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The post-injury inflammatory response is a key mediator in long-term recovery from trau-
matic brain injury (TBI). Moreover, the immune response to TBI, mediated by microglia 
and macrophages, is influenced by existing brain pathology and by secondary immune 
challenges. For example, recent evidence shows that the presence of beta-amyloid and 
phosphorylated tau protein, two hallmark features of AD that increase during normal 
aging, substantially alter the macrophage response to TBI. Additional data demon-
strate that post-injury microglia are “primed” and become hyper-reactive following a 
subsequent acute immune challenge thereby worsening recovery. These alterations 
may increase the incidence of neuropsychiatric complications after TBI and may also 
increase the frequency of neurodegenerative pathology. Therefore, the purpose of this 
review is to summarize experimental studies examining the relationship between TBI 
and development of AD-like pathology with an emphasis on the acute and chronic 
microglial and macrophage response following injury. Furthermore, studies will be high-
lighted that examine the degree to which beta-amyloid and tau accumulation as well 
as pre- and post-injury immune stressors influence outcome after TBI. Collectively, the 
studies described in this review suggest that the brain’s immune response to injury is a 
key mediator in recovery, and if compromised by previous, coincident, or subsequent 
immune stressors, post-injury pathology and behavioral recovery will be altered.
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INTRODUCTION TO TRAUMATIC BRAIN INJURY (TBI) AND 
ALZHEIMER’S DISEASE (AD)

Traumatic brain injury is a significant health concern affecting millions of individuals worldwide. 
Within the United States (U.S.), the Centers for Disease Control and Prevention report that 1.7 
million individuals sustain a TBI annually, and 5.3 million individuals live with TBI-related disabili-
ties (1). Similar structured reporting is limited from the rest of the world. Nonetheless, systematic 
reviews indicate that more than 7.7 million individuals live with TBI-related disabilities in the 
European Union (2). Subsequent reviews indicate that increased motor vehicle use is associated 
with a rising incidence of TBI globally (2–4). A significant concern is that standardized reporting 
and categorization in epidemiological studies around the world is absent. Consequently, TBI has 
been described as a “silent epidemic” for multiple reasons. First, epidemiological reports likely reflect 
an underestimation of incidence, particularly for milder forms of brain injury. Second, without an 
accurate incidence rate, it is impossible to identify the true public health and economic consequence 
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of brain injury, including caregiver burden. Third, survivors of 
mild to moderate brain injury often display delayed and task-
specific impairments making chronic, time-dependent reporting 
essential in documenting long-term effects of TBI. Finally, many 
post-injury problems are not visible, including cognitive and 
emotional impairment. Together, these points emphasize the 
many challenges that we face in attempting to improve recovery 
following TBI.

Age is closely associated with the incidence of TBI and likely 
plays a critical role in mediating response to and recovery from 
brain injury. For example, in the U.S. children aged 0–4  years, 
adolescents aged 15–19 years, and adults aged 65 years and older 
are among the most likely to sustain a TBI. Post-injury hospi-
talization and death are most common in adults aged 75 years 
and older, suggesting that age at the time of injury and aging 
after injury are important mediators of long-term recovery. 
Although a TBI occurs in a matter of milliseconds, the biological 
consequences of a brain injury may last a lifetime. Indeed, TBI 
is recognized as an environmental risk factor for many neuro-
degenerative diseases such as AD, Parkinson’s disease (PD), and 
chronic traumatic encephalopathy (CTE). The molecular mecha-
nisms that link TBI to development of neurodegenerative disease 
remain underexplored and few studies account for age-specific 
pathological response to and recovery from brain injury.

Alzheimer’s disease is a neurodegenerative disease that pro-
gresses from mild cognitive impairment to severe dementia over 
time (5). The disease is characterized by key neuropathological 
features, including extracellular accumulation of beta-amyloid 
(Aβ) protein in senile plaques (6) and intracellular aggrega-
tion of microtubule-associated protein tau (MAPT, tau) in 
neurofibrillary tangles (NFTs) (7). Importantly, both amyloid 
and neurofibrillary changes begin during preclinical AD when 
cognitive deficits are not apparent (8). In typical cases of AD, Aβ 
spreads from the frontal and temporal lobes to the hippocampus 
and limbic system. NFTs spread from the medial temporal lobes 
and hippocampus to the neocortex (9). Several lines of evidence 
point to a relationship between single-incident TBI and AD (10, 
11). First, numerous population-based studies demonstrate that 
head injury during adulthood increases the risk of AD later in 
life (12–19) and reduces the time to onset of AD (20). Second, 
many animal studies show increased production and accumula-
tion of amyloid precursor protein (APP), Aβ, and pathological 
tau following TBI (16, 21–28). Third, accumulation of APP and 
extracellular deposition of the 40- to 42-amino acid Aβ peptide 
in senile plaques has been identified in human brain tissue soon 
after severe TBI (29, 30). Fourth, a comprehensive immunohisto-
chemical study by Ikonomovic and colleagues identifies increased 
neuronal APP and diffuse Aβ deposits along with diffuse tau 
immunostaining in neuronal cell somata and axons, as well as 
glial cells, in resected temporal cortical brain tissue after TBI (31). 
Intracellular aggregation of MAPT in NFTs was only present in 
a subset of older subjects (31). These and other studies indicate 
that there is a biological link between TBI and AD pathology, 
but the exact molecular pathways underlying this relationship are 
poorly understood and post-injury mechanisms that facilitate Aβ 
and tau pathology remain under investigation. This review will 
consider post-injury neuroinflammation as a malleable response 

that is closely associated with development of AD-like pathology, 
thereby supporting a relationship between TBI, neuroinflamma-
tion, and development of AD.

A longstanding concern with many clinical studies is reliance 
on self-report and use of diagnostic verbiage in medical records to 
identify a correlation between TBI and post-injury development 
of AD (32). Also, several clinical studies report that individuals 
with genetic predisposition to developing AD (ApoE4 risk alleles) 
display altered outcome after TBI making the distinction between 
environmental and genetic risk factors for post-injury recovery 
unclear (33, 34). Despite preclinical studies providing evidence 
for successful pharmacologic intervention, more than 30 phase-
III clinical trials have failed to improve secondary injury outcome 
measures after TBI (35–37). Finally, several experimental studies 
have failed to show that TBI induces or worsens AD-related 
pathology (38, 39) with some even reporting a reduction in post-
injury Aβ accumulation in transgenic mice (40, 41). Collectively, 
these results highlight the complex nature of TBI and emphasize 
the need to clearly define post-injury mediating factors that could 
be contributing to variability in experimental and clinical studies.

Experimental Models of TBI
To date, no effective interventions are available to improve 
recovery following TBI (42–44). Thus, experimental models are, 
therefore, essential in better understanding post-injury pathol-
ogy and identifying effective therapeutic treatments. This strategy 
presents additional challenges as each animal model reflects 
a specific type of TBI and does not fully recapitulate primary 
and secondary damage evident in human TBI (45) resulting in 
restricted translation (46). Nonetheless, experimental models 
represent a critical tool in defining precise mechanisms of pri-
mary and secondary damage following TBI, particularly when 
the data generated are evaluated within the context of the injury 
model used.

A variety of TBI models are used in experimental studies. 
While no single model recapitulates all aspects of human TBI, 
the neuroinflammatory response to injury occurs in a temporally 
distinct manner. Several excellent reviews are already available 
that describe contemporary experimental models of injury as 
well as the inflammatory response to injury [see reviews in Ref. 
(47–49)]. Here, we will provide a brief description of the mod-
els described in this review. Experimental models of TBI have 
historically been referred to as focal or diffuse, but increasing 
evidence indicates that even focal brain injuries cause diffuse 
damage that is not restricted to the site of injury. In addition, 
concussive, repetitive, and blast-related TBI are often defined 
as diffuse injuries; however, collectively referring to them as 
“diffuse” undervalues the variability of the primary insult. Thus, 
describing the key neuropathological features is a more appro-
priate strategy for distinguishing experimental models from one 
another (49). Focal contusion models include controlled cortical 
impact (CCI) (50), fluid percussion injury (FPI) (51, 52), weight 
drop (53, 54), penetrating ballistic-brain injury (PBBI) (55). 
As implied, an external force (impactor tip, fluid, weight, and 
inflatable probe, respectively) is used to induce TBI and can be 
manipulated to produce a mild, moderate, or severe brain injury 
(as defined by post-injury pathology). Predominant pathological 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


