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The human immune system is a fine network consisted of the innumerable numbers of 
functional cells that balance the immunity and tolerance against various endogenous 
and environmental challenges. Although advances in modern immunology have revealed 
a role of many unique immune cell subsets, technologies that enable us to capture the 
whole landscape of immune responses against specific antigens have been not available 
to date. Acquired immunity against various microorganisms including host microbiome 
is principally founded on T cell and B cell populations, each of which expresses anti-
gen-specific receptors that define a unique clonotype. Over the past several years, 
high-throughput next-generation sequencing has been developed as a powerful tool 
to profile T- and B-cell receptor repertoires in a given individual at the single-cell level. 
Sophisticated immuno-bioinformatic analyses by use of this innovative methodology 
have been already implemented in clinical development of antibody engineering, vac-
cine design, and cellular immunotherapy. In this article, we aim to discuss the possible 
application of high-throughput immune receptor sequencing in the field of nutritional 
and intestinal immunology. Although there are still unsolved caveats, this emerging tech-
nology combined with single-cell transcriptomics/proteomics provides a critical tool to 
unveil the previously unrecognized principle of host–microbiome immune homeostasis. 
Accumulation of such knowledge will lead to the development of effective ways for 
personalized immune modulation through deeper understanding of the mechanisms by 
which the intestinal environment affects our immune ecosystem.

Keywords: next-generation immune repertoire sequencing, B-cell receptors, t-cell receptors, single-cell 
transcriptomics, human microbiome

iNtrODUctiON

The jawed vertebrates have evolutionally acquired a unique immune system consisted of effector and 
regulator cells that can effectively respond or establish tolerance to millions of endoneous and envi-
ronmental antigens in an epitope-specific manner (1). In this paradigm of the “adaptive” immune 
system, it is firmly believed that pre-existing repertoire of two types of lymphohematopoietic cells, 

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.00668&domain=pdf&date_stamp=2018-04-03
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.00668
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:tatsuo.ichinohe@gmail.com
https://doi.org/10.3389/fimmu.2018.00668
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00668/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00668/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00668/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00668/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00668/full
https://loop.frontiersin.org/people/462453
https://loop.frontiersin.org/people/424816
https://loop.frontiersin.org/people/506124


2

Ichinohe et al. Immune Repertoire in Host–Microbiome Immunology

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 668

classic T  cells and B  cells, predominantly determine the mode 
and pattern of immune responses in a given individual. At the  
single-cell level, these cells express a single type of unique 
antigen-specific receptors: T-cell receptor (TCR) for T cells and 
B-cell receptor/immunoglobulin (BCR/Ig) for B cells that define 
a phenotypic clone or a clonotype of these immune cells. At the 
individual level, the estimated number of TCR and BCR/Ig clo-
notypes is from a few thousands to more than billions depending 
on the species of animal, which is believed to form the basis of 
the host ability to cope with innumerable immunologic threats. It 
is well-characterized that such huge diversity of antigen-specific 
receptors is created through somatic rearrangement of variable 
(V), diversity (D), and joining (J) (or V and J) gene segments 
located in TCR- or BCR/Ig-encoding loci and the concomitant 
incorporation of random nucleotide insertions and deletions. 
However, the underlying mechanism by which these repertoires 
are ontogenetically developed and shaped is largely unknown. 
Furthermore, until recently, there had been no available tech-
nologies that comprehensively identify each of TCR and BCR/
Ig clonotypes constituting the whole adaptive immune cell 
repertoire.

During the past few decades, accumulative lines of evidence 
have indicated that the host microbiome and nutrients not only 
play key roles for balancing the host immunity in health and dis-
ease but have a tremendous influence on the generation and shap-
ing of immune cell repertoire (2, 3). For instance, several groups 
have reported pivotal observations that alloimmune-mediated 
graft-versus-host reactions in the setting of hematopoietic cell 
transplantation and immune responses against malignant neo-
plasms triggered by immune checkpoint inhibition are associated 
with the abundance of distinct members of intestinal commensal 
flora (4–8). In this article, we highlight the recent advancement in 
high-throughput immune repertoire analysis by next-generation 
sequencing (NGS) and its possible application in future studies 
to elucidate previously unrecognized mechanisms of immune 
modulation by gut microbiota and oral nutrition.

