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High-mobility group box 1 (HMGB1), a well-known danger-associated molecular pattern 
molecule, acts as a pro-inflammatory molecule when secreted by activated immune cells 
or released after necrotic cell damage. HMGB1 binds to immunogenic bacterial compo-
nents and augments septic inflammation. In this study, we show how HMGB1 mediates 
complement activation, promoting sterile inflammation. We show that HMGB1 activates 
the classical pathway of complement system in an antibody-independent manner after 
binding to C1q. The C3a complement activation product in human plasma and C5b-9 
membrane attack complexes on cell membrane surface are detected after the addition 
of HMGB1. In an acetaminophen (APAP)-induced hepatotoxicity model, APAP injection 
reduced HMGB1 levels and elevated C3 levels in C1q-deficient mouse serum samples, 
compared to that in wild-type (WT) mice. APAP-induced C3 consumption was inhibited 
by sRAGE treatment in WT mice. Moreover, in a mouse model of brain ischemia–
reperfusion injury based on middle cerebral arterial occlusion, C5b-9 complexes were 
deposited on vessels where HMGB1 was accumulated, an effect that was suppressed 
upon HMGB1 neutralization. We propose that the HMGB1 released after cell necrosis 
and in ischemic condition can trigger the classical pathway of complement activation to 
exacerbate sterile inflammation.

Keywords: high-mobility group box 1, complement, sterile inflammation, ischemia, hepatotoxicity

inTrODUcTiOn

High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule 
located in the nucleus that is secreted from activated monocytes/macrophages and released from 
necrotic cells (1). HMGB1 contains two DNA-binding motifs, A and B boxes, and an acidic tail. 
HMGB1 in the nucleus maintains chromatin structure and regulates transcription, whereas cytoplas-
mic HMGB1 activates inflammasome and autophagy (2). Cytoplasmic translocation and secretion 
of HMGB1 is regulated via acetylation and phosphorylation (3, 4). Extracellular HMGB1 triggers 
inflammation (5) and also functions as a late mediator of endotoxemia and sepsis in both animal 
models and human patients (6–8). Specific inhibition of endogenous HMGB1 with antagonists, 
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such as soluble receptor for advanced end glycosylation products 
(sRAGE), HMGB1 A box or an anti-HMGB1 antibody (Ab), has 
been shown to reverse the lethality of established sepsis (9, 10). 
Extracellular HMGB1 alone binds to Toll-like receptor (TLR) 
2, TLR4, and RAGE and activates nuclear factor (NF)-κB and 
extracellular signal-regulated kinase (ERK) 1/2 (11–13), thereby 
inducing sterile inflammation (14, 15). In addition, HMGB1 
can bind to pathogen-associated molecular pattern (PAMP) 
molecules of lipopolysaccharide (LPS) or lipoteichoic acid 
(LTA) and facilitate their transfer to CD14, resulting in TLR4- or 
TLR2-mediated inflammation (16, 17). In sterile inflammation 
without bacterial substances, HMGB1 interacts with the host mol-
ecules interleukin-1β (18), chemokine (C-X-C motif) ligand 12 
(CXCL12) (19), and nucleosomes (20) and augments or modifies 
pro-inflammatory reactions. HMGB1 acts as a pro-inflammatory 
cytokine mediator of sepsis; however, it induces a weak tumor 
necrosis factor (TNF)-α production in in vitro treatments (21). 
Therefore, the mechanism of HMGB1-mediated inflammation, 
as a DAMP molecule-mediated process in  vivo, remains to be 
delineated.