3

Kokiko-Cochran and Godbout Inflammatory Continuum of Brain Injury

Frontiers in Immunology  |  www.frontiersin.org April 2018  |  Volume 9  |  Article 672

features include a focal contusion, blood–brain barrier (BBB) 
disruption, edema, in addition to neuronal and axonal damage. 
There is a widespread inflammatory response, including micro-
glial and astrocytic activation, infiltration or peripheral cells, and 
increased production and release of inflammatory molecules 
which are reported up to 1 year post-injury (56). Recently, modi-
fied versions of the CCI without craniectomy have been employed 
to study single and repetitive forms of TBI (57, 58). In studies 
examining single or multiple mild severity TBI, skull fracture 
and cortical contusion are absent but neuroinflammation and 
behavioral impairment persist with increasing number of injuries 
(57). Studies discussed in this review include 2–30 injuries, with 
30 injuries considered a highly repetitive model of TBI (59). In 
studies examining severe TBI, skull fracture and cortical contu-
sion are induced via electrical weight drop on the exposed skull 
[closed head injury (CHI) model (60)]. Cryogenic brain injury is 
created when a cotton tip applicator dipped in liquid nitrogen is 
pressed on top of the skull. This type of injury does not directly 
induce cortical contusion but facilities an inflammatory response 
(61). Finally, a chronic hippocampal lesion model of brain injury 
will be discussed to highlight the effects of microglial elimina-
tion in post-injury outcome. The tetracycline-inducible promoter 
system is used to regulate neuronal expression of diphtheria toxin 
A-chain in this transgenic mouse model of injury. As a result, 
forebrain neurons expressing calcium-calmodulin kinas II α 
(CaMKIIα) are ablated resulting in neuronal loss, inflammation, 
and behavioral impairment (62).

In summary, these models of experimental TBI induce a 
temporal inflammatory response that is consistent with what is 
observed in human head injury, and increased injury severity 
is positively correlated with BBB disruption and infiltration of 
peripheral cells (63). Inflammatory cytokines and chemokines are 
immediately release after moderate TBI and peak within hours 
post-injury. Consequently, peripheral cells, such as neutrophils, 
monocytes, T-cells, and dendritic cells, enter the brain within 
days post-injury. Similarly, microglia and astrocyte reactivity 
increases within days post-injury, but altered and reactive mor-
phology diminishes by 10–14 days post-injury. Chronic micro-
glial and astrocytic reactivity, as defined by altered morphology, 
persists in sub-cortical brain regions months to years post-injury. 
Experimental TBI, regardless of model, consistently induces an 
inflammatory response including microglial/macrophage reac-
tivity. This conserved response is, therefore, viewed as a critical 
mediator of post-injury outcome.

Inflammation as a Mediator of Post-Injury 
Outcome
Primary damage occurs as a result of the physical and mechanical 
forces of brain injury and includes brain contusion, hemorrhage, 
hematoma, and axonal injury (3). Secondary damage develops 
hours and days after the primary damage, but is not necessarily 
dependent on the primary injury itself. In other words, secondary 
injury cascades can act concurrently and synergize to influence 
outcome (3). Secondary damage includes excitotoxicity (64), 
oxidative stress (65), and widespread neuroinflammation (63). 
Successful management of post-injury recovery is dependent 
on effectively stratifying these variables to determine which 

are predictive in outcome. We propose that the brain’s immune 
response to injury is a key mediator in recovery, and if compro-
mised by previous, coincident, or subsequent immune stressors, 
progressive impairments will be evident.

Inflammation following TBI is a complex and dynamic 
response of both the central and peripheral nervous systems, 
which is influenced by age, sex, injury location and severity, 
secondary injury cascades, and genetics (63). Multiple other 
reviews eloquently describe this inflammatory process and pro-
vide insight into cell types and molecular pathways involved in 
the response (48, 63, 66, 67). Because inflammation occurs after 
all brain injuries, some propose that immune modulation is an 
integral component to identifying effective and clinically relevant 
therapeutic interventions (68). It is necessary to acknowledge that 
post-injury inflammation poses both beneficial and detrimental 
consequences that need to be balanced. A detailed understanding 
of mechanisms driving immune activation after TBI is, therefore, 
of utmost importance (67). In this review, we would like to extend 
the conversation to include appreciation of the inflammatory 
continuum that occurs over a lifetime. TBI is not an isolated event 
within the inflammatory milieu. Accumulating data indicate 
that pre- and post-injury immune challenges may influence the 
microglial and macrophage response to brain injury and influ-
ence post-injury pathology and behavioral recovery.

Relevance of Microglia and Macrophages 
in TBI
This review will focus on the role of brain-resident microglia 
and infiltrating peripheral monocytes. In normal physiological 
conditions, the BBB prevents entry of peripheral monocytes into 
the brain parenchyma. Disruption and dysfunction of the BBB 
after TBI facilities monocyte infiltration though. When in the 
reactive macrophage state, it is difficult to distinguish microglia 
and peripheral monocytes. For example, after TBI, microglia and 
monocyte-derived macrophages adopt a similar morphology, 
upregulate similar inflammatory surface markers, and increase 
production of similar inflammatory cytokines. Indeed, many 
prevalent immunohistochemical markers do not identify whether 
or not a reactive macrophage is of microglial or monocytic origin. 
Given the distinct genetic and transcriptomic profile of microglia 
and macrophages identified via high throughput sequencing 
technology (69–71), the two cell types likely maintain different 
roles in the injured central nervous system (CNS) (72–74).

Targeted genetic deletion of key chemokine receptors, CCR2 
and CX3CR1, has emerged as a useful tool to characterize the 
role of microglia and macrophages following TBI (48). The sur-
face glycoprotein Ly6C can be used in combination with CCR2 
and CX3CR1 to identify two distinct populations of monocytes 
in peripheral blood, Ly6Chigh/CX3CR1low/CCR2+ and Ly6Clow/
CX3CR1high/CCR2−. The former is the inflammatory subset of 
monocytes that differentiate into inflammatory macrophages 
in response to post-injury inflammation. The latter is the 
patrolling subset of monocytes that survey the vasculature and 
resolve inflammation. CCR2 is required for monocytes to enter 
the CNS and, therefore, all infiltrating monocytes are CCR2+; 
however, downregulation of CCR2 following CNS entry has 
been reported. Genetic deletion of CC ligand-2 (CCL2), the 
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cognate ligand for CCR2, attenuates lesion volume, reduces 
macrophage recruitment and astrogliosis, and improves func-
tional outcome compared to controls after CHI (60). Similarly, 
post-injury macrophage recruitment substantially decreases in 
Ccr2−/− mice following CCI TBI and correlates with improved 
behavioral outcome (75). Separate groups have shown that 
CCX872 and RS504393, two selective CCR2 antagonists, reduce 
post-injury macrophage recruitment and improve functional 
recovery after CCI and weight drop TBI (76, 77). Together these 
studies indicate that interruption of CCL2/CCR2 signaling 
offers therapeutic potential to improve outcome following TBI 
and lends support to the notion that a persistent post-injury 
macrophage response is detrimental to outcome. Interruption 
of CCR2 signaling through the use of Ccr2RFP/RFP mice reduces 
post-injury monocytic infiltration and axonal pathology but 
enhances cortical and hippocampal MAPT mislocalization and 
hyperphosphorylation soon after lateral fluid percussion TBI 
suggesting that monocyte sub-populations may differentially 
influence outcome (78). Without detailed follow-up studies, the 
roles of monocyte sub-populations in mediating outcome from 
TBI remain unknown. Collectively, these studies indicate that 
interruption of post-injury monocytic infiltration has both ben-
eficial and detrimental consequences depending on the outcome 
measures evaluated.

The microglial response to TBI has been explored via genetic 
manipulation of CX3CR1. For example, fractalkine (CX3CL1) 
and its cognate receptor CX3CR1 represent a unique one-to-one 
ligand–receptor pair. In the CNS, CX3CL1 is highly expressed 
in neurons and CX3CR1 is expressed by microglia from their 
first entry into the neuroepithelial parenchyma around E10 
throughout adulthood (79). Microglia remain uniformly 
CX3CR1+ and do not express CCR2 or downregulate CX3CR1, 
even during severe neuroinflammation evident after TBI. After a 
single CCI TBI, Cx3cr1−/− mice have improved motor recovery 
and decreased neuronal loss through 15 days post-injury (DPI). 
By 30 DPI, however, these Cx3cr1−/− mice have worse cognitive 
dysfunction and neuronal loss compared to wild-type controls. 
These changes are directly associated with an altered and time-
dependent inflammatory profile in microglia (80). Subsequent 
work by a separate group confirms these results and demonstrates 
that CX3CR1 deficiency results in early protection but chronic 
worsening of CCI TBI-induced deficits due in part to a decrease 
in anti-inflammatory cytokines on CD11b+ sorted cells at 28 DPI 
(81). Together, these studies emphasize the temporal inflamma-
tory response to a single brain injury and confirm that alteration 
of this response can influence outcome. Moreover, acute transient 
interruption of the microglial response to TBI is beneficial to 
outcome.