rOLes OF GUt MicrOBiOMe iN 
sYsteMic HOMeOstAsis OF  
ADAPtive iMMUNe rePertOire

Gastrointestinal tract as a Key site for 
systemic immune Modulation
The gastrointestinal tract-associated lymphoid tissue is the largest 
immune compartment in the body. Therefore, it is quite reasonable 
to assume that the gut microbiome has a strong influence on the 
development and homeostasis of adaptive immune repertoire. In 
fact, the intestinal epithelium is an important anatomical site for 
the active interaction of the gut microbiome and various immune 
cells including antigen-presenting dendritic cells (2, 3, 9). For 
instance, the induction of gut-resident Foxp3+ regulatory T cells 
(Tregs), a key modulator of immune responses against dietary 
antigens and gastrointestinal commensal flora, has been shown to 
be causally dependent on the colonization of certain Clostridiales 
that abundantly produce short-chain fatty acids (10, 11). Among 
those gut microbiota-derived short-chain fatty acids, butyrate is 

found to be a key factor for maintaining the integrity of CD326+ 
intestinal epithelial cells and mitigating graft-versus-host disease 
in a murine model of allogenic hematopoietic cell transplanta-
tion (4). However, homeostatic maintenance of intestinal Tregs 
appears to require not only the indigenous Clostridia species but 
flexible diversity of the host TCR repertoire. Transgenic mice 
genetically engineered to express a restricted TCRβ repertoire 
spontaneously developed severe colitis in association with hyper-
activation of T helper 17 cells (Th17) and a striking decrease in 
a special subset of peripherally derived Tregs responsible for the 
recognition of intestinal microbiota (12). These “limited mice” 
showed no apparent alteration in the composition of commensal 
flora including segmented filamentous bacteria, a well-known 
inducer of Th17 cells in the small intestine in mice. Additionally, 
colonic inflammation observed in these mice is ameliorated by 
“total gut decontamination” by use of antibiotics cocktail, sug-
gesting that TCR epitopes of effector Th17  cells are originated 
from gut microbiota rather than “self ” antigens associated with 
autoimmunity. In this context, it is critically important to note that 
the use of broad-spectrum antibiotics disrupting anaerobic flora 
increases the risk for severe colonic graft-versus-host disease after 
allogeneic hematopoietic cell transplantation in human patients 
as well as in mice models (5). Importantly, the colon lamina 
propria of carbapenem antibiotic-treated mice is characterized 
by high local levels of IL-23 and accumulation of effector CD4+ 
T cells concomitantly with reduced colonization of Clostridiales 
and increased abundance of Akkermansia muciniphila, a unique 
bacterium that disrupts the intestinal epithelium junction by 
degrading luminal mucins as a source of carbohydrates and 
nitrogen.

More surprisingly, ongoing studies in patients with cancer 
highlight the crucial impact of gut microbiota on immune check-
point immunotherapies using antibodies against programmed 
cell death protein 1 (PD-1) and its ligand (7, 8). Analysis of fecal 
samples from melanoma patients treated with anti-PD-1 immu-
notherapy revealed that the abundance of Ruminococcaceae 
in fecal microbiota is an indicator for good clinical responses, 
whereas that of Bacteroidales is a negative predictor (7). Another 
study including patients with advanced cancers showed that the 
prior use of antibiotics significantly compromised the clinical 
benefit of immune checkpoint inhibition, while the dominant 
gastrointestinal colonization of A. muciniphila was positively cor-
related with better responses after PD-1-based immunotherapy 
(8). Notably, A. municiphila has been also shown to be associated 
with the development of autoimmunity against the central nerv-
ous system such as multiple sclerosis (13, 14), suggesting a unique 
immunodominant role of this particular mucin-degrading 
anaerobic microorganism.

It is also well known that “the first microbial gut colonizers” 
play an essential role for the development and shaping of the 
early immune system in neonates and infants (15). For instance, 
perinatal exposure to the Bisphenol A, a chemical found in daily 
consumed plastics such as the coating of food and drink packages, 
results in reduced frequencies of Th1/Th 17 cells in the intestinal 
mucosa and subsequently leads to an altered glucose sensitivity, 
a defective IgA secretion and a fall of Bifidobacteriales in a mice 
model (16). The importance of “early colonizers” warrants the 
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development of strategies for altering dysbiosis of infant micro-
biota by personalized functional nutrition.

