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X-linked lymphoproliferative disease (XLP) was first described in the 1970s as a fatal 
lymphoproliferative syndrome associated with infection with Epstein–Barr virus (EBV). 
Features include hemophagocytic lymphohistiocytosis (HLH), lymphomas, and dys-
gammaglobulinemias. Molecular cloning of the causative gene, SH2D1A, has provided 
insight into the nature of disease, as well as helped characterize multiple features of 
normal immune cell function. Although XLP type 1 (XLP1) provides an example of a 
primary immunodeficiency in which patients have problems clearing primarily one infec-
tious agent, it is clear that XLP1 is also a disease of severe immune dysregulation, even 
independent of EBV infection. Here, we describe clinical features of XLP1, how molecular 
and biological studies of the gene product, SAP, and the associated signaling lymphocyte 
activation molecule family receptors have provided insight into disease pathogenesis 
including specific immune cell defects, and current therapeutic approaches including the 
potential use of gene therapy. Together, these studies have helped change the outcome 
of this once almost uniformly fatal disease.

Keywords: X-linked lymphoproliferative disease 1, epstein–Barr virus, SAP (signaling lymphocyte activation 
molecule-associated protein), signaling lymphocytic activation molecule, primary immunodeficiency disease, 
hemophagocytic lymphohistiocytosis, hematopoietic stem cell transfer, gene therapy

iNTRODUCTiON

Epstein–Barr virus (EBV) is a highly prevalent human gamma herpes virus that is spread via saliva 
and primarily infects the oropharyngeal epithelium and B cells (1). Infection in children is usually 
very mild, whereas in teenager and adults, it can result in a picture of infectious mononucleosis (IM) 
with fevers, flu-like symptoms, and even systemic lymphoproliferative disease. Studies suggest that 
EBV has infected approximately 90% of adults. After infection, EBV remains latent in B cells for the 
remainder of the life of the host, and although most people remain asymptomatic, it can cause B cell 
and T cell lymphomas, Hodgkin lymphoma, and Burkitt’s lymphoma in certain groups, particularly 
in immunocompromised patients (2).

A major and critical issue with EBV arises in the case of such immunocompromised individuals, 
including those presenting with monogenic deficiencies, where EBV infection leads to a wide range 
of clinical complications and acquired disease phenotypes (3). In this review article, we will explore 
the disease pathologies arising in patients with a rare form of primary immunodeficiency (PID), 
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X-linked lymphoproliferative disease type 1 (XLP1), which is 
perhaps the classic example of a PID associated with an inability 
to clear EBV (3–5).

eBv iN XLP DiSeASe

Characterization of early Cases
X-linked lymphoproliferative disease or Duncan’s disease 
was described in the mid-1970s by Purtilo and colleagues in 
the Duncan kindred, where 6 out of 18 young males died of a 
lymphoproliferative disorder (6, 7). Three of these males had IM 
either immediately prior to or concurrent with the development 
of disease, which included fatal IM, hemophagocytic syndrome, 
and B  cell malignancies, as well as humoral immune defects 
such as dysgammaglobulinemia. The observation of EBV-driven 
manifestations associated with a primary immune-deficiency 
catalyzed the recognition of XLP. Of note, two other contempo-
rary reports also described families with males who succumbed 
to lymphoproliferative disorders and/or agammaglobulinemia 
associated with EBV infection, who may have had the same 
syndrome (8, 9).

Early investigations carried out by Purtilo and his team 
aimed to understand why EBV infection led to such aggressive 
and often fatal clinical phenotypes in these patients. In 1980, an 
XLP registry was established (7), which tracked presumed XLP 
patients with regard to disease onset and progression. The study 
revealed that the majority of patients had succumbed to IM due 
to extensive liver pathology and lymphoid infiltration of organs. 
However, those who did survive, as well as some EBV-negative 
male relatives, still progressed to develop dysgammaglobulinemia 
and/or B cell malignancies (10, 11). By 1995, over 270 boys were 
registered from over 80 kindreds (12); the overall mortality was 
reported as 75% with the majority of boys dying before 10 years 
of age, proving the severity of this condition.