Use of CX3CR1GFP/+CCR2RFP/+ reporter mice provides insight 
into the role of microglia and macrophages following TBI (76); 
however, it is still unclear if myeloid cells associated with chronic 
injury lesions are CX3CR1+ microglia or a mixture of CX3CR1+ 
microglia and CX3CR1+ peripheral macrophages that down-
regulated CCR2. Future studies geared to address the therapeutic 
potential of targeting specific sub-populations of reactive mac-
rophages may hold great translational significance. Because the 
cell-specific role of microglia and blood-derived macrophages 

in post-injury recovery remains limited, they will be collectively 
referred to as macrophages within this review.

POST-INJURY NEUROINFLAMMATION 
AND AGING

Accumulating evidence implicates the post-injury inflammatory 
response as a key mediator in long-term recovery from TBI. 
Many biological pathways are disrupted by experimental TBI 
resulting in progressive neurodegeneration including atrophy, 
neuronal loss, and axonal degeneration which are often associ-
ated with neuroinflammation including macrophage reactivity 
(82–85). These findings are consistent with human studies that 
report increased mRNA expression of microglial markers OX-6 
and CD68 at 1 year post-injury (11) and imaging studies showing 
increased binding of PK-[11C](R)PK11195 ligand, expressed by 
activated microglia, between 11 months and 17 years post-injury 
(86). Macrophage-mediated neuroinflammation is also a promi-
nent feature of many age-related neurodegenerative diseases 
including AD (87). For example, myeloid cells are instrumental 
in maintaining CNS homeostasis; however, aging significantly 
alters their properties (88). Consequently, age-related immune 
changes and those that occur during AD share many similarities 
and the distinction between the two processes remains unclear 
(89). Determining the extent to which age-related impairments in 
myeloid functioning facilitates accumulation of Aβ or if accumu-
lation of Aβ impairs myeloid functioning is critical in identifying 
which immune pathways should be targeted (90). Moreover, 
inflammation is a malleable response to TBI that changes with 
aging which suggests that it could be critical in mediating post-
injury outcome.

Age-related changes in the function of microglia and 
macrophages may influence outcome after TBI. For example, 
phagocytosis and chemotaxis diminish in both microglia 
and macrophages during aging. While the age-related pro-
inflammatory response to immune challenge is decreased in 
macrophages (91), aged microglia displayed an exaggerated pro-
inflammatory response referred to as “microglial priming” first 
described in a model of prion disease (92). A primed microglia 
profile includes (1) increased basal expression of inflammatory 
markers and mediators, (2) decreased activation threshold to 
express and release pro-inflammatory molecules, and (3) exag-
gerated inflammatory response to immune challenge (93). The 
cause of microglial priming is unclear and likely results from 
multiple factors, including but not limited to (1) a loss of inhibi-
tory ligand–receptor communication with aging neurons (94), 
(2) interactions with age-related misfolded proteins such as Aβ 
which promote pro-inflammatory cytokine production (95), (3) 
age-related exposure to increasing transforming growth factor-β 
which could compromise microglial transitioning from a pro- to 
anti-inflammatory phenotype (96), (4) age-related alterations in 
production of IL-4 and CCL11 in the choroid plexus (97–99), 
and (5) unique microenvironment effects in white and gray 
matter. For example, previous studies demonstrate that gray 
matter injury elicits an enhanced macrophage response in older 
rodents compared to younger rodents (100, 101); however, white 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


5

Kokiko-Cochran and Godbout Inflammatory Continuum of Brain Injury

Frontiers in Immunology  |  www.frontiersin.org April 2018  |  Volume 9  |  Article 672

matter demyelination injury provokes a reduced macrophage 
response in older rodents compared to younger controls (102). 
Collectively, these data indicate that aging before and after TBI 
could significantly influence outcome.

Taken together, these findings indicate that the immune 
response to and recovery from TBI is not absolute and very much 
influenced by multiple factors. Existing brain pathology and sec-
ondary immune challenges may be critical in shaping post-injury 
disease pathogenesis. Indeed, macrophage-mediated inflamma-
tion across the continuum of aging should be considered in the 
context of TBI, particularly when studying outcome related to 
development of neurodegenerative disease. Therefore, the pri-
mary purpose of this review is to summarize studies examining 
the relationship between single-incident TBI and development 
of AD-like pathology with an emphasis on the acute and chronic 
microglia and macrophage response following injury. Repetitive 
TBI will be considered as a repeated immune stressor and dis-
cussed only briefly. Furthermore, studies will be highlighted that 
examine the degree to which pathological protein accumulation 
and peripheral immune stressors influence outcome after TBI.

TBI, Inflammation, and AD
Chronic inflammation is a potential common denominator in 
both TBI and AD. TBI induces a widespread neuroinflammatory 
response that can promote recovery if controlled for a defined 
time period. Excessive or chronic neuroinflammation is linked to 
progressive changes, including atrophy, neuronal loss, and axonal 
degeneration (84, 103–105). Post-injury neuroinflammation is 
characterized by activation of brain-resident microglia, infiltration 
of peripheral immune cells, astrogliosis, and increased synthesis 
and release of pro- and anti-inflammatory molecules which can 
persist for months to years after the initial insult (106, 107). There 
is a persuasive body of evidence showing a significant inflam-
matory component in AD as well. First, microglia, monocytes, 
and astrocytes as well as inflammatory cytokines and chemokines 
are elevated in the AD brain (108). Second, retrospective studies 
demonstrate that sustained NSAID treatment during mid-life 
significantly decreases the risk of AD (109, 110). Considering 
the failure of prospective studies with NSAID treatment (111), 
the beneficial effects of NSAIDs is presumed to be related to pre-
morbid function. Third, recent genetic studies implicate inflam-
matory genes and pathways (CD33, TREM2, HLA-DRB5-DRB1) 
in late-onset disease pathology (112–115). Fourth, alterations 
in inflammatory cells and molecules are reported in multiple 
different mouse models of AD. Finally, accumulating evidence 
shows that microglia and monocytes play distinct roles in AD 
pathogenesis (116–119), thus implicating both the central and 
peripheral immune response in long-term outcome. Collectively, 
these results suggest that chronic post-injury neuroinflammation 
may be sufficient to induce or facilitate AD-related pathology.

TBI AND AMYLOID-RELATED 
PATHOLOGY

Rodent models have been a valuable resource in studying the 
relationship between TBI and AD-like pathology [see reviews 
(10, 120)]; however, most of the early studies focused on 

accumulation and production of Aβ. Many types of CNS injury, 
including TBI, induce the expression of APP. For example, APP 
expression increases in striatal and hippocampal axons along with 
cortical and thalamic neurons within the first 24 h after experi-
mental impact and fluid percussion TBI (121–123) which has 
been replicated in multiple follow-up studies using CCI as well as 
midline and lateral FPI (124–126). Traumatic axonal injury (TAI) 
is an additional source of accumulating APP (127, 128). For exam-
ple, APP accumulates in traumatized axons after all severities of 
TBI and has been detected many months post-injury (129–131).

Amyloid precursor protein accumulation does not result in Aβ 
deposition in many experimental studies though. Although Aβ 
deposition is apparent following rotational acceleration TBI in 
pigs (132, 133) and rabbits (134), a majority of rodent studies fail 
to show this association in non-transgenic animals using CCI, FPI, 
and weight drop models (121, 122, 124, 125, 135). Consequently, 
the validity of TBI-AD experiments in non-transgenic rodents is 
unclear. Many factors likely contribute to the lack of Aβ deposi-
tion in these studies. For example, multiple reports indicate that 
there are endogenous differences in rodent and human APP 
(136), which could significantly alter the production on Aβ after 
TBI. Injury severity may also be a critical mediator in outcome. 
Clinical studies indicate that Aβ accumulates within hours after 
severe TBI and is spread throughout the cerebral cortex compared 
to age-matched controls (29, 31). Indeed, the complex neuroanat-
omy and neurophysiology of the human brain, such as cortical 
folding, substantial white matter, and specific pathophysiology 
compared to the rodent brain, may facilitate distinct post-injury 
neuropathology (137). Finally, location and timing of injury may 
mediate Aβ pathology. For example, Aβ accumulation is observed 
in patients with dementia pugilistica which reflects traumatic 
injury as a result of repetitive brain insults. Thus, Aβ may have 
a specific temporal profile in single and repetitive models of TBI.

