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Biomarkers that predict who among recently Mycobacterium tuberculosis (MTB)-exposed 
individuals will progress to active tuberculosis are urgently needed. Intracellular micro-
RNAs (miRNAs) regulate the host response to MTB and circulating miRNAs (c-miRNAs) 
have been developed as biomarkers for other diseases. We performed machine-learning 
analysis of c-miRNA measurements in the serum of adult household contacts (HHCs) 
of TB index cases from South Africa and Uganda and developed a c-miRNA-based 
signature of risk for progression to active TB. This c-miRNA-based signature significantly 
discriminated HHCs within 6 months of progression to active disease from HHCs that 
remained healthy in an independent test set [ROC area under the ROC curve (AUC) 0.74, 
progressors < 6 Mo to active TB and ROC AUC 0.66, up to 24 Mo to active TB], and 
complements the predictions of a previous cellular mRNA-based signature of TB risk.

Keywords: tuberculosis, microrna, household contact, biomarker, correlate of risk, machine learning

inTrODUcTiOn

Almost one-fourth of the global population carries a latent Mycobacterium tuberculosis (MTB) infec-
tion (1) and is at risk of progressing to active tuberculosis. Known risk factors for progression, such 
as co-infection with HIV and potentially age of first exposure (2) can only explain a fraction of active 
disease, thus novel diagnostic and prognostic tests are needed to identify those most likely to progress 
(3). Accurate identification of individuals likely at high risk of active TB would facilitate prophylactic 
treatment strategies, potentially curing the TB infection before it progresses to its highly infectious 
symptomatic stage. As a first step toward this objective, we recently described a blood RNA-based 
correlate of risk (RNA-CoR) for progression to active TB based on splice-junction abundance from 
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16 interferon-response genes (4). This RNA-CoR was discovered 
in a South African cohort of MTB latently infected adolescents 
and validated using samples from South African and Gambian 
cohorts of household contacts (HHCs) of MTB index cases. 
While the results for the RNA-CoR are promising, the sensitivity 
and specificity of the signature were limited and there is a need 
to determine whether performance can be augmented using 
alternative approaches. The predictive power of the RNA-CoR 
is improved for patients close to progression to active TB. This 
is consistent with detection of subclinical incipient TB prior to 
the onset of disease symptoms. Other effective biomarkers could 
reflect underlying long-term risk factors that predispose indi-
viduals to develop active, rather than latent, TB after an exposure 
event. Exploring alternatives to whole-blood mRNA expression 
measurements may facilitate the discovery of these factors.

MicroRNAs (miRNAs) are small, non-coding RNAs that, as 
part of enzymatic protein complexes, execute post-transcrip-
tional regulation of gene expression (5). Recent studies have 
demonstrated important roles for specific miRNAs during MTB 
infection (6). Although the established functions of miRNAs 
are intracellular, numerous studies have detected highly stable 
extracellular circulating miRNAs (c-miRNAs) in blood (7). 
These c-miRNAs have been explored as biomarkers for infectious 
diseases, including TB (8).

In this study, we evaluate c-miRNAs as candidate biomarkers 
for risk of TB disease progression in HHCs. These analyses make 
use of serum samples collected from prospective HHC cohort 
studies carried out in South Africa and Uganda as part of the Bill 
and Melinda Gates Foundation-funded Grand Challenges 6-74 
program (GC6-74).

MaTerials anD MeThODs

study recruitment and sampling
Within GC6-74, 1,197 HIV-negative South African HHCs of 
209 index cases were enrolled between February 27, 2006 and 
December 14, 2010, and 499 HIV-negative Ugandan HHCs of 
181 index cases were enrolled between June 1, 2006 and June 
8, 2010. HHCs from Uganda were offered INH preventative 
treatment. For all sites, adult participants, or legal guardians of 
participants aged 10–17 years old, provided written or thumb-
printed informed consent to participate after careful explanation 
of study aims and any potential risks. All sites adhered to the 
Declaration of Helsinki and Good Clinical Practice guidelines in 
treating study participants. Ethical approvals were obtained from 
the relevant institutional review boards, for the South African 
study site, the Stellenbosch University Institutional Review 
Board (N05/11/187), and for the Ugandan study site, the Uganda 
National Council for Science and Technology (MV 715), and 
University Hospitals Case Medical Centre (12-95-08).