The cloning of the gene, SH2D1A, responsible for this dis-
ease both revealed phenotypes in family members before they 
presented with the classic picture of EBV-induced pathology and 
allowed further molecular understanding of what is now called 
XLP type 1 (XLP1) (13–15). Clinical manifestations of XLP1 are 
now recognized to include a wider range of phenotypes associated 
with immune dysregulation even independent of EBV infection 
(5, 16). It should be noted that mutations in a second gene, BIRC4, 
encoding the X-linked inhibitor of apoptosis, XIAP, have been 
described in a subset of XLP patients who did not carry mutations 
in SH2D1A (now referred to as having XLP2) (17). However, 
XLP2 is more closely associated with EBV-driven hemophago-
cytic lymphohistiocytosis (HLH), as well as other clinical features 
not found consistently in XLP1 such as splenomegaly and colitis 
and will not be discussed further in this review (17, 18).

Clinical Features
The main clinical features of XLP1 remain HLH, dysgamma-
globulinemia, and lymphoma but other described manifestations 
include aplastic anemia, vasculitis, chronic gastritis, and skin 
lesions (12, 19–24). HLH is the most common and lethal pres-
entation, tending to occur early in childhood and associated with 

significant mortality, with a proportion of patients succumbing 
before hematopoietic stem cell transplant (HSCT) (16). HLH is 
a multisystem syndrome caused by hyperinflammation resulting 
in immune dysregulation, tissue damage, and often multiorgan 
failure. The main features are fever, cytopenias, and hepatospleno-
megaly but involvement of other organs is often seen. Diagnostic 
criteria are available (25).

Up to 50% of patients demonstrate a range of humoral 
immune abnormalities, ranging from impaired vaccine 
responses to generalized hypo-gammaglobulinemia (10, 12, 16). 
These may be incidental findings during diagnostic workup or 
lead to recurrent infections, particularly respiratory infections. 
Almost a third of patients develop lymphoma with the most 
common form being abdominal B cell non-Hodgkin lymphoma 
in both EBV+ and EBV− patients; prognosis has dramatically 
improved over the decades due to improved chemotherapy 
protocols.

Analyses of mutations have revealed deletions, splice site, 
nonsense, and missense changes in SH2D1A, but so far, there has 
not been a clear correlation between mutations and the severity 
of phenotypes identified (16, 26). Patients can progress from one 
phenotype to another, and different clinical features are seen 
within members of the same family. However, in some cases, 
second-site reversions of missense and nonsense mutations have 
been found, which were associated with restored CD8 cell func-
tion in a small fraction of cells and less severe phenotypes (27).

It is important to highlight that up to 35% of patients have no 
evidence of previous EBV infection; many of these patients are 
diagnosed based on family history (16, 28, 29). In EBV− patients, 
XLP1 is associated with higher rates of dysgammaglobulinemia 
(51.8 vs 37.2% for EBV+) and lymphoma [25 vs 19.6% for EBV+, 
see Table 2 from Ref. (16)]. However, EBV-negative boys with 
XLP1 can still develop HLH, although less frequently than those 
with EBV infection (21.4 vs 51% for EBV+) (16), and the trig-
ger is unknown. Thus, XLP1 must be thought of as a disorder of 
immune dysregulation not only triggered by EBV. Nonetheless, 
there are no reports in the literature of a specific pathogen other 
than EBV being linked to HLH or other clinical features, arguing 
that XLP1 patients are specifically susceptible to EBV rather than 
other pathogens.

The overall mortality of the disease has reduced significantly 
since first reports from the registry, from 75 to 29% (16), largely 
due to improved chemotherapy and HSCT protocols, as well as 
improved monitoring and supportive care (which will be dis-
cussed later in this review). However, patients diagnosed at birth 
through family history still risk significant mortality despite close 
monitoring, highlighting the severity of this PID.

