAFF is 
normally available in limiting amounts, which regulates the size 
of the transitional B cell compartment, but also regulates survival 
of autoreactive anergic B  cells. Experimental manipulations 
demonstrate that excessive BAFF production results in improved 
survival of anergic B cells (206, 209).

RARe GeNeTiC vARiANTS OF NF-κB AND 
HUMAN AUTOiMMUNe DiSeASe

Rare single gene disorders provide important evidence to sup-
port mechanistic pathways of human disease. Mutations affecting 
NF-κB activation, and its proximal signaling pathways, have so 
far been implicated overwhelmingly in susceptibility to infection 
(i.e., primary immune deficiency diseases). For the most part, 
these are loss-of-function mutations arising from homozygous 
or biallelic mutations. An exception is gain-of-function (GoF) 
mutations in NFKBIA (IκBα), but since this is the fundamental 
negative regulator of canonical signaling, GoF reinforces lack of 
activation and, therefore, results in a clinical and cellular pheno-
type that resembles LoF mutations in IKKγ and IKKβ (210, 211).
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TABLe 2 | Mendelian defects in NF-κB pathway genes that confer syndromes including autoimmune manifestations.

Gene Protein inheritance B cell and ig phenotype Regulatory T cell (Treg) 
phenotype

Autoimmunity or inflammation Reference

NFKB1 p102/50 AD Hypogammaglobulinemia Reduced effector Tregs Arthritis, pneumonitis, enteritis, ITP (200, 212, 213)
NFKB2 p100/52 AD Variable B cell deficiency; 

hypogammaglobulinemia
Reduced Alopecia (214–216)

RELB RelB AR Memory B cell deficiency ND Arthritis, dermatitis (217)
MALT1 MALT1 AR Hypogammaglobulinemia Reduced Enteritis (218)
BCL10 BCL-10 AR Hypogammaglobulinemia Reduced Enteritis (219)
TNFAIP3 A20 AD Enteritis, dermatitis (220, 221)
OTULIN Otulin AR Enteritis, dermatitis (97)
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Several Mendelian human diseases nevertheless provide 
evidence that NF-κB protects against autoimmunity (Table  2). 
In other cases, NF-κB defects have been shown to cause auto-
inflammatory diseases, which also result in tissue-specific 
inflammatory responses, but are distinguished by the absence of 
evidence for adaptive immune responses to autoantigens.

Syndromes arising from heterozygous mutations in NFKB1 
include autoimmune manifestations of arthritis, lung inflam-
mation, gut inflammation, and immune-mediated thrombo-
cytopenic purpura (ITP). There appears to be considerable 
clinical and cellular heterogeneity and postulated incomplete 
penetrance (212). The same mutation can also lead to antibody 
deficiency (213). Interestingly, as noted above, recent evidence 
from mouse studies showed that canonical signaling via RelA 
is important for maintaining Tregs in the periphery. Consistent 
with this, patients with NFKB1 haploinsufficiency also show a 
defect in Tregs, with a diminution in effector Tregs (as judged 
by ICOS expression) (200).

NFKB2 mutations result in a syndrome of antibody defi-
ciency with variable B cell deficiencies (214–216). Patients with 
NFKB2 mutations exhibit other clinical features as well, includ-
ing defects of the anterior pituitary and alopecia. In at least some 
cases, the alopecia is reversible, consistent with alopecia areata. 
The fundamental defect in self-tolerance conferred by NFKB2 
mutations is yet to be resolved. Mouse models (outlined above) 
point to the possibility of a defect in central tolerance, and 
human NFKB2 defects have been shown to confer a reduction 
in circulating Tregs (214). Whether there is a causal association 
between this observation and end-organ pathology remains to 
be resolved.

RelB deficiency conferred by a rare homozygous nonsense 
mutation has been reported in a single patient with severe 
polyarthritis and inflammatory skin disease, as well as immune 
deficiency (217). Interestingly, this phenotype was associated 
with enhanced nuclear p65 translocation, but a defect in T cell 
activation and thymus biopsy was reported to show a defect in 
T cell production.

MALT1 and BCL-10 deficiencies both appear to result in 
an IPEX (immune dysregulation polyendocrinopathy, enter-
opathy, X-linked; OMIM 304790)-like syndrome, which was 
originally identified in young boys with FOXP3 deficiency and 
subsequently also observed with heterozygous mutations in 
CTLA4 and IL2RA (CD25) (222–225). Homozygous MALT1 
mutations result in a phenotype of primary antibody deficiency 

together with enteropathy and a reduction in Tregs (218). A 
similar phenotype of enteropathy and Treg deficiency has 
been observed with BCL10 deficiency (219). Again, the precise 
mechanism of action remains to be determined, although as 
noted above, CBM defects in mice are typically associated with 
Treg deficiency.