The complement system is a first-line defense against pathogens 
and acts as a sensor for altered self-molecules (22, 23), triggering 
one of three distinct complement activation cascades: the clas-
sical, alternative, or lectin pathways (24). The classical pathway 
is initiated by the binding of the pattern recognition molecule 
C1q–IgG and IgM in immune complexes, PAMPs on microbes 
(25), pentraxins (PTX3) of C-reactive protein, or host apoptotic 
cells and debris (26). The C1 complex, formed by the binding of 
the proteases C1r and C1s to C1q, initially cleaves C4 into C4b 
and C4a and then processes C2 into C2b and C2a to form the 
C3 convertase. The alternative pathway is triggered directly by 
certain microbial cell wall components and catalyzed by factor 
B, whereas the lectin pathway is initiated by soluble mannose-
binding lectin. The three pathways converge at the formation of 
C3 convertase, which catalyzes the proteolysis of C3 to execute a 
common terminal pathway and leads to opsonization by C3b, cell 
lysis via the formation of membrane attack complex (MAC) by 
C5b-9, and pro-inflammatory and anaphylactic effects mediated 
by C5a and C3a. The MAC inserts lytic complexes in adjacent 
cell membranes and mediates cellular cytotoxicity. Insertion of a 
complement terminal protein, C5b-9, on cell membranes over a 
threshold of basal complement resistance induces complement-
dependent cytotoxicity to target cells or nearby bystander cells,  
causing lytic damage. However, subthreshold levels of the sublytic 
complement C5b-9 induce a variety of biological responses, includ-
ing the release of pro-inflammatory mediators, the production 
of reactive oxygen species, the expression of adhesion molecules, 
and the activation of protein kinase C and ERK signaling (27). 
In the classical complement pathway, C1q binding to Fc region 
of Ig is the most common mechanism for activation. Moreover, 
some endogenous molecules bind to C1q in an Ab-independent 
fashion and activate classical complement activation, a significant 
process in disease progression (28).

In the present report, we demonstrate that HMGB1 binds 
to C1q and activates the classical complement pathway in an 
Ab-independent manner using molecular studies and a cell cul-
ture model system. N-acetyl-p-aminophenol (acetaminophen, 

APAP)-mediated hepatotoxicity in wild-type (WT) and C1q- 
deficient mice was used as an inflammation model to elucidate 
the effects of HMGB1 on C1q deposition in the liver. Immuno-
histochemical analysis of C1q was carried out in the presence 
of HMGB1 and after neutralization of HMGB1 with sRAGE 
or anti-HMGB1 Ab treatment. We also investigated the role of 
HMGB1 in activation of the classical component pathway in a 
mouse middle cerebral arterial occlusion (MCAO) model. We 
evaluated the effect of HMGB1 on the induction of complement 
activation in vivo by monitoring sublytic MAC deposition, with 
or without the ablation of HMGB1 by anti-HMGB1 Ab or sRAGE 
treatment. Collectively, our data suggest that HMGB1 is an 
Ab-independent C1q-binding molecule that plays an important 
role in classical complement activation in sterile chronic and septic  
inflammation.

MaTerials anD MeThODs

Dna constructs and recombinant 
Proteins
For the recombinant HMGB1 protein, six-His-tagged recom-
binant human WT HMGB1, HMGB1 boxes A (aa 1-79) and B 
(aa 88-162), and acidic tail-deleted HMGB1 (ΔC-HMGB1, aa 
1-185) were subcloned into pRSET B plasmid and produced in 
Escherichia coli BL21 (DE3) pLysE (Invitrogen) (4, 16). A six-His-
tagged HMGB1 (ΔN-HMGB1, aa 11-215), a form of HMGB1 
with pro-inflammatory potential (29), was subcloned into pRSET 
B plasmid and produced in E. coli BL21 (DE3) pLysE. One mM 
DTT was added during protein purification and preservation. 
Endotoxin was removed using an LPS-binding column (Thermo 
Fisher Scientific, Inc.) or detergent-phase separation using Triton 
X-114 (30). LPS concentrations were less than 0.1 EU/μg protein, 
as determined using the limulus amebocyte lysate assay (Sigma). 
In addition, HMGB1 produced in NS0 mouse myeloma cell line 
(Euk-HMGB1, R&D Systems) was used to confirm the study.