MOLeCULAR iNSiGHT iNTO 
PHeNOTYPeS OF XLP1

Improved description of patient cohorts combined with the evo-
lution of molecular techniques has widened our understanding of 
XLP1. However, equally important has been the investigation of 
the genetic cause of XLP1 and how lymphocyte development and 
function are affected by mutations of SH2D1A (4, 30).
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Cloning of the Gene and Studies of  
SAP-Mediated Signaling
In 1998, three groups identified a gene, now known as SH2D1A, 
that was mutated in patients with XLP. While two groups iden-
tified this gene by positional cloning (13, 31), a third group 
independently identified the same gene as encoding a small 
adaptor molecule that bound to the cytoplasmic tail of a T cell 
costimulatory protein, signaling lymphocyte activation mol-
ecule (SLAM) (14). Genetic mapping and sequencing revealed 
that this gene was mutated in samples from several XLP patients 
(14). The identification of SH2D1A has helped identify patients 
with the disease, but has also led to new insight into the signal-
ing pathways regulated by SLAM family members and how they 
contribute to the pathophysiology of XLP1 (4, 5, 32).

The evaluation of the predicted gene product revealed that 
SH2D1A encodes a small (14  kDa/128 aa) protein that is now 
known as SAP, or SLAM-associated protein (14). Intriguingly, SAP 
consists almost entirely of a single Src Homology 2 (SH2) domain, 
a conserved protein interaction module that binds to phospho-
tyrosine-based motifs. SH2 domains are usually part of larger 
multi-domain proteins involved in signaling pathways, including 
adaptor molecules that contain multiple protein–protein and/or 
protein–lipid interaction domains and enzymes such as kinases 
and phosphatases that are regulated by intra- and intermolecular 
SH2-protein interactions (33). Further experiments demonstrated 
that the SH2 domain of SAP bound specific tyrosines on the intra-
cellular tail of SLAM and related receptors (34, 35). However, these 
observations raised questions on how a single protein interaction 
domain could regulate signaling and how the disruption of SAP 
expression led to phenotypes associated with XLP1.

Although SAP was first identified by virtue of its association 
with SLAM, a costimulatory receptor that helps regulate inter-
feron gamma cytokine production by T cells, SAP is now known 
to bind to a series of related receptors, the SLAM family, which 
include SLAM/CD150 (SLAMF1), LY9/CD229 (SLAMF3), 2B4/
CD244 (SLAMF4), CD84 (SLAMF5), NTB-A/Ly108/CD352 
(SLAMF6), and CRACC/CD319 (SLAMF7) (36). These receptors 
are encoded in a highly polymorphic gene cluster on human and 
mouse chromosome 1, variants of which have been associated 
with predispositions to autoimmunity (37). With the exception 
of 2B4, these receptors are self-ligands and are activated by 
homophilic interactions (30, 36). The SLAM family also has 
homology to the larger CD2 superfamily of immunoglobulin 
domain containing receptors, which include CD48/SLAMF2 
(the ligand for 2B4/SLAMF4). SLAM receptors exhibit a broad 
expression on hematopoietic cells; however, several members are 
most highly expressed on B cells (38–41), a feature that likely con-
tributes to some of the B cell-specific phenotypes of XLP1 (42). By 
contrast, although some B cell expression has also been reported 
(35, 43, 44), SAP is most highly expressed in T and NK cells and 
is therefore most likely to affect SLAM family function in these 
cells (14, 45). Several of the SLAM family members, including 
2B4/SLAMF4, NTB-A/SLAMF6, and CRACC/SLAMF7, have 
been implicated as cytotoxic receptors in NK and CD8 cells (30).

Extensive work on SAP-mediated signaling pathways pro-
vided evidence that SAP serves as a molecular switch allowing 
SLAM family members to act as either activating receptors in the 

presence of SAP or inhibitory receptors in the absence of SAP 
(Figure 1) (30, 35, 36, 46, 47). Thus, when SAP is present, it can 
recruit the FYN tyrosine kinase, leading to further tyrosine phos-
phorylation of SLAM family members (48–50) and interactions 
with other signaling molecules, including RasGAP, Shc, Dok1, 
and Dok2 in the case of SLAM (51) and Vav1 and c-Cbl in the 
case of 2B4 and Ly108 (41, 45, 52). Notably, Fyn deficiency can 
phenocopy some features of SAP deficiency including defects in 
2B4-mediated killing (50). SAP has also been shown to inhibit 
diacylglycerol kinase-α (DGKα), a molecule that negatively 
affects TCR signaling (53). However, when SAP is not expressed, 
the same tyrosines on SLAM family members bind a number of 
strong inhibitory molecules, including the tyrosine phosphatases 
SHP1 and SHP2, as well as the lipid phosphatase SHIP (35, 41, 46, 
47, 54). These inhibitory molecules essentially block aspects of T 
and NK cell activation, development and function when SLAM 
family members are engaged in the absence of SAP. Accordingly, 
the tyrosine-based motif that SAP recognizes has been coined an 
“ImmunoTyrosine Switch Motif ” or ITSM (35).