The availability of transgenic and knock-in mouse models of 
AD expressing wild-type or mutant human APP provided an 
additional avenue of study to determine the relationship between 
TBI and amyloid-related pathology. One of the earliest mouse 
models of AD utilized a platelet-derived growth factor-β promoter 
to overexpress mutant human APP. These PDAPP transgenic 
mice display age-related cognitive impairment, synaptic dys-
function, Aβ accumulation, and tau phosphorylation. Although 
CCI TBI induced a surge of plaque pathology in PDAPP mice 
soon after injury at 6 months of age, a substantial reduction in 
cortical and hippocampal plaque load was detected chronically 
(28, 40). Follow-up experiments revealed that CCI TBI in aged 
PDAPP mice caused a regression of established Aβ deposits (41). 
In both sets of experiments, the reduction in Aβ pathology was 
accompanied by increased neuronal death and memory impair-
ment, ultimately bringing into question the neurotoxic properties 
of Aβ alone.

Monomeric Aβ aggregates to form oligomers, protofibrils, 
and fibrils that accumulate in the characteristic Aβ plaque of AD. 
Thus, the production of Aβ is a complex process and accumulat-
ing evidence indicates that soluble Aβ oligomers, not Aβ plaques 
alone, are the disease-causing species that induce substantial 
neurotoxicity including synaptic dysfunction and behavioral 
impairment [see review in Ref. (138)]. Surprisingly, the role of 
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soluble Aβ oligomers in post-injury pathology has received lim-
ited attention. While several clinical studies report that higher 
cerebral spinal fluid (CSF) levels of Aβ42 predict improved neu-
rological recovery following severe TBI (139, 140), higher levels 
of CSF Aβ oligomers predict poor neurological recovery (141). A 
single experimental study examined the accumulation of soluble, 
insoluble, and oligomeric Aβ following TBI in the 3xTg mouse 
model of AD which harbors (overexpressed) transgenes carrying 
genetic mutations that promote Aβ and tau pathology. While 
CCI TBI increased soluble and insoluble cortical Aβ40 and Aβ42 
within 24 h after injury, both soluble and insoluble Aβ returned 
to sham levels by 7 DPI (23). Although these studies indicate that 
TBI induces an acute increase in oligomeric Aβ, the long-term 
consequences of this increase and the effect on specific cell types 
or brain region pathology remains unknown.

Based on the abovementioned results, one might suggest that 
the validity of TBI-AD experiments in APP-transgenic rodents 
is unclear as well. Indeed, many of these models express mutant 
APP at higher levels than endogenous APP and maintain genetic 
risk variants that cause familial AD which is fairly uncommon. 
The co-occurrence of TBI and APP mutation in the clinical set-
ting is rare (29) thereby restricting the results of many of these 
studies. Recent findings shed light on the discrepancies between 
experimental TBI-AD studies and emphasize the potential role 
of non-neuronal cells in mediating outcome. For example, TBI in 
the APP/PS1 knock-in mouse model of AD results in a delayed 
neuroinflammatory response compared to wild-type control 
mice subjected to CHI (16). While both brain-injured AD and 
wild-type mice had increased expression of inflammatory 
cytokines IL-1β, IL-6, and TNFα, peak elevations were delayed 
by 7 days in the AD mice but persisted in conjunction with astro-
cyte activation. A similar trend was observed in the chemokines 
CCL2, CCL3, CCL4, and CCL5. In addition, mRNA expression 
of CCR2, CD68, and MHC-II, characteristically expressed by 
macrophages, was delayed in APP/PS1 mice compared to wild-
type controls following TBI. Treatment with MW151, a small-
molecule inhibitor targeting pro-inflammatory cytokines in glia, 
attenuated the persistent increase in pro-inflammatory cytokine 
expression and improved cognitive recovery in APP/PS1 mice. 
Collectively, these results indicate that there is a direct relation-
ship between neuroinflammation and functional recovery and 
emphasize the distinct temporal inflammatory response to TBI 
in APP/PS1 mice (16).

The immunomodulatory effects of accumulating Aβ were 
confirmed in another set of TBI experiments. A separate group 
of investigators examined the macrophage response to lateral FPI 
in the R1.40 mouse model of AD, which maintains genetic pre-
disposition to developing Aβ deposits between 12 and 15 months 
of age via multiple copies of the mutant APP yeast artificial 
chromosome (38). TBI was administered to young, 2-month-
old mice to determine if brain injury worsened or advanced 
the appearance of age-related AD-like pathology. The acute 
macrophage response to TBI, as measured by Iba1, CD45, F4/80, 
CD68, and Trem2 immunohistochemistry, was strikingly muted 
in R1.40 TBI mice compared to wild-type mice exposed to TBI. 
Flow cytometry revealed that reduced numbers of myeloid cells 
acquired a macrophage phenotype in R1.40 TBI mice, correlating 

with decreased inflammatory cytokine expression. At a chronic 
time point, several months after TBI, the macrophage response 
to injury subsided in wild-type mice; however, it was relatively 
unchanged in R1.40 mice. In addition, R1.40 mice displayed 
significant tissue loss between 3 and 120 DPI and task-specific 
cognitive deficits in transferring information from 1 day to the 
next at 120 DPI. Importantly, TBI did not advance the appearance 
of Aβ plaques in R1.40 mice. Together, these findings emphasize 
the potential neuromodulatory role of accumulating Aβ and 
demonstrate that the glial response to TBI is altered in the pres-
ence of Aβ and correlates with altered functional recovery (38).

The immunomodulatory role of Aβ has been manipulated in 
other experimental models. For example, a 2013 study revealed 
that peripheral administration of Aβ42 and Aβ40 attenuates 
paralysis and reduces neuroinflammation in multiple mouse 
models of experimental autoimmune encephalomyelitis (EAE) 
(142). Aβ specifically suppressed cytokine secretion in activated 
peripheral lymphocytes and reduced inflammatory foci within 
the CNS without promoting Aβ deposition in the brain. These 
results indicate that Aβ maintains both pathological and benefi-
cial properties which are dependent on the type of CNS injury 
and the inflammatory context, namely lymphoid or brain tissue. 
Follow-up studies show that a potent hexapeptide core structure 
in amyloid is highly immunosuppressive and likely mediating 
these effects to some degree (143). A 2016 study demonstrates 
that Aβ is anti-microbial and protects against Salmonella enterica 
serotype Typhimurium (S. Typhimurium) infection in the 5XFAD 
transgenic mouse model of AD potentially via oligomerization. S. 
Typhimurium infection induced Aβ deposition in 1-month-old 
5XFAD mice compared to control 5XFAD mice, which appeared 
to surround and entrap bacterial colonies (144). The idea of 
using Aβ as a therapeutic is directly contrary to Aβ strategies in 
AD, which aim to remove Aβ from the brain. Nonetheless, these 
studies highlight a physiological role for Aβ in innate immunity 
and emphasize the effect of Aβ on other cell types which directly 
influences disease pathogenesis and functional outcome.

What does this mean for experimental TBI-AD research? In 
fact, the role of Aβ in mediating response to and recovery from 
TBI is largely unknown and may contribute to the variability 
in experimental and clinical studies examining the relationship 
between the two pathologies. For example, many studies report 
the presence or absence of Aβ as a primary dependent variable 
of interest following TBI with little attention given to oligomers, 
protofibrils, and fibrils. Based on recent evidence, the presence 
of these low-molecular weight aggregates may substantially alter 
the neuroinflammatory environment and influence outcome 
following TBI. Given that Aβ alone is not predictive of AD and 
many older neuropsychologically healthy individuals display 
amyloid deposition (145, 146), age-related Aβ accumulation may 
play a critical role in the brain’s ability to respond to and recover 
from traumatic injury. Many techniques are available to identify 
cell-specific changes following TBI which could be incorporated 
into future experimental TBI studies. For example, generating 
AD mice with targeted deletion of CCR2 or CX3CR1 could 
provide information on the cell-specific response of microglia 
and monocytes to TBI in the presence of accumulating Aβ. 
Subsequent fluorescence-activated cell sorting (FACS) would 
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allow investigators to identify the cell-specific inflammatory pro-
file of microglia and monocytes in this context. In addition, laser 
capture microdissection of macrophages near and away from Aβ 
plaques could be useful in identifying the spatial influence of Aβ 
accumulation. Finally, consistent inclusion of non-transgenic 
control mice would provide investigators with an opportunity to 
determine if transgenes of interest influence the response to and 
recovery from TBI.

