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Cryptococcal meningoencephalitis is responsible for upwards of 15% of HIV-related 
deaths worldwide and is currently the most common cause of non-viral meningitis in 
the US, affecting both previously healthy and people with immune suppression caused 
by cancer chemotherapy, transplantation, and biologic therapies. Despite a continued 
30–50% attributable mortality, recommended therapeutic strategies have remained 
largely unchanged since the 1950s. Recent murine models and human studies exam-
ining the role of the immune system in both susceptibility to the infection as well as 
host damage have begun to influence patient care decisions. The Damage Framework 
Response, originally proposed in 1999, was recently used to discuss dichotomous etiol-
ogies of host damage in cryptococcal disease. These include patients suffering microbi-
ological damage with low host immunity (especially those immunosuppressed with HIV) 
and those having low (live) microbiological burden but high immune-mediated damage 
(HIV-related immune reconstitution syndrome and non-HIV-related postinfectious inflam-
matory response syndrome). Cryptococcal disease in previously healthy hosts, albeit 
rare, has been known for a long time. Immunophenotyping and dendritic cell-T cell 
signaling studies on cerebral spinal fluid of these rare patients reveal immune capacity 
for recognition and T-cell activation pathways including increased levels of HLA-DR and 
CD56. However, despite effective T-cell signals, brain biopsy and autopsy specimens 
demonstrated an M2 alternative macrophage polarization and poor phagocytosis of 
fungal cells. These studies expand the paradigm for cryptococcal disease susceptibility 
to include a prominent role for immune-mediated damage and suggest a need for careful 
individual consideration of immune activation during therapy of cryptococcal disease in 
diverse hosts.
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inTRODUCTiOn

Cryptococcus is an opportunistic fungus, which most frequently presents as a pulmonary infection or 
meningoencephalitis. Cryptococcosis has a high impact on immunocompromised populations such 
as patients with HIV-AIDS and a wide array of non-HIV patients including those with hematopoietic 
malignancies, autoimmune diseases, or genetic immunodeficiency syndromes, as well as patients 
receiving immunosuppressive cancer-therapies, undergoing transplant conditioning, in combina-
tion with age-related immunosenescence (1–5). HIV-related cryptococcal meningitis (CM) is one 
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the most common causes of adult meningitis with an estimated 
223,100 cases and 181,100 deaths in 2014, globally (6, 7). In coun-
tries with access to optimal medical care, non-HIV CM accounts 
for at least 25% of all CM-related hospitalization and deaths and 
is currently the leading cause of non-viral meningitis in the U.S. 
(2, 8–10). Interestingly, there are rare reports that as much as 30% 
of non-HIV patients with cryptococcal infection were previously 
healthy with no known underlying condition (11).

Cryptococcus is a basidiomycete yeast with over 30 known 
species; however, the majority of human infections are caused 
by either Cryptococcus neoformans and Cryptococcus gattii.  
C. neoformans is the main source of infections in CM patients 
with CD4+ T-cell deficiency while C. gattii is a predominant 
species in the previously healthy (12, 13). C. neoformans and  
C. gattii both can both be found in the vicinity of a variety of 
trees, and C. neoformans can also be found in soils and bird feces 
(14). Although the life-cycle of Cryptococcus is not dependent on 
an animal host, C. neoformans has the potential to infect a wide 
range of warm- and cold-blooded species (15). Cryptococci are 
considered sapronotic due to their ability to cause an opportunis-
tic infection without coevolution of a host–parasite virulence (16) 
although molecular optimization of virulence has been noted in 
environmental strains after mammalian residence (17). Key to 
infecting such a wide-ranging host population is its adaptation 
to environmental conditions and defenses against innate plant 
defenses as well as phagocytic predators such as parasites and 
insects (18–21).

CRYPTOCOCCAL inFeCTiOn

Cryptococcal infection is believed to be transmitted by inhala-
tion of infective particles such as yeast cells and/or spores from 
an environmental source. It is believed that humans encounter 
the organism early in life, evident by the gradual increase of 
cryptococcal-specific antibodies in humans with age (22) and 
isolation of infective strain types from the country of origin in 
immigrant patients later presenting with HIV/AIDS-related CM 
(23). As most immunocompetent humans are asymptomatic and 
resolve the infection, there are limited observations as to the 
mechanism in which infection is cleared. Cryptococcus spp. has a 
unique repertoire of immune reactivity from other fungi because 
of distinguishing attributes such as a large polysaccharide capsule 
that limits exposure to immune dominant carbohydrate epitopes 
(20), immunomodulatory enzymes such as a phenol oxidizing 
and cytokine-inducing laccase (24), and a robust tolerance to low 
nutrient conditions such as within brain tissues (25, 26).