Early data provided evidence that NK and CD8 cells from 
XLP patients exhibited defective killing of EBV-infected B cells 
(55, 56); this was linked to impaired killing via 2B4/SLAMF4 and 
NTB-A/SLAMF6 (57–60). Intriguingly, some data demonstrated 
that in the absence of SAP, 2B4/SLAMF4 prevented the killing 
of EBV-infected cells, providing further evidence that the SLAM 
family could act as inhibitory receptors (58). Combined with the 
biochemical evidence for the inhibitory function of SLAM family 
receptors, these results provided insight into why XLP1 patients 
have specific susceptibility to EBV infection. More recently, 
T cells from XLP1 patients have been found to exhibit defects in 
reactivation-induced cell death (RICD), resulting from inhibitory 
signaling from NTB-A/SLAMF6. This defect has been proposed 
to contribute to lymphoproliferation seen in XLP1 (61).

insight From Mouse Models
The generation and study of SAP-deficient mice (62–64) has 
provided insight into additional phenotypes associated with SAP 
deficiency, some of which have subsequently been confirmed in 
XLP1 patients. One of these is a lack of invariant NKT cells, a 
rare innate type of T lymphocyte that rapidly responds to infec-
tion and may be involved in tumor surveillance—this defect was 
recognized due to the connection with Fyn, which also affects 
NKT cell development in mice (65–67). Whether and how the 
absence of NKT  cells contributes to manifestations of XLP1 
remains less well understood, but it is now appreciated that XLP1 
patients exhibit an absolute lack of iNKT cells, independent of EBV 
infection status. The critical role of SAP in iNKT development is 
supported by studies of SH2D1A carriers demonstrating random 
X-inactivation in T and B cells but non-random X-inactivation 
in iNKT cells, suggesting an absolute requirement of SAP for the 
development of this population (66).

Another major phenotype is the lack of long-term humoral 
(antibody) responses and memory B  cells, which have been 
observed both in response to infection and to immunization in 
SAP-deficient mice (62, 64, 68–70). These phenotypes were T cell 
intrinsic and associated with impaired formation of germinal cent-
ers (GCs) (68, 70), the site where B cells undergo immunoglobulin 
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FiGURe 1 | Signaling through the signaling lymphocyte activation molecule (SLAM) family receptors: (A) upon engagement, SLAM family members recruit the SAP 
SH2 domain to immunotyrosine switch (ITSM) motifs on their intracellular tails. This leads to the recruitment of Src family kinases, further phosphorylation of SLAM 
family receptors, and recruitment of downstream signaling molecules. Recruitment of SAP also prevents recruitment of the phosphatases SHP1, SHP2, and the lipid 
phosphatase SHIP (50). (B) In the absence of SAP, the engagement of SLAM family receptors leads to SH2-mediated recruitment of SHP1, SHP2, and SHIP, which 
are associated with strong inhibitory signals that affect T and NK cell function and cell death, as well as NKT cell development.
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gene class-switching and hypermutation in response to antigen 
in the context of contact-dependent signals from specific CD4 
T helper lymphocytes, now known as follicular T helper (Tfh) 
cells (71). The GC is also the site where most memory B cells and 
long-lived plasma cells are derived. Subsequent evaluation of 
XLP1 patients revealed that they also lacked IgG+ memory (CD 
27+) B cells, and an autopsy confirmed a lack of GCs in lymph 
nodes from an XLP1 patient (72). Interestingly, in addition to 
the well-documented dysgammaglobulinemia in XLP1 patients, 
 evidence of impaired responses to protein immunization had 
been reported (73). However, the characterization of SAP-
deficient mice has provided a clearer picture of the nature of these 
humoral defects (74).