enzyme-linked immunosorbent assay 
(elisa) analysis for c1q, c4b, and c5b-9 
Deposition
The binding of the reduced form of HMGB1 protein, produced 
in E. coli BL20, to C1q was tested using ELISA (26). Briefly, 
microtiter plates (Corning) were coated with 10 µg/ml purified 
normal human C1q (Sigma) per well and blocked with 3% BSA-
PBS. Various amounts of HMGB1 protein in 1% BSA-PBS buffer 
containing 0.15 mM CaCl2 and 0.5 mM MgCl2 were added to the 
wells and incubated for 2 h at room temperature (RT) to prevent 
nonspecific binding. Rabbit anti-HMGB1 Ab (1:1,500, Abcam 
#18256) was added for 1 h at RT after washing. HRP-conjugated 
anti-rabbit Ig (1:5,000, Sigma) was added to the wells for 1 h at RT. 
3,3′,5,5′-tetramethylbenzidine solution (KPL) was used for color 
development for 15 min. Optical density values were measured 
at 450  nm. In the reciprocal assay, the binding of free C1q to 
HMGB1 protein was also tested. For this, microtiter wells were 
coated with HMGB1 at approximately 3–10 µg/ml, and increas-
ing concentrations of C1q protein were added. Polyclonal rabbit 
anti-human C1q complement Ab (1:1,000, Dako) was used as the 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


3

Kim et al. HMGB1 Activates Classical Complement Pathway

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 705

primary Ab. HRP-conjugated anti-rabbit Ig (1:5,000, Sigma) was 
used as the secondary Ab.

For the complement activation assay, we measured the com-
plement activation products C4b and C5b-9 using ELISA after 
incubation of human serum with HMGB1-coated microplates. 
PolySorp® microtiter plates (Thermo Fisher Scientific Inc.) were 
coated with 10  µg/ml HMGB1 (R&D Systems) or 5–10  µg/ml 
heat-treated (63°C for 15 min) aggregated human IgG (Sigma) as 
a positive control. Normal human serum (NHS) was prepared in 
the laboratory and preserved at −70°C (31), was diluted in gelatin 
veronal-buffered saline (GVB2+ buffer, Sigma), and added to the 
wells for 20 or 45 min at 37°C to measure C4b or C5b-9 deposi-
tion, respectively. After washing with a cold buffer (50 mM Tris, 
150 mM NaCl, 0.1% Tween 20, pH 7.5), rabbit anti-C4b (1:1,000, 
Dako) or mouse anti-C5b-9 Ab (1:1,000, Quidel) was added for 
1  h at 37°C. HRP-conjugated anti-rabbit Ig or anti-mouse Ig 
(Sigma) was used as the secondary Ab, with incubation for 1 h 
at RT. C1q-depleted human serum (Sigma) and purified human 
C1q were used as negative and positive controls, respectively.

Binding of complement components to 
hMgB1-coated Microspheres
Serum C1q binding to HMGB1 was tested using HMGB1-coated 
microspheres. Briefly, HMGB1 protein (50  µg) was conjugated 
with biotin using the EZ-Link Sulfo-NHS-Biotin reagent 
(Thermo Fisher Scientific Inc.), and non-reacted biotin was 
removed using a PD-10 desalting column (GE Healthcare Life 
Sciences). Biotinylated human IgG was used as a positive control. 
Streptavidin-coated microspheres (Bangs Laboratories Inc.) 
were incubated with biotin-labeled HMGB1 for 1 h at RT. The 
HMGB1- or human IgG-coated microspheres were washed three 
times with GVB2+ buffer and incubated with 10% NHS for 30 min 
at 37°C. After washing, the microspheres were treated with mouse 
anti-HMGB1 Ab (R&D Systems) and rabbit anti-C1q Ab (Dako). 
Alexa 594-conjugated donkey anti-mouse Ig (Invitrogen) and 
Alexa 488-conjugated goat-anti-rabbit Ig (Invitrogen) were used 
as the secondary antibodies. A confocal microscope (FV1000, 
Olympus) was used for observing and capturing images of the  
fluorescent complexes. The bindings of C3c, a degradation 
product of C3b after activation, and of C5b-9 to HMGB1-coated 
microspheres were investigated using fluorescein isothiocyanate 
(FITC)-conjugated rabbit anti-C3c Ab (Abcam) and mouse anti-
C5b-9 Ab (Quidel). Mouse anti-HMGB1 Ab (R&D Systems) or 
rabbit anti-HMGB1 Ab (Abcam) was used for detecting HMGB1.