Serum samples were collected from HHCs at enrollment 
(within 2  months of exposure) and at 6 and 18  months after 
enrollment if participants remained disease free. TB progressors 
were defined as individuals who developed intrathoracic TB 
within the study period based on one of the following two criteria: 
(1) positive TB sputum culture coupled with at least one of the 

following: positive chest X-ray, positive acid-fast bacilli (AFB) 
sputum smear, a second positive TB sputum culture from an 
independent sample or clinical symptoms consistent with active 
TB; or (2) positive AFB sputum smear coupled with a positive 
chest X-ray or a second positive AFB sputum smear from an 
independent sample. Co-incident TB cases, defined as HHC who 
developed TB within 3 months of exposure, were excluded from 
all further analyses. At study end, controls were selected from the 
individuals who had remained free of active TB for the 2-year 
study period and matched to cases by study site, sex, age (four 
age groups: <18, 18–25, 25–36, >36), and year of enrollment 
(three enrollment groups: 2006–2007, 2008, 2009–2010). Two 
to three matched controls were included for each progressor. 
Case–control assignment was performed prior to quantification 
of c-miRNA levels to ensure a blind case–control design. Prior 
to analysis, South African samples were split into discovery and 
validation sets; all Ugandan samples were apportioned to the 
validation set.

serum c-mirna Profiling and selection
Quantification of serum c-miRNA levels was performed by 
Exiqon Inc. (Vedbaek, Denmark) using qRT-PCR with locked-
nucleic acid primers as previously described (9). Briefly, total RNA 
was extracted from serum using the miRCURY™ RNA isolation 
kit—biofluids (Exiqon, Inc., Vedbaek, Denmark) as follows. 
Serum/plasma was thawed on ice and centrifuged at 3,000 × g for 
5 min in a 4°C microcentrifuge. An aliquot of 200 µL of serum/
plasma per sample was transferred to a new microcentrifuge tube 
and 60 µL of Lysis solution BF containing 1 µg carrier-RNA per 
60 µL Lysis Solution BF and RNA spike-in template mixture was 
added to the sample. The tube was vortexed and incubated for 
3 min at room temperature, followed by addition of 20 µL Protein 
Precipitation solution BF. The tube was vortexed, incubated for 
1  min at room temperature and centrifuged at 11,000  ×  g for 
3 min. The clear supernatant was transferred to a new collection 
tube, and 270  µL isopropanol was added. The solutions were 
vortexed and transferred to a binding column. The column was 
incubated for 2 min at room temperature, and emptied using a 
vacuum-manifold. 100 µL wash solution 1 BF was added to the 
columns. The liquid was removed using a vacuum-manifold, and 
700 µL wash solution 2 BF was added. The liquid was removed 
using a vacuum-manifold. 250 µL wash solution was added and 
the column was spun at 11.000 × g to dry the columns entirely. 
The dry columns were transferred to a new collection tube and 
50 µL RNase free H2O was added directly on the membrane of 
the spin column. The column was incubated for 1 min at room 
temperature prior to centrifugation at 11,000 × g. The RNA was 
stored in a −80°C freezer.