Several patients have been reported with a Mendelian syn-
dromes arising from haploinsufficiency of TNFAIP3 (220, 221). 
This autoinflammatory syndrome is reminiscent of Behcet’s 
disease, with manifestations, including aphthous ulceration, 
inflammatory bowel disease, and neutrophilic dermatoses. 
Bio chemical analysis confirmed increased canonical pathway 
activa tion, prolonged nuclear translocation of p65, and enhanced 
transcription of NF-κB-dependent genes, including IL6 and 
TNF. A similar autoinflammatory syndrome of panniculitis and 
dermatitis has been reported to arise from homozygous loss-of-
function OTULIN mutations affecting the catalytic OTU domain. 
These mutations result in increased ubiquitination of several 
NF-κB proteins, including NEMO and RIPK1 (97).

POLYGeNiC AUTOiMMUNiTY

The mechanisms explaining sporadic autoimmune disease 
remain poorly understood. Rare monogenic cases provide clues 
to pathogenic pathways that become dysregulated in more 
common versions of the disease, even if in any given individual 
these cellular and biochemical defects arise from more than one 
gene defect. Human AIRE mutations provide evidence for the 
importance of promiscuous thymic TSA expression in protect-
ing against organ-specific autoimmune disease (160, 177, 226). 
Interestingly, autosomal-dominant defects in AIRE have now 
been reported, raising the possibility of more prevalent single 
gene causes of autoimmunity (227).

Thymic hyperplasia and thymoma have been associated with 
some forms of organ-specific autoimmunity, most notably, myas-
thenia gravis (MG), an autoimmune disease of the muscle end-
plate. MG is characterized by muscle fatigability and weakness, is 
often associated with thymic hyperplasia or thymoma, together 
with defects in CD4+ T cell selection and intrathymic cytokine 
production. Thymectomy is sometimes curative (228). Certain 
common AIRE polymorphisms segregate with MG, particularly 
in early-onset cases (229).

While plausible, there is no empirical evidence that genetic 
variants affecting non-canonical NF-κB signaling segregate with 
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organ-specific autoimmune disease. The most consistent NF-κB 
genetic association with autoimmunity is TNFAIP3. Numerous 
coding and non-coding polymorphisms have been shown to 
segregate with autoimmune diseases, including lupus and organ-
specific autoimmune diseases (230–232). Polymorphisms of 
REL (c-Rel) have been shown to segregate with both psoriatic 
arthritis and rheumatoid arthritis, and altered expression has 
been noted in other autoimmune diseases (233–236). Common 
NFKB1 polymorphisms have been shown to segregate with sev-
eral autoimmune and inflammatory diseases (237–239). More 
recently, a polymorphism within the NFKB1 locus was shown 
to segregate with multiple sclerosis. Interestingly, MS patients 
were found to have increased levels of p65 (RelA) activation, and 
the disease associated polymorphism was found to be associated 
with increased expression of BCL-3, TNFAIP3, and CIAP1 (240). 
This represents important progress toward understanding how 
common variants in NF-κB might contribute to sporadic and 
more common autoimmune diseases, via pathways now well 
understood from investigations of animal models and patients 
with rare monogenic disease.

CONCLUSiON

NF-κB is well established as a regulator of innate and adaptive 
mechanisms of host defense, and specific genetic defects that 
confer immune deficiency confirm the importance of these 

mechanisms. As described here, there is also abundant evidence 
that NF-κB is crucial for maintaining immunological tolerance, 
as a result of its actions during thymic selection, both for negative 
selection of autoreactive T cells, and selection and maintenance of 
Tregs. The non-canonical NF-κB pathway appears to be particu-
larly important for normal mTec function; nevertheless, evidence 
has also emerged for a significant lymphocyte-intrinsic action of 
the canonical pathway for maintaining T cell tolerance. Further 
work is required to accomplish the challenging task of separat-
ing the actions of canonical and non-canonical components, 
cell-intrinsic versus cell extrinsic actions, actions on negative 
selection versus Treg defects. Finally, it is important to note that 
since NF-κB is crucial for Tconv function in the periphery, it is 
possible that defects in selection may be offset by defects in the 
Tconv compartment.
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