surface Plasmon resonance (sPr) assay
The analysis of HMGB1 binding to C1q was carried out using a 
BIAcore 2000 instrument (BIAcore Life Science), as previously 
described (16). A CM5 dextran sensor chip was activated with 
equal amounts of 0.2  M N-ethyl-N′-(3-diethylamino-propyl)-
carbodiimide and 0.05 M N-hydroxysuccinimide. HMGB1 WT 
(R&D), A box or B box (produced in E. coli BL21) proteins (10 µg/ml)  
were immobilized in 10 mM sodium acetate buffer (pH 4.0) fol-
lowed by 1 M ethanolamine-hydrochloride (pH 8.0) treatment 
to deactivate excess NHS esters. To evaluate C1q binding, C1q 
protein was diluted in HBS-EP buffer (10 mM HEPES, 150 mM 

NaCl, 3.4 mM EDTA, 0.05% Tween 20, pH 7.4) and passed over 
the sensor chip at a flow rate of 20 µl/min for 3 min. To regenerate 
the flow cell, 50 mM NaOH was passed over the chip at 30 µl/min 
for 10 s. An activated and blocked flow cell lacking immobilized 
ligand was used to evaluate nonspecific binding. For all samples, 
response curves were also recorded on control surfaces. Results 
were standardized to control values using the BIAevaluation 3.0 
software (BIAcore AB).

complement consumption experiments
Complement consumption studies were carried out using the 
methods described in previous reports (32, 33). The consump-
tion of human hemolytic complement was determined by 
the quantitative assay of residual CH50 in NHS after reaction 
with variants of HMGB1 proteins produced in E. coli BL21. 
Briefly, 50 µl of diluted NHS (CH50) was incubated with various 
amounts of HMGB1 at 37°C for 30 min. Following this, 50 µl of 
hemolysin-sensitized sRBCs were incubated at 37°C for 60 min 
followed by the addition of 30  µl of ice-cold GVB2+ buffer 
for stopping the reaction. Supernatants were harvested after 
centrifugation (700 × g, 5 min) at 4°C, and absorption values 
were determined at 405 nm. Spontaneous hemolysis-originating 
absorbance values (background) were subtracted, and the cor-
rected absorption value of supernatant was inverted to represent 
complement consumption.

generation of Mac on MeF cells and 
benD.3 cells
Mouse embryonic fibroblasts (MEFs) (immortalized by the 
3T3 protocol, purchased from HMGBiotech) were cultured in 
Dulbecco’s modified Eagle medium (DMEM) supplemented with 
5–10% NHS 100 U/ml penicillin, 100 µg/ml streptomycin, and 
2 mM l-glutamine under 5% CO2 in the presence or absence of 
1 µg/ml HMGB1 for 1 h at 37°C. Sublytic MAC proteins were 
stained using mouse anti-C5b-9 Ab and Alexa 594-conjugated 
donkey anti-mouse Ig for confocal microscopy. In addition, 
cholera toxin B-FITC (0.5 µg/ml; Sigma) was utilized to observe 
the cell membrane lipid raft in MEF cells.