2  µL RNA was reverse transcribed in 10  µL reactions 
using the miRCURY LNA™ Universal RT microRNA PCR, 
Polyadenylation, and cDNA synthesis kit (Exiqon, Inc., Vedbaek, 
Denmark). cDNA was diluted 50× and assayed in 10  µL PCR 
reactions according to the protocol for miRCURY LNA™ 
Universal RT microRNA PCR; each microRNA was assayed once 
by qPCR on the microRNA Ready-to-Use PCR, Pick-n-Mix using 
ExiLENT SYBR® Green master mix. Negative controls excluding 
template from the reverse transcription reaction was performed 
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and profiled like the samples. The amplification was performed in 
a LightCycler® 480 Real-Time PCR System (Roche) in 384 well 
plates. The amplification curves were analyzed using the Roche LC 
software, both for determination of Cq (by the second derivative 
method) and for melting curve analysis. Two technical replicates 
were performed for each sample, and mean Ct values for each 
c-miRNA in each sample, along with experimental metadata are 
provided in Table S1 in Supplementary Material.

An initial panel of 608 c-miRNAs were considered for analysis, 
based on miRNA primers suggested by Exiqon, Inc. including 
c-miRNAs previously suggested as potential biomarkers (Table 
S2 in Supplementary Material). This panel was down-selected 
to 164 c-miRNA (Table S2 in Supplementary Material) based on 
detectable expression in >80% of samples and association with 
progression in a subset of 40 discovery set samples. The technical 
replicability of each of the 164 initial candidate miRNAs was then 
assessed by rerunning the PCR quantification of the candidate 
miRNA, resulting in two technical replicates for each sample. The 
quality of the replicates was assessed by measuring the Pearson 
correlation of individual miRNAs between technical replicates. 
We observed a strong, non-linear relationship between miRNA 
expression (as measured by Ct) and technical replicability. In par-
ticular, a sharp decline in replicability was observed for miRNAs 
with mean Ct values greater than 32, indicative of low levels of 
c-miRNA (Figure S4 in Supplementary Material). A final panel of 
47 candidate miRNAs was thus selected, comprised of miRNAs 
expressed at reliably detectable levels (Ct < 32) in serum. PCR 
quantification of these 47 miRNAs was then run on all samples, 
including the pilot study samples.

normalization of Pcr c-mirna Data
As the abundance of c-miRNAs in serum is relatively low and 
varies across conditions, there is currently no universally 
accepted set of reference “housekeeping” c-miRNAs or univer-
sally accepted approach for standardizing c-miRNA profiles in 
order to maximize comparability across samples. To address this 
issue, we explicitly evaluated multiple normalization approaches 
within the suite of machine-learning approaches employed to 
generate predictive signatures. If a particular normalization strat-
egy was strongly superior or inferior than others, this difference 
would be evident as increased or decreased predictive accuracy 
when assessed during cross-validation of the discovery set. The 
normalization strategies that we investigated were variants of two 
classes. In the first class, subsets of potential reference c-miRNAs 
were selected by ranking the final panel of 47 c-miRNAs by the 
magnitude of Spearman rank correlation between the c-miRNA 
and the overall sample mean of the Cts of all 47 miRNAs. The 
assumption behind this approach is that any universal difference 
in c-miRNA abundance between samples would be due to tech-
nical reasons (like smaller or less concentrated plasma aliquot) 
as opposed to biological reasons. The c-miRNAs with the top 1, 
3, 5, 10, 20 rank correlations to the overall sample mean would 
be selected as reference c-miRNAs and then averaged within 
each sample to generate per-sample normalization constants. 
Alternatively, for the second class of approaches, the per-sample 
normalization constants were generated by taking the mean, 
median, or 25% trimmed-mean computed from all 47 assayed 

c-miRNAs. The Cts for a given sample were then normalized by 
subtracting the value of the normalization constant from the Ct 
of each c-miRNA. This gave a total of eight normalized datasets: 
trimmed-mean, trimmed-median, 1-ref, 3-ref, 5-ref, 10-ref, 
20-ref, or 47-ref (i.e., mean) normalized.

c-mirna signature Development
The predictive potential of candidate c-miRNA signatures of 
risk was estimated by leave-one-donor-out-cross-validation 
(LOOCV) of the discovery set measurements of the 47 c-miRNAs. 
To ensure unbiased cross-validation, all samples relating to one 
donor were held out, the machine-learning algorithm was fit 
to the remaining data, and the resulting fit used to make blind 
predictions on the held-out samples. This step was done for each 
donor, and repeated for every combination of machine-learning 
algorithm and normalization approach. Using the R package 
caret (10), a variety of machine-learning algorithms were assessed 
(Figure 1).