Further insight into these phenotypes came from intravital 
microscopy in mice, which revealed that SAP-deficient T  cells 
exhibited impaired adhesion to B cells, a defect that was confirmed 
using in vitro flow-based cell conjugation assays (75). This defect 
was relatively specific, as that adhesion to antigen-presenting 
dendritic cells was less affected. The B cell specificity correlated 
with very high levels of the expression of multiple SLAM family 
members including SLAMF6 (Ly108/NTB-A), SLAMF5 (CD84), 
and CD48 (the ligand for 2B4) on activated B cells (38, 40, 42). 
In the absence of SAP, some of these ligands trigger an inhibitory 
response in SAP-deficient T  cells, preventing full activation by 
and adhesion to B cells, likely by affecting TCR-induced inside-
out signaling to integrins (76, 77).

Consistent with these observations, SAP-deficient T cells 
are initially activated normally by antigen-presenting dendritic 
cells in response to immunization and infection, but fail to form 
mature Tfh cells, a process now recognized to require B cell inter-
actions (75, 78, 79). Indeed, insight into the critical role of Tfh 
cells in humoral immunity has been greatly advanced by studies 
of SAP-deficient mice. Such findings further suggested that defec-
tive adhesion to B cells was likely to contribute to the inability 
of SAP-deficient T  cells to provide contact-dependent help for 
GC generation and long-term humoral immunity and thus the 
dysgammaglobulinemias seen in XLP1 (42, 75).

Moreover, the observation of defective interactions with B cells 
has provided mechanistic insight into other phenotypes of XLP1, 
many of which share a common feature of B  cell involvement 
(Figure  2). SAP-deficient CD8 cells exhibit defective adhesion 
to and killing of activated B  cell targets (39–41, 80), especially 
EBV-transformed cells, which express high levels of certain 
SLAM family members and CD48. Thus, the sensitivity to EBV 
may occur because EBV primarily infects B  cells. Impaired 
immunosurveillance of B cell malignancies may contribute to the 
increased incidence of lymphomas, even in the absence of EBV 
infection (16, 42). Since defective CD8 and NK cell cytolysis have 
been linked to HLH, defects in killing EBV-infected B cells may 
trigger this phenotype as well (81), although the exact mechanism 
by which HLH develops in this population is yet to be elucidated. 
Moreover, since other hematopoietic cells also express SLAM 
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FiGURe 2 | Defects seen in X-linked lymphoproliferative disease (XLP)1. XLP1 is associated with multiple T and NK cellular defects, many of which may result from 
impaired interactions with B cells and other cells that express high levels of signaling lymphocyte activation molecule (SLAM) family members. These defects 
contribute to the phenotypes observed in the disease, including the inability to clear Epstein–Barr virus (EBV), lymphoproliferation and lymphoma, hemophagocytic 
lymphohistiocytosis (HLH), and antibody defects.
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family members, defects may be extended to cytolysis of other 
hematopoietic targets; defects in NK  cell cytolysis of multiple 
hematopoietic cell tumor lines that express SLAM family mem-
bers have been observed (82). Nonetheless, it is also of note that 
NK cells deficient in SAP can kill non-hematopoietic cell targets 
better, perhaps accounting for the lack of increases in other types 
of cancer in XLP1 (83). Finally, the absence of NKT  cells may 
result from impaired interactions between lymphocytes, as that 
NKT cells are not selected on the thymic stroma, but rather on 
double-positive thymocytes that express high levels of SLAM 
family members (84).

It is of note that the effects of SLAM family receptor mutations 
for the most part do not phenocopy those of SAP deficiency (85). 
Moreover, although polymorphisms of SLAM family members are 
associated with autoimmunity in lupus-prone mouse strains and 
humans (37), and with alterations in NKT cell numbers in NOD 
(non-obese diabetic) mice (86), to date, there have been no reports 
of immunodeficiency or EBV susceptibility associated with muta-
tions of other SLAM family members in humans (36). Instead, 
many of the phenotypes of SAP deficiency appear to be related 
to inhibitory signals generated by SLAM family members in the 
absence of SAP (39, 76, 85), which are most strongly triggered by 
B cell interactions, either as targets (for cytolysis) or as antigen 
presentation (GC formation). Notably, unlike positive signaling, 
these inhibitory signals would not be expected to rely on the abil-
ity of SAP to recruit Fyn. Indeed, several phenotypes associated 
with SAP deficiency can be rescued by the expression of a mutant 
of SAP that cannot recruit Fyn but can still block the recruitment 
of inhibitory molecules. These include humoral defects, NK cell 