TBI AND TAU-RELATED PATHOLOGY

Tau is a scaffolding protein found in neurons and enriched in 
axons where it regulates microtubule assembly primarily via phos-
phorylation. Increased tau phosphorylation reduces microtubule 
affinity and supports neuronal plasticity and axonal transport at 
the synapse (147). Under pathological conditions, such as those 
occurring in AD, increased post-translational modification of 
tau facilitates aggregation and impaired clearance from the brain 
resulting in characteristic NFTs [see review in Ref. (148)]. TBI-
induced axonal injury is proposed to be the first perturbation of 
tau resulting in dissociation from the microtubules. A robust and 
persistent neuroinflammatory response may then be sufficient to 
promote phosphorylation, aggregation, and subsequent neurode-
generation; key features of AD (149–151). For example, multiple 
experimental models of TBI enhance tau pathology that tempo-
rally co-exists with gliosis (21, 152, 153). In addition, activated 
microglia near the injury site release pro-inflammatory cytokines 
and chemokines that exacerbate tau pathologies (153–155). This 
is consistent with what is observed in many other tauopathies 
(156–159), including AD (160); reactive microglia correlate with 
tau lesions. Together, these studies indicate that chronic neuro-
inflammation could provoke tau pathology thereby worsening 
neuronal injury and long-term outcome. Controversy remains in 
this area though [see review in Ref. (161)], and some data suggest 
that senescent rather than reactive microglia drive tau pathology 
and neurodegeneration in AD (162–164). While the relationship 
between neuroinflammation and neurodegeneration remains 
complex, a breakdown in communication between microglia and 
neurons likely sets the stage for neuropathology.

Collectively, human studies show that post-injury tau pathol-
ogy varies in response to severity, type, and number of brain 
injuries as well as the time point of post-injury analysis. For 
example, temporal excision soon after severe TBI reveals axonal 
and white matter tau phosphorylation in the absence of soma-
todendritic accumulation (31). Severe TBI resulting in death 
induces sporadic phosphorylated tau and tau-positive glia but no 
difference in NFT pathology compared to age-matched controls 
(165, 166). Together, these studies demonstrate that single TBI 
induces acute tau phosphorylation but not aggregation. Other 
studies show that a history of single-incident TBI increases 
amyloid and tau pathology, neuroinflammation, and white mat-
ter degeneration compared to age-matched controls many years 
after the initial injury (11, 167). Tau pathology, in particular, 
extended beyond the entorhinal cortex and hippocampus to 
the cingulate gyrus, superior frontal gyrus, and insular cortex, 
which was not observed in controls (167). The co-localization 
of tau pathology and neuroinflammation was not depicted in 

these studies. Tau pathology has been consistently reported 
after mild repetitive TBI resulting in CTE. Historic studies on 
CTE were in boxers, but recent evidence indicates that athletes 
in many impact-related sports have increased tau pathology 
followed repetitive mild TBI [see review in Ref. (168)]. Finally, 
TBI resulting from exposure to an explosive blast causes axonal 
injury, tau phosphorylation, persistent neuroinflammation, 
and neurodegeneration characteristic of CTE suggesting that 
common pathogenic mechanisms mediate outcome in military 
veterans and repetitively injured athletes (152, 169). These data 
indicate that tau phosphorylation is a conserved response to 
TBI regardless of primary insult, but progressive tau pathology 
occurs in response to repetitive or blast TBI.

Experimental studies indicate that post-injury tau pathology 
is variable and dependent on multiple factors in non-transgenic 
rodents. Overall, tau phosphorylation is commonly reported 
soon after single-incident CCI, weight-drop, FPI, and blast TBI 
(<7 DPI) (170–174); however, chronic worsening of tau pathol-
ogy is rare. For example, single blast TBI induces tau phospho-
rylation in the cortex and hippocampus at 30  DPI (175), with 
separate groups also reporting persistent hippocampal pathology 
at 3 months post-injury (176). Also, cortical and hippocampal tau 
phosphorylation is reported 6 months after moderate CCI but not 
6 or 12 months after mild CCI (58, 177). Tau phosphorylation is 
only part of a potentially pathological process. Following hyper-
phosphorylation, tau self-assembles, aggregates, and forms NFTs; 
however, tau oligomers may represent the most toxic and patho-
logically relevant aggregate. Indeed, oligomeric tau contributes to 
neurotoxicity by disrupting mitochondrial and synaptic function 
and strongly correlates with behavioral impairment (178). Recent 
studies show that fluid percussion TBI induces oligomeric tau 
in the cortex and hippocampus within 24  h post-injury where 
it remains elevated compared to shams 2  weeks post-injury 
(179). Post-injury oligomeric tau was isolated from TBI mice in 
follow-up studies and injected in the hippocampus of mice over-
expressing human tau (hTau). Tau oligomers derived from brain 
injured mice subsequently caused cognitive dysfunction and the 
appearance of tau oligomers in hTau mice supporting the notion 
that tau oligomers are neurotoxic and contribute to tau spreading 
throughout the brain (180). Accumulating evidence indicates 
that neuron-to-neuron propagation of tau is a key feature of 
neurodegenerative tauopathies including AD [see review in Ref. 
(181)]. Together, these studies implicate soluble tau aggregates as 
mediators of pathological spreading throughout the brain termed 
“cistauosis.” Thus, abnormal processing of tau is not necessarily 
the primary mechanism of disease pathogenesis. Recent studies 
support this concept and indicate that both blast and impact 
TBI induce cis p-tau leading to axonal disruption, tau spread-
ing, and neurodegeneration. Treatment with cis p-tau antibody 
consequently blocked pathological tau spreading and improved 
functional recovery (182). Collectively, these results indicate that 
tau alone possesses neurotoxic properties that mediate recovery 
following TBI.

Few experimental TBI studies have been performed in tau 
transgenic mice without concurrent amyloid pathology. Single-
incident mild CHI TBI in aged hTau transgenic mice that express 
all six isoforms of hTau in absence of murine tau did not worsen 
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tau phosphorylation or induce tau aggregation 3  weeks post-
injury (153). A separate group of investigators examined the 
acute and chronic effects of moderate lateral FPI in a similar hTau 
mouse model, mouse tau knockout expressing wild-type human 
transgene, and found that the macrophage response to TBI was 
enhanced compared to control TBI and sham mice at 3 DPI with 
no influence on tau phosphorylation (183). This was confirmed 
with immunohistochemistry examining expression of CD45, 
F4/80, and CD68. By 120 DPI hTau TBI mice displayed increased 
tau pathology in the cortex and hippocampus and a persistent 
macrophage response that correlated with deficits in spatial 
search strategies to complete a memory task (183). Incorporation 
of flow cytometric techniques facilitated identification of four dis-
tinct macrophage populations at 120 DPI: (1) CD11blow/CD45low 
microglia, (2) CD11bhigh/CD45low microglia, (3) CD11b+/CD45int 
microglia, and (4) Ly6C+/CD11b+/CD45high macrophages. The 
CD11blow microglia expressed the lowest levels of CD45, fol-
lowed by the CD11bhigh and the CD45int groups characteristic of 
reactive microglia, while the peripheral macrophages were the 
highest expressers of CD45. A significant proportional reduction 
was identified in hTau TBI compared to wild-type TBI mice in 
all three microglial sub-populations at 120 DPI. No significant 
differences were observed in the proportion of CD11b+/CD45high 
cells between brain- and sham-injured hTau and wild-type mice. 
Ly6Clow and Ly6Chigh microglia were significantly reduced in 
the hTau TBI mice, but Ly6Clow macrophages persisted at sig-
nificantly higher numbers compared to the hTau sham-injured 
group. The authors speculate that Ly6Clow/CD11b+/CD45high 
cells represent CX3CR1+ patrolling macrophages (184), and 
that Ly6C+/CD11b+/CD45int microglia represent inflammatory 
CCR2+ monocyte-derived macrophages, differentiating in the 
CNS tissue environment. Without detailed cell-specific analysis 
of cytokine and chemokine expression, the true nature of these 
cell populations remains unclear. For the first time, these results 
show that a single TBI significantly changes the proportion of 
reactive microglia and macrophages within the brains of hTau 
mice compared to wild-type mice many months after TBI (183). 
These data indicate that the presence of wild-type hTau is suf-
ficient to alter the macrophage response to single-incident TBI.