Collectively, these observations strongly indicate that the 
interaction of gastrointestinal tract and indigenous microbiota is 
a life-long key regulator of well-balanced immunity and tolerance 
possibly by shaping adaptive immune cell repertoire.

cUrreNt rise OF HiGH-tHrOUGHPUt 
iMMUNe rePertOire seQUeNciNG

Development of Massively Parallel 
immunosequencing
The first attempt to evaluate human adaptive immune repertoire 
by use of NGS was independently reported by three groups in 2009 
(17–19). They developed a method to comprehensively and semi-
quantitatively determine DNA sequences of the rearranged V-D-J 
gene segments encoding the third complementarity-determining 
region (CDR3) of TRB (TCRβ) and IgH loci in a given lymphocyte 
population. Since these pivotal studies, a rapidly increasing num-
ber of researchers have installed NGS-based high-throughput 
sequencing of TCR (TCR-seq) and BCR/immunoglobulin (BCR/
Ig-seq) clonotypes to elucidate the characteristics and dynamics 
of immune repertoire in healthy individuals and patients with 
immune dysregulation (20–25). The introduction of this innova-
tive approach has so far had a huge impact on basic and clinical 
immunologic researches and is probably beginning to change our 
understanding of the immune system as a whole.

The most established use of immune repertoire deep sequenc-
ing is a clinical analysis for quantitating minimal residual disease 
of human T-cell or B-cell neoplasms after chemotherapy or 
hematopoietic cell transplantation (26, 27). These applications 
have shown improved sensitivity compared with conventional 
assays, such as CDR3-specific PCR and multicolor flow cytom-
etry, thus will be useful for bedside decision-making of hema-
tologic clinicians. Moreover, BCR/Ig-seq can be used for in vivo 
tracing of B  cell dynamics after vaccination and cost-effective 
monoclonal antibody engineering by shortcuts of labor-intensive 
screening procedures (28).

In its simplest form, TCR-seq and BCR/Ig-seq comprise of 
three essential working processes: (i) PCR amplification of V-D-J 
(for TRB, TRD and IgH) or V-J (for TRA, TRG, and IgL) gene 
segments, (ii) massively parallel sequencing of the PCR ampli-
cons, and (iii) allignment of NGS reads by use of sophisticated 
bioinformatic technologies. However, many technical caveats still 
exist in these approaches (29, 30). For example, limited sampling 
from peripheral blood or particular tissues/organs always raises 
the problem of “unseen clones.” In addition, the possibility of 
sequencing errors and amplification bias is theoretically una-
voidable because it is inherent in PCR-based NGS platforms 
and methods for NGS library preparation. Also, the selection of 
the starting material, DNA or RNA, also significantly affects the 
quality of immune repertoire analyses. DNA-based approaches 
have an advantage in terms of sample preparation and storage 
but require complex PCRs using a multiplexed set of V and J 
segment-specific primers with the large reaction size because the 
template sequence for each TCR or BCR subunit loci exists as 

only single copy per cell. In contrast, RNA-based analyses, most 
commonly by using 5′-rapid amplification of cDNA ends, are 
capable of more comprehensive coverage and relatively unbiased 
amplification of the intended cDNA templates with a single pair 
of primers at the cost of the drawback that the read number of 
target amplicons is influenced by cell-to-cell variation in TCR or 
BCR mRNA expression levels. Finally, more serious limitation 
of these methodologies is a difficulty in exact pairing of variable 
region information (α and β units for αβTCR, γ and δ units for 
γδTCR, and immunoglobulin heavy and light chains for BCR/Ig)  
that determines antigen/epitope specificity of each clonotype.