killing, and NK cell education (54, 70, 78, 83), although some phe-
notypes such as 2B4-mediated killing and NKT cell development 
may result from defects in both positive and negative signals since 
Fyn deficiency also impairs these processes (50, 87). Importantly, 
unlike positive signaling, these negative signals require the 
presence of SLAM family members to recruit phosphatases and 
manifest their inhibitory function (Figure  1). Thus, inhibiting 
interactions of the SLAM family members 2B4/SLAMF4 and 
NTB-A/SLAMF6 with their ligands actually improves cytolysis 
of B cells by SAP-deficient CD8 cells and NK cells (39, 41, 58). 
These observations suggest the intriguing possibility that blocking 
antibodies to SLAM family receptors might ameliorate some of 
the clinical manifestations of this disorder, raising the possibility 
of tailored SLAM family-based pharmacological approaches to 
XLP1 (see below). Support for this hypothesis can be found in 
murine genetic studies where mutations disrupting the expres-
sion of Ly108/SLAMF6 improved both the GC defect and NKT 
development in SAP-deficient mice (76).

CURReNT TReATMeNT AND 
MANAGeMeNT OPTiONS FOR XLP1

Given the severe morbidity and high rates of mortality in XLP1, 
it is strongly recommended that genetic screening and counseling 
be carried out in families with a history of XLP1 (5). Diagnosis 
is confirmed using flow cytometric analyses of SAP expres-
sion (88) followed by Sanger sequencing of the SH2D1A gene. 
Immunological status is assessed with focus on immunoglobulin 
levels and response to vaccines.
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Currently, the only definitive treatment available for XLP1 
patients is allogeneic HSCT (16). However, depending on clinical 
features, less aggressive treatments may be adopted, particularly if 
a suitable donor for transplant is not available. As many patients 
do not present with all symptoms simultaneously or at varying 
severity, there are a number of treatment options that target 
specific clinical phenotypes.

Treatment Approaches
Treatment of XLP1 is tailored to particular clinical symptoms and 
supportive care. However, close monitoring (e.g., of EBV viral 
loads) is important in this patient cohort to allow the prevention 
of recurrent infections, organ damage such as bronchiectasis, 
and permit early treatment of EBV infection and more serious 
complications. If there is evidence of EBV-driven disease, includ-
ing HLH, treatment with a monoclonal anti-CD20 antibody 
(rituximab) can be used to deplete the B cell population harbor-
ing the virus (89). This approach is effective at reducing and 
often clearing the viremia but risks the effects of B cell depletion, 
including exacerbating long-term hypo-gammaglobulinemia. 
Antiviral agents are poorly effective against EBV but acyclovir 
has been used in some circumstances. Infection of T cells with 
EBV is also seen in XLP1 patients (unpublished data) and the use 
of rituximab in this situation may not be helpful.

Hemophagocytic lymphohistiocytosis is treated according to 
standardized protocols (HLH 94 and 2004) based on the use of 
dexamethasone, etoposide, and cyclosporin with the addition 
of intrathecal methotrexate and steroids if there is neurological 
involvement (90, 91). This is a highly suppressive regime and 
can be associated with significant toxicity. The protocol follows 
different stages, starting with an intense period of treatment ini-
tially, with reducing doses of steroids and frequency of etoposide 
over time if a response is seen. Re-intensification of therapy is 
occasionally required. This protocol aims to achieve remission of 
HLH, usually prior to moving swiftly to HSCT, but the mortality 
associated with this presentation is still over 60% (16). Other 
immunosuppressive agents have been used to control HLH, 
either in combination with steroids or as rescue therapy, including 
ATG (anti-thymocyte globulin) in combination with etoposide in 
the HIT (hybrid ImmunoTherapy)-HLH trial (NCT01104025), 
or Alemtuzumab (Campath/anti CD52 antibody). In addition, 
newer biologics are now available, and some are being tested 
in HLH including Toculizumab (anti-IL6R antibody). An anti-
interferon gamma monoclonal antibody (Novimmune NI-0501) 
is now in trial in the USA and Europe with results eagerly awaited. 
The JAK1/2 inhibitor Ruxolitinib has shown promise in preclini-
cal murine studies and is now also moving toward the clinic (92).