innATe ReCOGniTiOn

Although no single pattern recognition receptor (PRR) has been 
shown to be required for binding of Cryptococcus, it is hypoth-
esized that alveolar macrophages recognize Cryptococcus and ini-
tialize the immune response through multiple receptors such as 
Dectin-1, Mincle, mannose receptor, CD14, and toll-like receptors 
(TLRs) (Figure 1.1) (27–30). The role of AMs and phagocytosis is 
believed to be critical during early infection, as observed in vivo 
imaging studies and animal models demonstrating enhanced 

susceptibility after AM depletion (31, 32). The complexity of how 
PRRs impact the immune response to cryptococcal infection is 
still being studied as there may be redundancy among them. For 
example, TLRs 2, 4, and 9 individually appear to play only a minor 
role, although the use of agonists in  vitro enhances the proin-
flammatory responses by microglial cells to Cryptococcus (33). 
NOD-like receptor family pyrin domain containing 3 (NLRP3) 
is another cryptococcal recognizing PRR and has been shown in 
mice to be involved with leukocyte infiltration in the lung during 
infection (34). Interestingly, in vitro, NLRP3 activation appears to 
be inhibited by capsulated cryptococcal cells further suggesting 
that PRRs may have a more important role during early infection 
(35). Some PRRs have been linked to specific immune responses 
such as scavenger receptors B1 and SR-B3, which appear to be 
important for the induction of IL-1β (36). Macrophage recep-
tor with collagenous structure (MARCO) is also a scavenger 
receptor which plays a role in cellular recruitment to the lung, 
cytokine production, and pathogen uptake by mononuclear 
phagocytes during early stages of cryptococcal infection (37). 
However, during the adaptive phase of infection, mice deficient 
in MARCO have improved fungal clearance which is marker 
by a type-I skewed immune response. Although MARCO plays 
an important role initially during infection, it is believed that 
Cryptococcus is capable of exploiting MARCO to polarize toward 
a non-protective immune response (38). There are other recogni-
tion receptors such as scavenger receptor A (SR-A) that are also 
associated with poorer response to Cryptococcus. SR-A-deficient 
mice show enhanced fungal clearance, which was correlated with 
decreased production of IL-4 and IL-13 (39). This may be linked 
to the unique cell wall composition of C. neoformans compared 
to other fungi, which contains high levels of acetylated chitin and 
deacetylated chitosan polymers (40). Furthermore, the binding 
of PRRs will become hindered as the infectious propagule starts 
forming the polysaccharide capsule, thus, it is believed that the 
successful phagocytosis of Cryptococcus also requires antibody- 
or complement-type opsonins (41, 42).

iniTiATiOn OF THe iMMUne ReSPOnSe

Although recognition and phagocytosis are important in induc-
tion of the immune response to Cryptococcus, the processes and 
pathways involved in breaking down and clearing pathogens 
and their antigens are also critical steps to mounting an optimal 
immune response. One clinical study observed that in vitro mac-
rophage phagocytosis was directly correlated with clinical out-
come (43). This suggests that other factors including phagocyte 
polarization and lysosomal activity may also need to be regulated 
for successful clearance.

Unlike other intracellular pathogens such as Mycobacterium 
tuberculosis, cryptococci do not interfere with phagosome forma-
tion or maturation; however, they are capable of surviving within 
vesicles or escaping by phagosome permeabilization or vesicular 
release (44–47). C. neoformans is thus capable of using mac-
rophages as a host for immune evasion, and can escape through 
expulsion, lysis, or rupture due to excessive intracellular prolif-
eration (47, 48). Alveolar macrophages are required; however, to 
recruit monocytes and dendritic cells (DCs) primarily through 
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FiGURe 1 | Current model of the immune response to Cryptococcus in health and disease. In health (1) inhaled cryptococcal spores are recognized by alveolar 
macrophages through pattern recognition receptors (PRR). (2) This stimulates the macrophages to release CCL2 to recruit monocytes and dendritic cells (DCs) to 
the lung. (3) Recruited DCs are capable of breaking down cryptococcal lifeforms and present antigen to CD4+ T-cells. (4) Activated T helper 1 and Th17 T-cells 
secrete IFNγ, IL-6, IL-10, and granulocyte-macrophage colony stimulating factor (GM-CSF) to recruit and differentiate classical (M1) macrophages. (5) The exact 
mechanism of fungicidal activity by M1 macrophages against Cryptococcus is still unclear in humans; however, they are known to upregulate iNOS, CD80, and 
TLR4 as well as produce IL-1β, IL-8, and TNFα. (6) The cytokine and chemokine mileu organize the leukocytes to encapsulate and eliminate cryptococcal organisms 
within granulomas. The most common association with cryptococcal disease (7) is the absence or dysfunction of at least one aspect of the healthy immune 
response, which leads to uncontrolled fungal growth. (8) However, some patients develop a skewed hyper-immune response to the pathogen that causes 
inflammatory damage to the host tissue even with fungal clearance.