To overcome these impediments, our group has developed a 
novel high-throughput TCR repertoire sequencing method that 
combines RNA-based NGS and single-cell multiplex reverse 
transcriptase PCR assays for profiling TCR clonotypes with 
information regarding the CDR3 sequences of paired TCRα and 
TCRβ subunits (31–33). To perform relatively unbiased parallel 
sequencing, we installed adaptor ligation-mediated PCR for NGS 
library construction. With the help of this technology, we could 
comprehensively identify cytomegalovirus (CMV) pp65 antigen-
specific paired TCR clonotypes of peripheral blood T  cells 
obtained from HLA-A*02-positive healthy individuals. We found 
that HLA-A*02-restricted CMVpp65-specific CD8+ T-cells were 
extremely oligoclonal and consisted of a single or a few super-
dominant clones. When transduced into TCR-null Jurkat cells 
engineered to lack endogenous TCR by CRISPR-Cas9 system, 
these superdominant TCRs showed significantly higher affinities 
to HLA-A*02/CMVpp65 tetramers compared with other minor 
TCR clonotypes. Notably, such dominant TCR clonotypes were 
highly shared among different individuals and more enriched 
in stem memory T cells than in the central memory or effector 
memory T cell subpopulations. These observations may suggest 
that stem memory T-cell subset is a reservoir of highly functional 
and highly shared T  cells responsible for protective immunity 
against chronically infected pathogens. Similarly, several studies 
using NGS-based TCR repertoire analysis have revealed that the 
sharing of TCR clonotypes among different individuals is a com-
mon phenomenon at least in rodents and humans (20, 34, 35). It is 
worthy of note that the TCR repertoire of zebrafish (Danio rerio), 
consisted of only a few thousands TCRα and TCRβ clonotypes per 
individual, also contains such “shared” fractions (Yasuko Honjo, 
Hiroyuki Sato, and Tatsuo Ichinohe, unpublished observations). 
Intriguingly, zebrafish T cells bearing shared TCRs are reported 
to show predominant expansion in response to diverse antigenic 
stimuli, suggesting high crossreactivity of these public T  cell 
clones in system-wide T-cell repertoires of teleost fish (36). Given 
their advantages in smaller size and similarity of immune cells 
compared with the other mammalian counterparts, zebrafish will 
provide an ideal model to investigate the whole adaptive immune 
repertoire in the era of NGS-based high-throughput TCR-seq 
and BCR/Ig-seq at the single-individual level (37–39).

Paired immune repertoire sequencing by 
Advanced single-cell transcriptomics
Currently, more sophisticated methods to identify paired immune 
repertoire by use of single-cell RNA sequencing have been 
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developed and some of them have already become commercially 
available (30, 40). In these pairing technologies, the common 
platform for separating bulk cell populations into single cells is 
flow cytometric sorting or encapsulation in droplet emulsions. 
Single-cell sorting into microwell plates is usually more feasible 
and less expensive, while the number of cells that can be analyzed 
is limited by the size and number of wells in the plates (41). In 
contrast, recent innovation in droplet-based microfluidics has 
facilitated ultra-large-scale paired sequencing from millions 
of cells, although the efficiencies of cell encapsulation as well 
as higher cost per analysis are still major challenges (42). It is 
expected that the introduction of such high-resolution single-
cell immune receptor genomics will rapidly revolutionize and 
deepen our understanding of the hierarchy of adaptive immune 
cell repertoire. More recently, computational analytical tools are 
developed to predict the shared core motifs of particular epitope-
specific CDR3 sequences by using several thousands of single-
cell-derived TCRα and TCRβ sequences (43, 44). The systematic 
accumulation of paired immune repertoire sequences combined 
with the whole single-cell transcriptome data may ultimately lead 
to the development of long-awaited algorithm that can predict the 
function and epitope specificity of a given T cell or B cell in the 
not too distant future.

POteNtiAL APPLicAtiONs OF HiGH-
tHrOUGHPUt iMMUNe seQUeNciNG tO 
Dissect HOst–MicrOBiOMe iMMUNe 
HOMeOstAsis

comprehensive Analysis of Gut-
Microbiota-reactive immune repertoires
Although high-throughput immune cell repertoire analysis in 
the context of host–microbiome interaction is an area of open 
research, the most promising application of this approach is 
comprehensive detection of gut-microbiota-reactive T- or B-cell 
clonotypes in the circulating blood or peripheral tissues of the 
hosts. Very importantly, by using live-cell CD154 expression assay, 
it has recently been shown that healthy human adults possess a 

substantial amount of circulating CD4+ T cell populations reac-
tive against bacterial lysates of gastrointestinal commensals at fre-
quencies of 40–500 per millions of total CD4+ T cells depending 
on each bacterial species. The majority of these gut-microbiota-
reactive CD4+ T cells had a memory phenotype with relatively 
high expression of mucosa homing receptors and a Th17 marker 
(CD161) and was further enriched in the intestinal tissues (45). 
Also of note is that NGS-based TCR-seq of these gut-microbiota-
reactive CD4+ T cell populations revealed one to several hundred 
TCRβ clonotypes putatively responsible for each bacteria-specific 
reactivity with significant overlap (crossreactivity) against closely 
related species (e.g., Escherichia coli and Bifidobacterium animalis 
subsp.). Furthermore, these microbiota-reactive CD4+ T  cells 
were polarized to IL17A+ single producers after treatment with 
inflammatory cytokine cocktails or in patients with inflammatory 
bowel diseases, suggesting that some of these CD4+ T cell clones 
function as effectors rather than bystanders at least in selected 
gastrointestinal inflammatory conditions (45).