Collectively, these studies confirm the vulnerability of the 
brain to tau pathology following single-incident TBI. Indeed, 
both clinical and experimental studies consistently report tau 
phosphorylation soon after TBI; however, the presence or absence 
of tau phosphorylation alone is not sufficient to define tau pathol-
ogy and may represent a transient effect of TBI. Furthermore, 
the role of tau oligomers is very limited in the context of TBI 
and represents an important avenue of study for future experi-
ments. The prion-like properties associated with abnormal tau 
implicate the protein itself as an initiator of disease pathogenesis. 
As a result, the relationship between damaged neurons and other 
cells types remains unclear and the question remains, which cell 
is driving post-injury pathology? While recent experimental 
studies demonstrate a unique macrophage response to TBI 
that correlates with tau pathology and behavioral impairment, 
one is left wondering whether or not the abnormal tau caused 
the altered inflammatory response or the altered inflammatory 
response caused the abnormal tau? Certainly, use of tau knockout 

mice or CCR2 and CX3CR1 knock-in/knock-out mice could 
provide insight into these questions. In addition, the time course 
of pathology must be a priority. Defining age-related pathology 
requires aging as a primary variable of interest and the temporal 
course of disease pathology should not be undervalued.

TBI AND COMBINED EFFECT OF 
AMYLOID AND TAU-RELATED 
PATHOLOGY

The combined effect of amyloid and tau pathology has gained 
recent attention over the last 10 years; however, results from non-
transgenic rodent studies remain variable. The presence of Aβ and 
tau pathology appears to be dependent on the injury model used 
and the post-injury time point. Both fluid percussion and moder-
ate CCI TBI induce Aβ and tau pathology at acute (3 and 7 DPI) 
and chronic (6 months post-injury) time points in rats (177, 185, 
186), but other groups report no difference in Aβ or tau levels at 
2 and 4 weeks post-injury (187). PBBI decreased full length APP 
at 3 and 7 DPI but increased beta-secretase C-terminal fragments 
of APP. Both Aβ40 and Aβ42 were increased at 7 DPI, but the 
authors explain that detection was difficult due to low expression. 
Similarly, full length tau decreased at 3 and 7 DPI but oligomeric 
tau was elevated at 4 h and 7 DPI (188). Out of these studies, only 
one reported that increased Aβ and tau pathology occurred in 
conjunction with neuronal loss and increased MHC-II immuno-
reactivity several months post-injury (177).

Given that Aβ and abnormal tau are hallmark features of AD, 
transgenic mice harboring mutations in both APP and MAPT 
are more often used to characterize the relationship between 
TBI and AD. Use of these models provides investigators with an 
opportunity to study the interaction of Aβ and tau pathology fol-
lowing TBI, but the clinical relevance of these models often comes 
into question. To date, no mutation in MAPT is causative in 
development of AD thereby restricting the translation of results. 
Nonetheless, accumulation of Aβ and tau pathology occurs as a 
result of normal aging [see review in Ref. (189)] and, therefore, 
the relevance of these abnormal proteins as mediators of response 
to and recovery from TBI remains applicable.

Variations of CCI have been used to examine the effects of 
TBI mouse models of AD with amyloid and tau mutations via 
overexpression of transgenes. For example, a series of studies 
examining moderate CCI in 3xTg-AD mice revealed a tempo-
rally and anatomically distinct increase in intra-axonal Aβ and 
tau phosphorylation between 24 h and 7 DPI (21, 25). Follow-up 
studies revealed that post-injury Aβ and tau pathology could be 
improved via inhibition of γ-secretase or c-Jun N-terminal kinase 
(JNK), respectively (21, 190). Interestingly, a recent report shows 
that post-injury JNK inhibition improves amyloid and tau pathol-
ogy, neuroinflammation, BBB disruption, synaptic loss, and 
neurodegeneration in non-transgenic mice 7  DPI (191). Thus, 
the JNK pathway may be a relevant therapeutic target influencing 
multiple pathological processes.

In addition, the effect of ApoE4 allele was examined in the 
3xTg mice after TBI. ApoE4 is a primary genetic risk factor for 
late-onset AD and has been associated with worsened outcome 
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after TBI (192–196). While 3xTg-ApoE4 mice displayed increased 
post-injury APP accumulation compared to 3xTg mice with 
the ApoE2 or ApoE3 allele, TBI did not influence intra-axonal 
Aβ40 and Aβ42 or tau pathology 24 h post-injury. These results 
demonstrate that axonal injury may be a primary effect of ApoE4 
genotype following TBI but the interaction effect of ApoE and 
tau pathology remains unclear in this experimental model of TBI 
(197). Collectively, these data indicate that genetic predisposition 
to AD drives independent mechanisms that promote post-injury 
amyloid and tau pathology.

Other studies have examined tau pathology in mouse models 
of AD with genetic predisposition to developing only amyloid 
pathology via inclusion of mutant human transgenes. A recent 
study examining CCI in APP/PS1 mice revealed chronic 
region-specific changes in Aβ with no change in tau pathology 
16 weeks post-injury (198). For example, Aβ plaques decreased 
in the perilesional area after TBI which correlated with increased 
expression of genes involved in Aβ clearance (198). Finally, CCI 
in Tg2576 mice, which overexpress mutant APP, increased Aβ, 
tau phosphorylation, and inflammatory cytokines IL-1β and 
TNF-α 3 DPI. Inhibition of GSK via treatment with the flavonoid 
luteolin attenuated this response (199), but the long-term and 
functional consequences of this intervention remain unknown.

Together, these studies indicate that choice of experimental 
TBI model and rodent model (rat or mouse, transgenic or non-
transgenic) influence the temporal appearance of post-injury 
amyloid and tau pathology through independent mechanisms. 
Alternatively, a common mechanism may mediate post-injury 
amyloid and tau pathology in a temporally distinct manner which 
may vary between transgenic and non-transgenic rodent models. 
Finally, one could hypothesize that accumulating pathological 
proteins in transgenic rodents substantially mediates the brain’s 
ability to respond to injury by priming the inflammatory environ-
ment before TBI. Cell-specific inflammatory profiles of microglia 
and monocytes are not routinely performed in transgenic mice 
prior to TBI, therefore this effect remains unknown. In summary, 
the combined effect of amyloid and tau pathology following TBI 
is complex and likely dependent on multiple factors that are 
time- and injury severity-dependent. We propose that future 
studies look beyond accumulation of amyloid and tau as primary 
dependent variables of interest and consider interaction effects 
of inflammation, amyloid, and/or tau as mediating factors of 
post-injury outcome measures. Increasing evidence, as described 
in the following sections, clearly shows that pre- and post-injury 
immune stressors that elicit macrophage reactivity influence 
response to and recovery from TBI.

PRE-INJURY PERIPHERAL IMMUNE 
CHALLENGE IMPROVES RECOVERY 
FOLLOWING TBI

Neuroprotective preconditioning occurs when a moderate 
primary stimulus protects the CNS from a secondary stimulus. 
The goal is to use a sub-threshold inflammatory stimulus to pre-
condition a neuroprotective response to a secondary stimulus. 
For example, peripheral LPS treatment is neuroprotective 

against stroke, ischemia, and higher-dose LPS treatments (200). 
Similar effects have been reported in experimental models of 
TBI. For example, a single i.p. dose of LPS (0.1 mg/kg) 5 days 
before CCI reduced CD68 and increased IL-6 expression in TBI 
mice, which correlated with decreased contusion volume and 
improved behavioral recovery (201). Follow-up studies revealed 
that a single i.p. dose of LPS (0.1 and 0.5 mg/kg) 5 days before 
CCI delayed post-injury kindling epileptogenesis. In addition, 
pre-injury LPS treatment attenuated neuronal loss, IL-1β, and 
TNFα overexpression in the hippocampus (202). More recently, 
pre-injury treatment with LPS (1.0  mg/kg, single i.p. dose for 
4 days) reduced neuronal death and lesion volume after lateral 
cryogenic brain injury (61). The authors conclude that microglial 
reactivity induced by 4 peripheral pre-injury LPS injections offers 
post-injury neuronal protection. Indeed, Chen and colleagues 
demonstrate that peripheral LPS treatment increases cortical 
expression of M2-related genes, such as Ym1, Socs3, Il4ra, Ptprc, 
Cd163, Il1ra, Mrc1, and Arg1 (61). While the appearance of 
AD-related pathology was not examined in any of these studies, 
the data support a neuroprotective role of reactive microglia and 
indicate that pre-injury immune challenge significantly alters 
response to and recovery from brain injury, in part, via modula-
tion of macrophage reactivity and cytokine production.