These more targeted therapies could offer an improved toxic-
ity profile, which may be extremely beneficial to help transition 
patients rapidly to HSCT with as little organ damage and infectious 
complications as possible and thereby afford better outcomes post 
transplant. Lymphoma is also treated according to standardized 
protocols, and again mortality associated with this presentation 
has reduced over the years.

Patients with dysgammaglobulinemia or recurrent infections 
may benefit from immunoglobulin replacement therapy which 

can be delivered via intravenous route every few weeks, or subcu-
taneously every week, which is usually performed at home. Other 
manifestations of dysregulation such as aplastic anemia or vasculitis 
may respond to steroid therapy or other immunosuppressive agents.

Stem Cell Transplantation
Bone marrow (BM) or HSC transplantation (which includes the 
transfer of BM, mobilized CD34+ cells from peripheral blood or 
umbilical cord-derived CD34+ cells) is currently the only defini-
tive treatment for XLP1; survival for untransplanted patients is 
below 20% (16). However, success is dependent on the availability 
of an appropriate donor who is human leukocyte antigen matched 
(16). There are a number of factors to consider prior to HSCT, 
including the disease status, previous treatments, and the type of 
pre-conditioning regimen. An EBV-positive donor is preferred in 
patients with EBV-driven disease.

Several studies have evaluated the clinical outcomes of patients 
undergoing HSCT using either myeloablative-conditioning regi-
mens or reduced-intensity-conditioning (RIC) regimens (16, 93, 
94). These studies revealed similar overall patient survival rates 
post transplantation between RIC and myeloablative protocols, 
with both averaging ~80% (16, 94). However, success rates drop 
depending on the presence of active HLH at the time of transplant 
(falling to 50%) and in the context of a mismatched donor (16). 
From this large cohort, all patients who died post HSCT had 
evidence of HLH.

Thus, although the survival in XLP1 has improved sig-
nificantly over time, it remains a potentially fatal condition. 
The decision to undertake an HSCT in an asymptomatic patient 
requires intensive discussion with the family to understand both 
risks and benefits, especially when a mismatched donor is the 
available choice. However, many families are faced with severe 
complications at presentation, such as HLH or lymphoma, which 
necessitate a rapid move to HSCT.

Potential Future Therapies
SLAM Family Inhibitors
In the absence of SAP, the recruitment of phosphatases and other 
inhibitory signaling molecules convert SLAM family members 
into inhibitory receptors (4). This is particularly relevant for 
SLAMF4/2B4/CD244 and SLAMF6/NTB-A, which strongly inhibit 
CD8 and NK  cell killing of B  cell targets in the absence of SAP. 
Preventing SLAMF4/2B4 and/or SLAMF6/NTB-A engagement, 
either through genetic knockouts of these receptors in mice or 
through the use of blocking antibodies with human cells, can rescue 
phenotypes associated with SAP deficiency, including the defective 
killing of B  cell targets, the absence of GC formation, defective 
NKT cell development, NK cell education, and impaired RICD (39, 
41, 61, 76, 83). Limiting the homophilic interactions of SLAM fam-
ily receptors (or in the case of SLAMF4/2B4, interactions with its 
ligand, CD48) in XLP1 patients may therefore prevent lymphopro-
liferation and other phenotypes of XLP1. In vitro experiments 
have provided evidence that blocking antibodies against CD48 
and NTB-A rescue killing of EBV-infected targets, supporting the 
concept of humanized blocking antibodies as a potentially useful 
therapy (39). Alternatively, peptide(s) or small molecules with a 
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high affinity for the different SLAM receptors might block SLAM 
family interactions and the initiation of a negative signal.

Other potential therapeutic approaches include the use of small 
molecule inhibitors of signaling pathways affected by SAP and 
SLAM family members. The inhibition of SHP1/SHP2 rescued 
cytolysis of B cell targets in vitro using murine cells (41). Other 
data suggest that the inhibition of DGKα, another negative regula-
tor of T cell activation that is affected by SAP, can rescue certain 
phenotypes associated with SAP deficiency, including RICD and 
hyperproliferative responses to lymphochoriomeningitis virus in 
mice (53, 95). However, none of these approaches are curative, and 
toxicity may be a major issue, particularly for long-term treatment.