Similarly, the majority of IgA- or IgG-expressing memory 
B cell repertoires residing in human terminal ileum are reported to  
possess antigen-specificities for the representatives of commensal 
flora and intestinal pathogens (46), suggesting the essential roles 
of gut commensal microbiota for normal and pathological BCR/Ig 
repertoire ontogenesis, as was extensively studied in patients with 
chronic human immunodeficiency virus infection (47). Further 
accumulation of data obtained from these types of human stud-
ies, particularly with the use of single-cell platform NGS immune 
repertoire analysis, as a publicly accessible database would greatly 
enhance our understanding of the role of gut microbiome for 
the ontogenesis and age/environment-associated shaping of our 
immune system (Figure 1).

Gut Microbiota as a Possible Origin  
of tcr crossreactivities
T-cell crossreactivity is an important area of ongoing researches 
in system immunology and probably one of the not yet fully rec-
ognized chief principles of adaptive immune response. Consistent 
with this hypothesis and in contrast to the previous general 
belief, an elegant study using TCRβ transgenic mice proved 
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that the vast majority of negatively selected TCRs are autoreac-
tive and endowed with crossreactivities against multiple MHC 
haplotypes, while crossreactive TCRs are very infrequent among 
preselection TCRs (48). In this context, it is very intriguing that 
an excellent in silico study using proteome datasets has reported 
the extensive sharing of possible T-cell exposed peptide motifs 
between human proteome and gastrointestinal microbiome (49). 
Very recently, T cell epitopes of an integrase expressed by several 
species of Bacteroides were shown to be a mimotope of an estab-
lished pancreatic β cell autoantigen in non-obese diabetogenic 
mice (50). Monocolonization studies using integrase-transgenic 
Bacteroides in germ-free mice demonstrated that the recruitment 
of diabetogenic CD8+ T cells in a microbial epitope-dependent 
manner. Surprisingly, these crossreactive T  cells consistently 
express an invariant TCRα chain and function to protect the host 
mice from experimental colitis, suggesting that TCR repertoire of 
effector and regulatory T cells might be inherently crossreactive. 
Accordingly, the classical dichotomy of immunologic “self ” and 
“non-self ” should be revised and redefined because it is difficult 
to clearly distinguish “genetic self ” and “non-genetic/microbial 
self ” (51). NGS-based high-throughput TCR repertoire analysis 
will confer a more clarified overview of the origin and composi-
tion of crossreactive TCR repertoire.

cONcLUsiON AND PersPectives

During the past decade, rapid innovations in genomic and bio-
informatic technologies in the interdisciplinary field of micro-
biology and immunology have radically changed the outlook 
of human host–microbiome interactions and their influences 
on human health and disease. In particular, advanced method-
ologies in high-resolution adaptive immune repertoire analysis 
will provide an essential clue to obtain deeper understanding 
of the ontogeny of our immune system with its microbiome 
fingerprints at the individual level. Given these backgrounds 
in mind, it is very attractive to identify and trace the members 
of adaptive immune cell repertoire by single-cell TCR-seq and 
BCR/Ig-seq in mono- or poly-colonized germ-free animal 
models. Such studies will reveal the potential full diversity 
of TCR and BCR/Ig repertoire created by antigenic epitopes 
derived from intestinal commensals of particular interest, such 
as Clostridium and Akkermansia. In addition to well-established 
mice models, recently adapted gnotobiotic zebrafish husbandry 
may offer advantages because it can facilitate system-wide 
analyses at lower experimental costs, although there are still 

challenges in translation of the experimental results into humans 
(52). Another important question is to elucidate the precise 
mechanism by which functional adaptive immune receptors 
are clonally selected through host–gut microbiome interactions 
and maintain long-lasting immune homeostasis. The systematic 
single-cell adaptive immune receptor analyses combined with 
large-scale microbe metagenomics in patients with various 
types of immunodeficiencies, autoimmune/autoinflammatory 
diseases, and malignant neoplasms as well as in healthy subjects 
with various ethnic backgrounds will provide a clue to this long-
standing enigma. Future collections of such knowledge will lead 
to the development of effective ways for personalized immune 
modulation by fine tuning of the gastrointestinal homeostasis.
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