POST-INJURY PERIPHERAL IMMUNE 
CHALLENGE WORSENS RECOVERY 
FOLLOWING TBI

Increasing evidence shows that TBI induces a persistent pro-
inflammatory profile in microglia, but the functional consequence 
of this dysfunction is still under investigation. For example, 
single CCI in adult B6 mice induced chronic microglial reactivity 
12 months post-injury. Highly reactive microglia were detected 
near the lesion cavity and characterized by increased expression 
of MHC-II, CD68, and NADPH oxidase (56). Midline FPI also 
induced features of primed pro-inflammatory microglia up to 
1 week post-injury, which included elongated, rode-shaped Iba1+ 
cells that were also MHC-II and CD68 positive (203). Follow-up 
studies revealed that MHC-II mRNA and protein expression 
increased specifically in microglia after FPI and correlated with 
Iba1 reactivity and amoeboid morphology at 30 DPI (204). These 
data align with human studies showing a persistent post-injury 
microglial inflammatory profile. For example, inflammatory 
cytokines IL-6 and TNFα are detected in the CSF up to 12 months 
post-severe TBI and correlate with functional impairment and 
disinhibition (205, 206). Immunohistochemical analysis of autop-
sied brains revealed increased CD68+ and CR3/43+ (MHC-II+) 
reactive microglia several months post-injury. The presence of 
TAI increased the immunoload of microglial reactivity, particu-
larly in the white matter (207). Separate studies demonstrate 
that CR3/43+ cells associate with increased APP accumula-
tion 2  weeks post-injury and myelin basic protein 2–8  years 
post-injury (11). Together these data confirm that TBI induces 
persistent macrophage inflammation; however, the cell-specific 
role of microglia and monocytes remains unknown. Without 
cell-specific analysis of microglia and monocytes, the distinct 
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role of each cell type is unclear and, therefore, not targetable with 
therapeutics. For example, macrophage reactivity could be the 
result of some other pathological process or macrophage reactiv-
ity could be perpetuating post-injury pathology. Additional work 
is needed to address these outstanding concerns.

Recent data demonstrate that TBI induces a primed microglial 
phenotype, defined by altered morphology and increased expres-
sion of MHC-II and CD68 (204, 208). Primed microglia do not 
display acute reactivity but instead become hyper-reactive after 
immune stimulation [see review in Ref. (66)]. This effect has been 
observed in experimental models of aging. For example, aged 
rodents display microglial priming via increased expression of 
MHC-II, complement receptor 3 (CD11b) and altered morphol-
ogy (209, 210). Aged animals challenged with lipopolysaccharide 
(LPS) display increased microglial expression of IL-1β compared 
to adult mice, which results in prolonged sickness behavior 
(211) and a depressive-like phenotype (212). Follow-up studies 
revealed that LPS challenge in aged mice also promoted increased 
hippocampal expression of IL-1β, IL-6, and TNFα as well as spa-
tial memory impairments (213, 214). Moreover, a similar effect 
is induced by midline FPI in adult mice. Midline FPI induces 
acute microglial activation, recruitment of peripheral cells, and 
motor impairment; however, many of these effects are transient. 
Only glial reactivity persists 30  DPI with deramified microglia 
maintaining increased expression of MHC-II. Peripheral LPS 
challenge at 30 DPI caused an exaggerated microglial response in 
TBI mice characterized by increased MHC-II, IL-1β, and TNFα 
expression and depressive-like behaviors compared to TBI mice 
given saline (204). Subsequent studies confirmed that LPS at 
30 DPI exaggerated memory recall deficits in TBI mice as well 
(208). Another group has since reported that LPS 5 DPI causes an 
exaggerated inflammatory response in TBI rats (via impact accel-
eration) which is associated with depressive-like behavior and 
cognitive impairments 3 months post-injury (215). These results 
emphasize the chronic nature of the inflammatory response to 
TBI and confirm that subsequent post-injury immune challenges 
influence outcome and elicit exaggerated behavioral deficits.

Together, these studies indicate that primed microglia potenti-
ate brain pathology and behavioral decline in aging and after CNS 
injury. While there are many similarities between age- and injury-
related microglial priming, the cumulative effect of aging and TBI 
in microglial priming remains unknown and may be critical in 
determining the relationship between TBI and development of 
age-related neurodegenerative disease such as AD. For example, 
recent analysis of human brain samples revealed that LPS and 
E. coli K99 proteins were increased in AD brains compared to 
controls. LPS co-localized with Aβ40 and Aβ42 around amyloid 
plaques and near blood vessels (216). Multiple experimental 
studies show that peripheral LPS induced neuroinflammation, 
accumulation of Aβ, tau pathology, and cognitive impairment in 
non-transgenic rodents (217–219) although variable Aβ and tau 
pathology is apparent in transgenic mouse models of AD after 
peripheral LPS treatment (220–224). Moreover, peripheral LPS 
treatment after ischemia-hypoxia induced Aβ that co-localized 
with myelin aggregates in rats (225). While the mechanism(s) 
by which LPS enters the brain in unknown, these studies lend 
support to the notion that infection may be associated with 

development of AD. Thus, post-TBI infection that stimulates an 
inflammatory response may have a significant effect in long-term 
recovery.

Repetitive TBI as a Post-Injury Immune 
Challenge
Mounting evidence indicates that neuroinflammation and 
microglial priming is a factor in repetitive TBI as well. In this 
case, the first TBI is the priming event and subsequent brain 
injuries cause an exaggerated inflammatory response that 
promotes pathology. Repetitive TBI through participation in 
contact sports is associated with chronic cognitive impairment, 
including development of CTE, a neurodegenerative disease 
characterized by abnormal tau accumulation in the sulci of the 
cortex (226). While Aβ plaques are present in some cases of CTE, 
the distribution and location is distinct from that occurring in 
AD (227–229). Glial reactivity is a common feature of CTE and 
includes astrocytic accumulation of abnormal tau and microglial 
reactivity (152, 226). For example, recent PET imaging studies 
reveal increased TSPO binding in retired NFL players in the 
hippocampus, entorhinal cortex, parahippocampal cortex, and 
supramarginal gyrus compared to age- and sex-matched controls 
without a history of repeated brain injury (230). This supports 
other studies showing increased CD68+ microglia in the brains of 
American football players, which partially mediated coincident 
tau pathology (231). Together, these data indicate that chronic 
neuroinflammation mediates AD-related pathology following 
repetitive TBI and the inter-injury time interval may be critical 
in this response.

One is faced with many challenges when trying to summa-
rize data from experimental studies describing the relationship 
between repetitive TBI, neuroinflammation, and AD. First, a 
universal experimental model of repetitive TBI is not established. 
Thus, there is a great deal of variability in the number of inju-
ries and timing between injuries in published reports. Second, 
the role of amyloid is underexplored in experimental models 
of repetitive TBI, which is predominantly characterized by tau 
pathology. Third, control animals after each TBI are not always 
included. For example, comparisons are often made between 
sham mice and brain injured animals that received the highest 
number of repetitive brain injuries. As a result, data describing 
inflammatory changes between injuries remain limited. Finally, 
most studies use Iba1 or morphological analysis to define reactive 
macrophages at a sub-acute time point after the final brain injury. 
Repetitive TBI consistently alters astrogliosis and microgliosis up 
to 1 year post-injury with a positive correlation between number 
of injuries and gliosis (232). While these data are important, they 
provide a restricted view of the cell-specific role of microglia and 
monocytes and do not define the cell-specific inflammatory state 
between injuries. To date, no studies could be found that define 
inter-injury macrophage changes in experimental models of 
repetitive TBI. Thus, the following paragraphs will briefly describe 
the incidence of Aβ and tau pathology as well as macrophage 
reactivity at post-injury time points following repetitive TBI.