3

Elsegeiny et al. Immunology and Rational Approaches to Cryptococcal Infections

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 651

the production of macrophage chemotactic protein 1 (MCP1). 
In rats, MCP1 (also known as CCL2) and its receptor, CCR2, are 
essential for the recruitment of DCs, formation of granulomas, 
antigen presentation, and T-cell responses (Figure 1.2) (49, 50). 
Granulomas are a sign for control of infections and are composed 
of macrophages and giant multinucleated cells that contain 
cryptococcal cells, as well as CD4+ T-cells. These granulomas 
encompass the fungi and often resolve without additional medi-
cal assistance, but treatment with antifungal therapy or surgical 
removal of the lesions may expedite recovery. It has also been sug-
gested that cryptococci may also be able to latently persist within 
granulomas and macrophages without degradation (51, 52).  
In patients with HIV-related pulmonary cryptococcosis, multi-
nucleated giant cells are still present; however, the cryptococci are 
mainly extracellular and propagate within alveolar spaces (53). 
DCs are considered the primary antigen-presenting cell (APC) 
in the context of cryptococcal infection and have an advantage 
over macrophages in stimulating T-cell proliferation (54). 
Recruited DCs phagocytose cryptococcal bodies, which then 
are passaged through lysosomes to be degraded by both oxida-
tive and non-oxidative mechanisms (Figure  1.3) (54, 55). For 
example, cathepsin-B has a non-enzymatic role to fracture the 
cell wall through osmotic lysis. Degraded components are then 

loaded onto major histocompatibility complex class II to initiate 
the adaptive immune response through CD4+ T-cell stimulation 
(Figure 1.4) (56). Eosinophils from a rat model of cryptococcosis 
have also been demonstrated to have the ability to phagocytose 
cryptococci and prime of CD4+ and CD8+ T-cells, in vitro (57) 
although their role in human infections is less clear. Their ability 
to function as APCs is associated with a decrease in nitric oxide 
and hydrogen peroxide production, followed by migration to the 
lymphatic system (58). However, their involvement in priming 
the adaptive immune response is associated with increased fungal 
burden and lung pathology by skewing immunity toward a type-
II response (59, 60).

THe ADAPTive iMMUne ReSPOnSe

Involvement of the adaptive immune compartment is critical 
for control of a cryptococcal infection; however, it may also 
have a detrimental affect depending on the type of response. In 
draining lymphoid tissues, APCs carrying cryptococcal antigens 
stimulate several types of lymphocytes including CD4+ T cells, 
CD8+ T cells, and natural killer T cells. Once activated, CD4+ 
T-cells can further differentiate into unique effector subsets with 
distinctive cytokine profiles including: T helper 1 (Th1), Th2, and 
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Th17 cells. Cxcr5+ T follicular helper cells are also induced and 
primarily function to stimulate B cell maturation and antibody 
production, as well as activate inflammatory macrophages  
(61, 62). Th1 and Th17 cells are recognized by their production 
of IFNγ and IL-17, respectively, and both help mediate the reso-
lution of cryptococcal infection. On the other hand, Th2 cells, 
which are described as producers of IL-4, IL-5, and IL-13, are 
associated with more of a detrimental outcome such as increases 
in inflammation, worsened pathology, and increased risk of dis-
semination. In both humans and experimental murine models, 
deficiencies in type-II responses is linked with enhanced control 
of fungal burden and diminished eosinophilia, inflammation, 
airway damage, and dissemination (63, 64).