Five machine-learning algorithms were used to train predic-
tive models on the miRNA datasets, with models trained using 
the R caret (10) package as an interface: Random Forest [R 
randomForest package (11)]; Support Vector Machine using RBF 
kernel [R kernlab (12) package]; Neural Networks [R nnet (13) 
package]; Elastic-net Logistic Regression [R glmnet (14) pack-
age]; and Linear Discriminant Analysis (13). Initial performance 
was assessed using LOOCV during training. During LOOCV, all 
samples relating to a single donor were held out and predicted on 
together, i.e., samples taken at differing timepoints from a single 
donor. In the discovery analysis, the optimal model was selected 
by examining LOOCV predictive performance considering only 
the sample most proximal to TB diagnosis.

The R pROC (15) package was used to calculate ROC curves 
by applying a set of thresholds to numeric predictions from 
predictive models to predict the progressor or control status of 
the samples, and then calculating the sensitivity and specificity of 
the predictor at each threshold. ROC curves were plotted using 
the R ggplot2 (16) package. Accompanying positive and negative 
predictive values were calculated using the model prediction 
threshold that maximized the sum of sensitivity and specificity.

Prediction performance, as measured by ROC statistics, was 
assessed using the sample for each participant that was most 
proximal to TB diagnosis. The combination of algorithm and 
normalization that maximized the area under the ROC curve 
(AUC) was selected to construct the final signature and was then 
used to make blind predictions on the validation set. p-Values 
associated with each signature were calculated using a one-tailed 
Mann–Whitney U-test comparing signature scores for cases 
compared with controls and were adjusted for multiple testing 
using the Benjamini–Hochberg algorithm. Bootstrapping was 
used to estimate 95% confidence intervals (CIs) of the AUC.

Prediction Performance of combined 
rna + c-mirna signature
To determine whether combining the c-miRNA signature 
with the existing RNA-based risk signature (RNA-CoR) 
led to significant improvement in prediction accuracy, a 
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FigUre 1 | Development and validation of the circulating microRNA (c-miRNA) TB risk signature. (a) ROC area under the ROC curves (AUCs) from discovery set 
leave-one-donor-out-cross-validation (LOOCV) for five different machine-learning algorithms applied to data generated using eight different normalization 
approaches. Error bars represent the 95% confidence intervals. Normalization primers indicate the numbers of reference primers used to normalize the data 
(“all” = all 47 primers, and “tmean” and “tmedian” = 25% trimmed-mean or median of all primer expression, respectively). Horizontal red line indicates non-
discrimination (AUC = 0.5). The machine-learning algorithms employed are indicated on the x-axis. (B) LOOCV ROC curves for the optimal algorithm (elastic-net 
logistic regression-all), stratified by the time between collection of the sample and TB diagnosis (time to TB). (c) Values of fitted linear coefficients for each c-miRNA 
in the final logistic regression signature. Red and blue indicate c-miRNAs detected at higher and lower levels in the serum of progressors compared with controls, 
respectively. (D) Validation set blind prediction ROC curves for the optimal TB risk signature with progressors stratified by time to TB as in (B).
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χ2 test was performed comparing two logistic regression 
models: (1) Progression  =  f(RNA-CoR  +  c-miRNA) and (2) 
Progression = f(RNA-CoR). This approach takes into account the 