Gene Therapy
Over the last few years, there have been great strides develop-
ing effective and safe hematopoietic stem cell gene therapy as a 
viable alternative to BM transplantation for a number of PIDs. 
Gene therapy also offers the advantages of reduced toxicity from 
conditioning as, in general, less chemotherapy is required and 
the use of autologous cells removes the risk of graft versus host 
disease which causes significant morbidity and mortality post 
HSCT (96, 97). Although several first-generation gene therapy 
trials were marred by the integration of gammaretroviral vectors 
near proto-oncogenes leading to leukemia and myelodysplasia, 
newer self-inactivating (16) retroviruses and lentiviruses have 
been developed that use internal mammalian promoters to drive 
transgene expression. Numerous clinical trials are underway 
using these later generation vectors, and no insertional events 
have been reported to date.

A proof of concept for gene therapy for XLP1 was established 
using such a second-generation lentiviral vector containing 
the human elongation factor 1 alpha promoter to drive codon-
optimized SAP gene expression (98). This study utilized a SAP-
deficient murine model into which gene-corrected hematopoietic 
progenitor cells were infused following lethal irradiation. The 
transfer of gene-corrected cells led to the restoration of NK and 
CD8 T  cell cytotoxicity, NKT development, as well as GC for-
mation and function upon immunological challenge. However, 
although no adverse effects of SAP expression at the stem cell 
level were seen in these studies, SAP is a tightly regulated signal-
ing protein that is predominately expressed in T cells (14, 45), and 
the use of a ubiquitous human promoter that can drive expression 
in all hematopoietic cells may not be optimal.

An alternative approach to more directly address the T  cell-
dependent clinical manifestations of XLP1 is to develop a therapeu-
tic strategy using gene-corrected autologous patient T cells. Murine 
studies utilizing gene-modified T cell transfers into Sh2d1a−/y mice 
demonstrated the correction of Tfh cell function, the restoration 
of GCs, and the improvement in baseline immunoglobulin levels 
(Panchal et al., in press). In addition, the correction of CD8+ T cell 
function was shown using an in  vivo tumor model. These data 
provide a strong case that adoptive T gene therapy may be a useful 
therapeutic option.

Gene Editing
Along with developments in gene therapy, the latter part of this 
decade has seen great advancements in the use of gene-editing 

platforms for therapeutic benefits (96, 99–101). Zinc finger 
nucleases have been established to be effective in eliminating 
CCR5 expression on T  cells from HIV-infected individuals 
in order to prevent viral spread (102, 103). Transcription 
activator-like effector nucleases and CRISPR/Cas9 nuclease 
systems have been used for TCR knockdowns as part of 
CAR-T  cell therapy, to produce an “off the shelf ” donor 
T  cell product for the treatment of CD19+ B  cell leukemias 
(104, 105). Gene-editing platforms hold great promise for the 
effective correction of endogenous genes using corrected DNA 
copies as donor templates, utilizing the cell’s own DNA repair 
machinery. This approach may be particularly beneficial for 
monogenic diseases such as XLP1 that can present with point 
mutations in the gene. Gene editing also offers a resolution 
to the issue of gene regulation and the risk of overexpression 
in anomalous hematopoietic compartments and could sig-
nificantly improve the safety profile of genetically engineered 
cellular therapy (100, 106). However, this type of therapy needs 
to be custom-designed to repair the genetic defect of each 
patient and may not be useful for patients with gene deletions. 
Potential off-target effects also need to be carefully evaluated. 
Nonetheless, such approaches hold high potential for the treat-
ment of PIDs.

SUMMARY

Over the last 30  years, the outcome for patients with XLP1 
has significantly improved, mainly due to improvements in 
the treatment of clinical manifestations such as HLH and 
lymphoma. Survival post HSCT has also improved, but mor-
tality associated with active disease at the time of transplant 
and mismatched donor settings remains significant. As our 
understanding of the molecular and cellular pathology in XLP1 
continues to expand, novel treatments, including gene therapy, 
will continue to be developed, hopefully leading to even greater 
improved outcomes for patients with this devastating disease.
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