Interestingly, patients with HIV infection will gradually 
shift from a type-I to a type-II immune response profile, thus 
developing an increased vulnerability to cryptococcal infection 
(65). Profiling studies performed by Jarvis et al. on the cytokines 
and chemokines produced by stimulated peripheral blood 
mononuclear cells (PBMCs)-derived CD4+ T-cell as well as 
within cerebral spinal fluid (CSF) of patients with HIV-related 
CM have provided some immunological associations with 
survival (66, 67). Increased levels of IL-6, IL-8, IL-10, IL-17, 
IFN-γ, tumor necrosis factor (TNF), and CCL5 within the CSF 
correlated with high white cell counts, macrophage activation, 
reduced cryptococcal burden, and survival. A high proportion of 
IFN-γ and TNF double producing PBMC-derived CD4+ T-cells 
was also associated with survival (68). This study corroborates 
the critical importance of maintaining a Th1/Th17 profile in both 
cryptococcal pulmonary infection and meningoencephalitis. 
Most CM studies have been performed in the context of HIV 
patients and C. neoformans; however, little is known about the 
immune profile in patients with non-HIV CM, particularly those 
with C. gattii infection.

HUMORAL iMMUniTY TO Cryptococcus

As previously mentioned, serum antibodies to Cryptococcus can 
be detected in early life. However, immunocompromised patients 
at risk for cryptococcal infection appear to have a defect in anti-
body responses, such as loss of glucuronoxylomannan (GXM), a 
capsular component reactive B-cells, as well as overall lower levels 
of peripheral blood memory IgM B cells (69, 70). Lower serum 
GXM-IgM antibody levels in both HIV+ as well as HIV− solid 
organ transplant patients is also associated with increased risk 
for development of cryptococcosis (71–73). Antibody-mediated 
phagocytosis may be important as the increase in capsular size 
has been shown to reduce complement-mediated phagocytosis 
(74). Furthermore, murine studies have demonstrated that 
the murine equivalent of IgM memory B  cells, B-1 cells, can 
dampen fungal growth in  vitro and in  vivo, by inducing an 
earlier T-cell response, reducing dissemination, and enhancing 
macrophage phagocytosis (75–78). Additionally, adoptive trans-
fer of IgM-sufficient wild-type mouse serum into Rag1−/− mice 
demonstrated enhanced alveolar macrophage phagocytosis and a 
reduction in early dissemination compared to mice treated with 
IgM-deficient serum. The use of vaccines or antibody therapy to 

boost antifungal titers may thus provide protection against the 
development of cryptococcal disease (79–81).

CRYPTOCOCCAL eLiMinATiOn

The primary mechanism for pulmonary clearance is the forma-
tion and resolution of granulomas by macrophages. However, as 
previously mentioned, Cryptococcus is capable of surviving within 
resident alveolar macrophages, thus the macrophages required 
for clearance must be recruited and activated by CD4+ T-cell sig-
nals. Macrophages stimulated under Th1/Th17 or Th2 cytokine 
profiles become skewed toward either classical or alternative 
activation, respectively. Classically activated (M1) macrophages 
are primarily induced by IFNγ and lipopolysaccharide, while 
type-2 cytokines including IL-4 and IL-13 induce alternatively 
activated (M2) macrophages and function through production 
of proline and polyamines (82). M1 and M2 macrophages in vitro 
have demonstrated different outcomes during intracellular para-
sitism by C. neoformans with type-1/type-17 conditions having 
enhanced fungicidal activity (Figure  1.5) (83). Furthermore, 
STAT1-deficient mice, which are deficient in M1 macrophages 
due to an inability to generate a strong Th1 profile, have a defect 
in anti-cryptococcal activity, which correlated with a decrease in 
NO production (84). In the previously mentioned cohort of non-
HIV patients with CM, although there were intact Th1 signaling 
found in the CSF, autopsy results revealed an overrepresentation 
of M2 macrophages within central nervous system (CNS) tissues 
(85). Similarly, patients with granulocyte-macrophage colony 
stimulating factor (GM-CSF) autoantibodies are also at risk 
for CM and have an abundance of Th1 CD4+ T-cells, but also 
have a skewed M2 macrophage phenotype (86, 87). Activated 
M1 macrophages, with CD4+ T-cells, resolve the infection by 
entrapping and degrading the cryptococcal propagules through 
the formation of granulomas (Figure 1.6).