nested nature of these models. The significance of the improve-
ment in the combined models’ AUC was also evaluated using the 
highly conservative (17, 18) DeLong (19) test, which assumes 
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the independence of the models. These analyses were performed 
using samples for which both RNA-CoR scores (4) and c-miRNA 
signatures scores were available (34 progressor samples, 79 control 
samples) from both the training and test sets. To conservatively 
estimate c-miRNA signature performance, c-miRNA scores from 
the cross-validation analysis were used for training set samples 
and from the blind prediction analysis for the test set samples. 
Spearman correlations between normalized RNA-CoR PCR data 
(4) and normalized c-miRNA data were also calculated using 
matching samples.

resUlTs

establishment of study cohorts
43 and 11 HHCs from the South African and Ugandan cohorts, 
respectively, progressed to active TB (“progressors”) and were 
matched to HHCs that had remained healthy (“controls”) 
during the 2-year study period (summarized in Table S3 in 
Supplementary Material). Tuberculin skin test (TST) measure-
ments at enrollment found 91% of participants to have TST 
indurations ≥10 mm and 75% ≥15 mm, suggesting that the vast 
majority of HHCs have a latent TB infection. TST induration 
size did not differ significantly between progressors and controls 
(U-test p = 0.78), indicating that the TST is an ineffective pre-
dictor of TB risk in these cohorts. This ineffective prediction is 
unlikely to be related to false positives caused by BCG vaccination 
or TST cross reactivity with non-tuberculous mycobacteria (20) 
and the large TST indurations are more likely to reflect latent 
M. tuberculosis infection. Compared with our previous study of 
progression in South African adolescents with latent TB where 
0.7% of individuals progressed to active TB over the course of 
2 years (4), 3.6% of South African HHCs progressed to active TB.

A panel of 47 high expression, technically replicable c-miRNAs 
were selected from 608 candidate miRNAs. These 47 c-miRNAs 
were then analyzed in parallel on the discovery (151 samples) and 
validation (120 samples) sets.

generation and Validation of the c-mirna 
signature of TB risk
To identify an optimal c-miRNA signature of risk for TB among 
HHCs, we evaluated five different machine-learning algorithms 
using eight different normalization strategies (see Materials and 
Methods, Figure 1A; Table S4 in Supplementary Material). The 
top algorithm was elastic-net logistic regression normalized by 
the average of all 47 c-miRNAs, which achieved a cross-vali-
dation AUC of 0.7 (95% CI: 0.58–0.82, FDR-adjusted p = 0.04, 
negative predictive value = 81%, positive predictive value = 59%) 
(Figure 1A). Figure 1B shows ROC curves for LOOCV results 
stratified by the time between sample collection and TB diagnosis 
[“Time To TB”, as in Ref. (4)]. Predictions for samples within 
6 months of progression (AUC: 0.77, CI: 0.66–0.87, NPV = 92%, 
PPV = 47%) were superior compared with those at all times to 
progression (AUC: 0.66, CI: 0.56–0.75, NPV = 76%, PPV = 59%). 
Significant predictions were also observed when considering 
baseline samples only (AUC: 0.63, CI: 0.5–0.77, Figure S1 in 
Supplementary Material). The optimal final signature selected 

was trained on the entire discovery set (Figure 1C; Table S5 in 
Supplementary Material). Blind prediction of TB progression by 
the signature when applied to the validation set was successful 
(ROC AUC = 0.66, CI: 0.53−0.8, NPV = 90%, PPV = 30%) when 
applied to all samples; Figure  1D. Stronger performance was 
observed on samples under 6 months to TB (ROC AUC = 0.74, 
CI: 0.5−0.98, NPV = 96%, PPV = 35%), consistent with the dis-
covery set. While the signature was not significantly predictive on 
the baseline validation samples, i.e., samples taken close to study 
enrollment (AUC: 0.55, CI: 0.32–0.77, NPV = 83%, PPV = 37%), 
Figure S1 in Supplementary Material, very strong significant 
predictive performance was seen on baseline validation set 
samples within 6  months of TB progression (AUC: 0.95, CI: 
0.88–1, NPV = 100%, PPV = 50%), Figure S1 in Supplementary 
Material. These results demonstrate that a c-miRNA derived sig-
nature significantly predicts TB risk for HHCs within 6 months 
of progression.