Animal models of repetitive mild TBI are described in a recent 
review, which includes references to development of post-injury 
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Figure 1 | Macrophage-related response to brain injury varies in response to 
previous, coincident, and subsequent immune stressors. Normal, age-related 
health burden is depicted with a solid black line and gray shading.  
(A) Traumatic brain injury (TBI) in the presence of pathological tau (solid blue 
line) results in an enhanced macrophage response to TBI that remains 
elevated at chronic post-injury time points. TBI in the presence of Aβ (solid red 
line) results in an acute blunted macrophage response that increases at 
chronic post-injury time points. TBI occurring in the absence of tau or Aβ 
(dotted black line) results in acute macrophage-related neuroinflammation that 
subsides over time. (B) Post-injury peripheral immune challenge (solid blue 
line) causes a hyper-active macrophage response correlating with behavioral 
dysfunction. Repetitive post-injury immune challenge (dotted blue line), similar 
to what is observed in repetitive TBI, increases macrophage-related 
neuroinflammation and correlates with the advanced neuropathology. 
Pre-injury peripheral immune challenge at sub-threshold levels (red line) 
attenuates the post-injury macrophage-related inflammatory response to TBI. 
Single TBI (dotted black line) results in acute macrophage-related 
neuroinflammation that subsides over time. Over time, macrophage-related 
neuroinflammation increases with normal health burden.
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Aβ and tau pathology (232). While severity of repetitive TBI is 
typically referred to as “mild,” the number of injuries varies from 
2 to 10 across several days or weeks. A recent highly repetitive 
mouse model of TBI including 30 injuries has also been char-
acterized (59). Typically 1 or 2 brain injuries are administered 
per injury day. Non-transgenic mice exposed to repetitive mild 
TBI consistently show increased APP, phosphorylated tau, and 
behavioral impairment at chronic post-injury time points (232). 
Only two reports examining repetitive TBI in Tg2576 mice 
showed increased Aβ in addition to behavioral impairment 
at chronic post-injury time points (165, 233). Similarly, only 
transgenic tau mouse models [T44 (one mouse), hTau] displayed 
NFT pathology following repetitive TBI (153, 234). Macrophage 
reactivity was only reported in 1 of these 4 studies, and indicated 
that repetitive TBI in aged hTau mice resulted in increased CD45 
immunoreactivity in the cortex, corpus callosum, and hippocam-
pus 3 weeks post-injury (153). Together, these data are similar to 
single TBI experimental studies and show that TBI alone is not 
sufficient to induce amyloid or tau aggregation in non-transgenic 
rodents. The presence of pathological proteins (e.g., amyloid and 
tau oligomers or fibrils) in transgenic rodents at the time of TBI 
is sufficient to promote aggregation. Nonetheless, a recent report 
indicates that 30 mild TBI’s do not alter Aβ and tau pathology in 
18-month-old 3xTg mice (59). In summary, these data confirm the 
complexity of repetitive TBI and strongly emphasize the need for 
more research in this area. Furthermore, a uniform experimental 
model is required to confirm the inter-relationship between 
repetitive TBI, neuroinflammation, and AD-like pathology.

What about peripheral immune challenge after repetitive TBI? 
One group considered this question and determined that timing 
of LPS treatment mediated a beneficial or detrimental post-injury 
effect in rats. For example, LPS treatment 1 day after repetitive 
mild TBI (3 TBI’s, 5 days apart) increased macrophage reactivity 
but decreased production of inflammatory cytokines and reduced 
neuronal injury (235). Delayed LPS treatment 5 days after repeti-
tive TBI increased inflammatory cytokines, worsened neuronal 
damage including phosphorylation and aggregation of tau, and 
impaired behavioral recovery (235). These results highlight the 
temporal immune response to TBI and indicate that delayed post-
injury immune challenges are detrimental to outcome.

MACROPHAGE ELIMINATION ALTERS 
RECOVERY FOLLOWING TBI

If the macrophage response is critical in mediating outcome 
following TBI, removal of microglia and/or monocytes should 
substantially alter recovery. Studies with CCR2 and CX3CR1 
knock-in/knock-out mice demonstrate that permanent inter-
ruption of the microglial or macrophage response to TBI does 
not offer optimal protection after injury. Alternatively, various 
pharmacologic agents are available to transiently interrupt the 
microglial and macrophage response to injury. While the use of 
these agents is limited in experimental TBI studies, several groups 
have reported that microglial elimination [via colony-stimulating 
factor 1 receptor (CSF1R) inhibition] improves behavioral 
performance and synaptic functioning independent of Aβ 

accumulation in multiple transgenic mouse models of AD (3xTg, 
5xFAD, APP/PS1) (236–238). Similarly, CSF1R inhibition after 
a chronic hippocampal lesion model of brain injury improved 
behavioral recovery, reduced pro-inflammatory molecules, and 
increased dendritic spines (239). Recent studies using the same 
injury model confirmed that post-injury microglial depletion fol-
lowed by microglial repopulation improves behavioral recovery, 
attenuates the lesion-induced neuroinflammatory response, and 
increases dendritic spin densities despite extensive neuronal loss 
in the hippocampus (240). Another group examined the role of 
microglia in axonal damage following repetitive TBI by using 
CD11b-TK (thymidine kinase) mice, which require valganciclovir 
to deplete macrophages. In these experiments, low and moderate 
doses of valganciclovir reduced CD11b cell populations with no 
effect on axonal injury, silver staining, or APP accumulation at 
sub-acute post-injury time points (241). Discrepancies between 
the brain injuries studies are likely due to multiple factors, includ-
ing (1) injury model; (2) post-injury time points; (3) post-injury 
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outcome measures (only one considered the effect on APP and 
tau pathology); (4) CSF1R targets microglia specifically while 
CD11b+ cells include microglia and macrophages; and (5) CSF1R 
eliminated >90% of microglia while low and intermediate dose of 
valganciclovir depleted 35 and 56% of CD11b+ cells, respectively. 
Nonetheless, these studies highlight the potential therapeutic 
relevance of targeting microglia and macrophages to modulate 
post-injury outcome and further indicate that neuroinflamma-
tion is a critical mediator of post-injury pathology.

CONCLUSION

Experimental models are a valuable resource in identifying the 
underlying biological pathways that link TBI to AD. Both TBI 
and AD are complex neurodegenerative pathologies that elicit 
a central and peripheral immune response. This review show-
cases the dynamic nature of post-injury macrophage-mediated 
inflammation in promoting post-injury Aβ and tau pathology. 
Throughout the review, several themes emerged that are notable 
and depicted in Figure  1. First, the inflammatory response to 
TBI is not absolute and is influenced by previous and subsequent 
inflammatory challenges. This is best reflected in studies with LPS 
administration before or after TBI. Importantly, in both instances 
LPS administration altered outcome from TBI. Certainly, there 
is a specific cascade of inflammatory events that occur after TBI, 
but these studies indicate that subtle alterations in this response 
are possible and can influence outcome. Second, accumulation 
of Aβ and tau phosphorylation are routinely considered primary 
dependent variables in experimental studies, but these pathologi-
cal features do not often correlate with neuronal loss or behavioral 
impairment. Furthermore, many studies report that TBI does not 
influence Aβ and/or tau pathology leaving one to question the 
true role of these proteins in post-injury outcome. Both Aβ and 
tau phosphorylation are reported in normal aging and could, 
therefore, influence the brain’s response to TBI without causing 
AD. Thus, accumulation of Aβ and tau phosphorylation could 

be viewed as part of the injury process instead of a result of the 
injury. Third, additional factors must account for the resistance of 
rodents to develop Aβ and tau pathology after TBI. This could be 
due, in part, to intrinsic differences between human and rodent 
APP and tau. Given that multiple mouse models of AD display 
an altered inflammatory response to TBI, it is possible that accu-
mulation of pathological proteins alters the neuroinflammatory 
environment in a way influences the brain’s response to injury. 
One could speculate and suggest that low-molecular weight 
pathological proteins “prime” the brain to respond to TBI. The 
role of Aβ and tau in this “priming” is potentially distinct and may 
include beneficial and detrimental consequences depending on 
age at injury and time of post-injury analysis. Finally, the distinct 
role of microglia and monocytes in TBI requires additional inves-
tigation and characterization. Targeting these cell types indepen-
dently may provide new avenues for therapeutic intervention. 
Accumulating evidence shows that transient interruption of the 
macrophage response to TBI could improve outcome. Moving 
forward, we must appreciate the continuous nature of inflamma-
tion and consider previous, consequent, and subsequent immune 
challenges as mediators of post-injury outcome.
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