BRAin DiSSeMinATiOn

Uncontrolled cryptococcal infection will inevitably disseminate 
into the (CNS) leading to a life-threatening CM. There are cur-
rently three known methods of cryptococcal dissemination from 
the lung: (1) the disruption of blood vesicle integrity allowing 
passive transport into the blood stream, (2) intact endothelial 
cells may phagocytose the spores from the lung and expulse 
them into the blood stream, (3) macrophages may act as a Trojan 
Horse by transporting phagocytosed spores to the brain, and 
regurgitating the spores in a process known as vomocytosis. Both 
microbial and host factors have been identified to be involved 
in CNS invasion, including cryptococcal matrix metalloprotease, 
production of a urease enzyme (88), and increases in host brain 
inositol levels (89, 90).

nOn-Hiv FACTORS OF SUSCePTiBiLiTY

Over 1,000 cases of CM are reported to occur in previously 
healthy people in the U.S. annually. Studying this popula-
tion reveals unique vulnerability risks, including previously 
undiagnosed, rare immune-associated monogenic disorders or 
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autoimmune diseases. Patients with autoantibodies to (GM-CSF) 
and interferon-gamma (IFNγ) were recently demonstrated to 
be susceptible to CM, emphasizing the T-cell/monocyte signal-
ing pathway that is required for a successful immune response  
(86, 87, 91). Interestingly, poor macrophage function was also 
demonstrated in a cohort of clinically refractory patients by a lack 
of iNOS expression and intact M2-related CD200R1 expression 
using immunohistochemistry of infected brain tissue (85). Further 
studies also demonstrated defective CSF activated macrophage 
TNF-α secretion, which may explain a lack of symptomatology 
and diagnostic delays in non-HIV related CM.

Historically, the most common syndrome associated with risk 
for CM is an idiopathic CD4 lymphopenia (ICL) that presents 
as a non-HIV-associated reduction or loss of CD4+ T-cells. 
The tremendous impact of CM on AIDS patients makes the 
importance of CD4 T-cells self-evident. However, ICL is a very 
heterogeneous disorder that has been implicated as a serious 
risk factor (92, 93) but many patients with ICL remain healthy. 
Recently, the concept of a “two hit” hypothesis was advanced 
by the finding of two ICL patients with CM who had additional 
autoantibodies to GMCSF or an otherwise benign, but func-
tionally significant mutation in the IKBKG/NEMO gene, with 
reductions in NFKB T-cell signaling (94). Similarly, patients 
with monocytopenia, such as patients with a GATA2 deficiency, 
also have increased risk of developing CM (95–97). Monogenic 
disorders such as X-linked CD40L deficiency, chronic granu-
lomatous disease, and Job syndrome are also associated with 
susceptibility to CM (98–100). T-cell suppressing biological 
therapy such as natalizumab or fingolimod is also a risk factor 
(101, 102).

CRYPTOCOCCAL DiSeASe:  
A ReFLeCTiOn OF HOST AnD 
MiCROBiOLOGiCAL FACTORS

Recently, there has been a greater appreciation that host damage 
can occur from either the toxic products of an overwhelming 
microbial infection or a pathological inflammatory response 
to the invading pathogen (Figure 1.7 and Figure 1.8), recently 
termed the damage-framework response (103). Cryptococcal 
disease is a classic example of this phenomenon, often occur-
ring within the same patient during different stages of treatment 
(104, 105). For example, in the setting of HIV infection, clinical 
outcomes of primary therapy are related to clearance of the fun-
gus (106, 107). However, a paradoxical immune reconstitution 
syndrome can also be seen in these same patients whereby, in the 
setting of microbiological control, reconstitution of the immune 
system after initiation of antiretroviral therapy (ART) results in 
a pathological central nervous system inflammatory response 
(7, 108–110). HIV-related CM further exemplifies differences in 
disease at these polar extremes of immune response—a recent 
study of 90 HIV patients with cryptococcal disease found that 
high levels of Th1-related cytokines INF-gamma and IL-6 were 
predictive of 2-week initial survival when pathogen load was 
high; whereas, the development of symptomatic cIRIS was associ-
ated with elevated activation with increased macrophage-related 

cytokines such as CCL2/MCP-1, CCL3/MIP1a, and GM-CSF 
(67).