Drivers of the c-mirna signature of  
TB risk
Having validated the c-miRNA signature of TB risk, we per-
formed a retrospective analysis to determine which c-miRNAs 
were the drivers of prediction accuracy. By sequentially removing 
c-miRNAs with the smallest model weight, retraining on the 
discovery set, and predicting on the validation set, we were able 
to identify the most parsimonious predictive signature (Figure S2 
in Supplementary Material, Table S6 in Supplementary Material). 
Although prediction performance fluctuated stochastically with 
an overall decline as the signature was reduced, a three-c-miRNA 
signature predicted comparably to the full signature (AUC: 0.67, 
CI: 0.55–0.80, NPV = 78%, PPV = 64%), indicating potential for 
model reduction. Figure 2A shows the combined discovery and 
validation set expression of the three c-miRNAs. Thus, it appears 
signature predictions are dominated by the contribution of the 
three most important miRNAs.

The c-mirna signature of TB risk 
complements the rna-cor Predictions
The c-miRNA signature of TB risk includes c-miRNAs up- and 
down-regulated in TB progression, in contrast with the transcrip-
tomic RNA-CoR (4) which was composed of genes upregulated 
during progression. These distinct kinetics suggest that the 
c-miRNA and RNA-CoR signatures may contain independent 
information for predicting TB among HHCs. The South African 
samples used to validate the RNA-CoR form part of this study 
cohort, facilitating a direct comparison of the c-miRNA signature 
with the published qRT-PCR RNA-CoR measurements. A linear 
combination of the c-miRNA, including all 47 miRNAs, and RNA-
CoR signatures shows a modest increase in predictive power, 
from an AUC of 0.77 (CI: 0.68–0.87, NPV = 88%, PPV = 48%) 
using RNA-CoR alone to 0.78 (CI: 0.69–0.88, NPV  =  87%, 
PPV  =  52%) for the combined signature (Figure  2B), and we 
observed wide overlap of the 95% CI between the RNA-CoR 
alone and the RNA-CoR + c-miRNA model. Although the AUCs 
of the RNA-CoR +  c-miRNA did not significantly improve on 
the RNA-CoR when compared using the conservative DeLong 
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FigUre 2 | Biological signal underlying the circulating microRNA (c-miRNA) signature. (a) Normalized PCR Ct values for the three most important c-miRNAs in the 
signature, with progressors stratified by time to active TB disease. “N” indicates non-progressor control samples. (B) ROC curves illustrating RNA-based correlate of 
risk (RNA-CoR) prediction score, c-miRNA (leave-one-donor-out-cross-validation + blind prediction scores for the 47 miRNA model) and combined score 
performance at classifying the shared set of discovery and validation samples. (c) Correlation network of c-miRNA and RNA-CoR gene PCR primers. c-miRNA—
gene correlations calculated using Spearman’s rho with FDR < 0.05 are indicated by edges connecting miRNAs to genes. Edge thickness is proportional to 
significance of the correlation. Positive correlations are indicated in red, with negative correlations in blue. (D) Correlation between FCGR1B and miRNA hsa-miR-
30b-5p, linear best fit line shown in blue.
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test (p  =  0.43), significant (p  =  0.03) improvement in predic-
tive performance was observed when the linear combination 
of RNA-CoR + c-miRNA was compared with RNA-CoR alone 
using the χ2 test, which takes into account the nested nature of 
the models. Notably, predictions were strongly improved in the 
high-specificity region of the ROC curve, at a specificity of 90%, 
where RNA-CoR shows a sensitivity of 41%, which improves to a 
sensitivity of 50% when the c-miRNA scores are added.

To further explore the relationship between the c-miRNA and 
cellular RNA expression changes, we performed a correlation 

analysis between the constituents of the two signatures. Figure 2C 
shows a network of significant (FDR < 0.05) correlations between 
the components of the c-miRNA and RNA-CoR signatures (Table S7 
in Supplementary Material). Both positive and negative correlations 
between c-miRNAs and the interferon-response genes in the RNA-
CoR were observed in a manner consistent with previous functional 
studies of the implicated RNAs (21–25) (Figure 2D). These results 
demonstrate that elements of the c-miRNA signature are correlated 
with the previously identified RNA-CoR, and that the c-miRNA 
signature may provide information complementary to the RNA-CoR.
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DiscUssiOn

Several previous studies have identified c-miRNAs that are differ-
entially expressed in active TB disease (8), but to our knowledge, 
this is the first to have prospectively validated a c-miRNA-based 
signature of risk of TB in an independent cohort. The c-miRNAs 
comprising the signature are abundant in blood and have 
established roles in inflammatory and infectious conditions (21, 
23–25). This signature is highly predictive of HHCs likely to pro-
gress within 6 months of testing, including tests performed close 
to exposure, although predictive power is diminished for more 
distal samples. This increase in signal close to diagnosis suggests 
that the c-miRNA signature is likely to be detecting an immune 
response to subclinical or incipient TB, prior to the development 
of symptomatic active disease. We observed that most progres-
sors developed TB within 6  months of exposure (Figure S3 in 
Supplementary Material), suggesting that the temporal resolution 
of this test may be sufficient for practical application. As our 
analysis was limited to previously characterized c-miRNAs, we 
could not have identified potentially important uncharacterized 
c-miRNAs. Future improvements in sequencing approaches have 
potential to identify additional c-miRNAs that may be important 
in the context of TB progression.

The RNA-CoR signature has been shown to have over double 
the positive predictive value of an interferon-gamma release assay 
alone and meets the Stop TB Partnership’s performance criteria 
for a prognostic TB test (26). Combined with the RNA-CoR, the 
c-miRNA signature displays only a slight improvement in AUC vs 
the RNA-CoR alone. However, the predictive performance shows 
a strong improvement in sensitivity at high specificities, suggest-
ing that combination of the RNA-CoR and c-miRNA signature 
would act as an improved “rule-in” test to identify HHCs at 
higher risk and likely to benefit from INH prophylaxis.

Correlating the components of the c-miRNA signature with 
components of the RNA-CoR signature suggest how the inter-
feron response to TB disease may be regulated by c-miRNAs. 
miR-21, which is induced by mycobacteria (21), and is a marker 
of immune cell activation (24), was positively correlated with 
genes in the RNA-CoR. In contrast, miR-26a, which has been 
shown to suppress macrophage responsiveness to IFN-γ (23), and 
miR-30b, which has been shown to suppress pro-inflammatory 
cytokine secretion and Fc-receptor expression (25), were both 
negatively correlated with RNA-CoR genes, including FCGR1B 
(Figure 2D).

Recently, blood transcriptional signatures have been developed 
capable of evaluating TB risk (4) and effective response to TB 
treatment outcome (27), although the sensitivity and specificity of 
the risk signature is limited. Investigating alternative platforms to 
whole-blood transcription holds out the possibility of augment-
ing the performance of this initial work. The c-miRNA signature 
developed here demonstrates the potential of serum c-miRNAs 
to predict TB risk, despite being limited by a preselected pool of 
candidate miRNAs, and the difficulty of accurately quantifying 
low-abundance miRNAs in serum. In the future, the develop-
ment of accurate, sensitive, and unbiased sequencing approaches 
for c-miRNAs would hold much promise for further improving 
prediction of TB risk.
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