Similar to HIV-related disease, in the initial stages of therapy of 
non-HIV patients, failure to achieve negative CSF fungal cultures 
at 2 weeks is associated with clinical failure (107). However, many 
more such patients develop refractory symptoms and/or clinical 
deterioration despite microbiological control, recently described 
in previously healthy patients as a postinfectious inflammatory 
response syndrome. Similar to that encountered with cIRIS in 
HIV, these patients have an activated CD4+ T-cell intrathecal 
compartment with minimal Th2 presence (85). Additionally, these 
patients have high levels of CD4+ T-cells in the CSF and within 
the intracranial Virchow–Robin channels, which displayed an 
activated phenotype, as measured by HLA-DR4 and CD56 posi-
tivity. Elevated Th1 CSF soluble cytokines such as INF-gamma 
and interferon-related CXCL10 confirmed the activated T-cell 
phenotype. In addition, a strong relationship between the T-cell 
activation marker, sCD27, and elevations of the axonal damage 
marker, neurofilament light chain protein, suggest that such 
inflammation is not a benign event, but pathological (85, 111).  
These observations were surprising as these conditions typi-
cally define a successful immune response, as understood from 
susceptibility studies in HIV-related disease. However, as 
described above, many of the previously healthy have defects in 
macrophage polarization, allowing disease susceptibility in the 
face of unrestrained T-cell-mediated host damage. Such findings 
also highlight the limitations of applying disease principles from 
one host to another without careful consideration.

TReATMenT: TOwARD A MORe 
RATiOnAL APPROACH TO ADJUnCTive 
THeRAPY

Treatment strategies for patients with CM should be devel-
oped to address damage caused by both the microbe and the 
pathological immune response; the disease framework is a useful 
guide (Figure 1.7 and Figure 1.8) (104). In the initial therapy of 
all patients, treatment with antifungals with a fungicidal agent 
such as amphotericin B is paramount and is typically continued 
with oral azole therapy to prevent relapse after initial negative 
CSF cultures (112–114). Those with low immunity (HIV prior 
to ART or patients with a skewed Th2 response to Cryptococcus), 
may benefit from potential immune adjuvants such as IFNγ to 
accelerate microbiological control (115). In these cases, rates of 
clearance of CSF fungal cultures (early fungicidal activity) may be 
an important parameter (67, 106, 107). However, in HIV patients 
who have developed cryptococcal immune reconstitution inflam-
matory syndrome (cIRIS) or in refractory non-HIV patients after 
microbiological control, attention needs to be drawn to the host 
damage side of the disease model—to minimize pathological 
effects of a dysregulated host response. In this setting, applica-
tion of immune enhancers such as IFNγ therapy (116) may lead 
to exacerbated inflammation and potentially cause irreparable 
neurological damage (85). In these patients, use of adjunctive immu-
nosuppression including corticosteroids is increasingly reported to 
suppress pathological inflammatory responses and control cerebral 
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edema, improving clinical response (85, 115–120). In the pre-
viously healthy CM patient, for example, successful application 
of adjunctive corticosteroids in refractory disease or after clinical 
deterioration requires a personalized strategy. When resources 
are available, CSF culture negativity and measures of CSF inflam-
mation such as sCD27, CSF glucose, or choroid plexitis or epend-
ymitis by MRI imaging can provide specific biomarkers of the 
relative contributions of microbe and host toward understanding 
an individual patient’s condition (85, 120, 121). Biomarkers may 
also be useful guides during corticosteroid tapers to prevent 
exacerbations.

However, applying this type of therapy successfully requires 
careful attention to concurrent microbial control, as corticoster-
oids suppress innate and acquired immune responses needed to 
maintain fungal clearance (122, 123). Indeed, corticosteroids can 
have a deleterious effect when applied without pre-established 
microbial control during primary therapy of HIV-related CM 
(Figure 1.7) (124). The complex heterogeneity of clinical patho-
logies that occur in various patients during HIV-related CM 
requires a thoughtful approach that considers the evolving dam-
age caused by both the fungus and the immune response within 
defined sub-groups. In resource-limited regions, more studies 
are needed to understand the damage-response framework as it 
relates to CM in poorly controlled HIV infection, and to identify 
markers that can tailor resource appropriate therapies. Strategies 
to prevent CM in HIV (125) and to diagnose or empirically treat 
co-infections (126) may have tremendous impact on outcomes 
given the high prevalence of disease in some geographic regions 
(8). Risks for co-infections, such as tuberculosis and bacterial 
infections can be exacerbated without specific therapy in the 
presence of corticosteroids (127).

Other populations with risks for CM such as solid organ 
transplant recipients also require tailored approaches to preven-
tion and treatment. In populations other than HIV, the feasibil-
ity of prevention strategies is limited due to a lower prevalence 
of disease. Much more attention is needed to better define 
appropriate therapeutic strategies. Since diagnosis typically 
occurs late, fungal burden can be high at diagnosis; at the same 
time, relatively intact and variable inflammatory responses can 
lead to exuberant inflammatory neurological damage similar 
to cIRIS (128). In these patients, attention needs to be focused 
on personalizing therapies according to which side of the host 
damage framework is most responsible for neurological pathol-
ogy (128, 129).
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