In addition, the alteration of intercellular tight junction proteins 
was evaluated with an in vitro coculture system using the bEnd.3 
mouse immortalized endothelial and the LN215 glioblastoma cell 
lines. bEnd.3 cells were maintained in DMEM with high glucose 
containing 10% FBS. bEnd.3 cells were incubated with diluted 
NHS in the presence or absence of 5  µg/ml reduced form of 
HMGB1 for 2 h. ZO-1 and occludin are transmembrane proteins 
that play a role in tight junction regulation (34). Tight junctions 
were monitored by immunofluorescence confocal microscopy 
with a mouse anti-ZO-1 Ab (Zymed).

animals
Animal procedures were carried out according to a protocol 
approved by the Institutional Animal Care and Use Committee 
(IACUC) and the Institutional Biosafety Committee of the Yonsei 
Laboratory Animal Research Center (YLARC, 2010-0392) and 
the Feinstein Institute for Medical Research (FIMR, 2013-021), 
Manhasset, NY, USA. Animals were allowed to acclimate for at 
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least 2 weeks prior to initiating the experiment. All animals were 
housed in standard conditions (RT 22°C with a 12-h light–dark 
cycle) with access to regular chow and water.

Transient McaO Model and Tissue 
immunochemistry
Seven- or eight-week-old male ICR mice (N = 3, Oriental Bio., 
South Korea) were used for the transient MCAO study, using 
the protocol described in a previous report (35). After 1  h of 
occlusion, the suture was withdrawn to restore blood flow for 
4  h. To block effects of HMGB1 after MCAO operation, mice 
were intravenously (i.v.) administered mouse anti-HMGB1 mAb  
(Biolegend) (100  µg/mouse) or PBS immediately before rep-
erfusion. Brains were removed in 1-mm thickness sectioning 
and fixed with 4% paraformaldehyde for 4–6 h. The tissue was 
fixed again with 30% sucrose in PBS for 4–5 days at RT. Samples 
were embedded in OCT compound (Sakura Finetek USA, Inc., 
Torrance, CA, USA) at −80°C. Tissue was sectioned at the thick-
ness of 20  µm at −20°C using cryotome. The frozen sections 
were pre-cooled in fixative (acetone) at −20°C for 30 min and 
rinsed three times with PBS. Frozen sections were permeabilized 
with PBST and blocked for 1 h at RT with goat serum. Frozen 
sections were incubated overnight at 4°C with anti-C5b-9 and 
anti-HMGB1 Abs for confocal analysis primary antibodies and 
rinsed with PBS. Frozen sections were incubated with appropri-
ate secondary antibodies conjugated with FITC, rhodamine, and 
Alexa Fluor® 405 prepared in fluorescent Ab diluent solution 
(1:500, Abcam) for 2 h at RT. Frozen sections were washed with 
PBST and counterstained with DAPI. Images were taken using a 
confocal microscopy.

aPaP-induced hepatotoxicity Model
Nine- or ten-week-old male C57BL6/J WT (Jackson labora-
tory) and C1q-deficient C57BL6/J mice (FIMR, obtained from  
Dr. Keith Elkon, University of Washington) were treated with 
APAP (200–400 mg/kg of body weight) (36). Mice (9–10 weeks 
old) were fasted overnight and intraperitoneally (i.p.) injected 
with APAP solution or saline. Food was provided ad libitum after 
APAP administration. Mice were anesthetized before fasting 
(0  h) and 6  h after APAP administration, and blood was col-
lected from the retro-orbital plexus; all animals were euthanized 
24  h after APAP administration. Alanine aminotransferase 
(ALT) activity was determined using the ALT color endpoint 
assay (MaxDiscovery). Concentration of C3 was measured 
using ELISA (Alpha Diagnostic International). Soluble RAGE 
(sRAGE; PROSPEC, 5  µg/mouse), anti-HMGB1 Ab (provided 
by Kevin Tracey’s laboratory, FIMR, 5 µg/mouse), IgG (Sigma, 
5  µg/mouse), or saline were i.p. injected 2  h after APAP 
administration. The left medial lobe of liver was fixed in 4% 
paraformaldehyde overnight and then 30% sucrose overnight. 
Paraffin-embedded liver was stained with hematoxylin and 
eosin (H&E) for the evaluation of necrosis and hemorrhage. 
For immunofluorescence assay, Tissue-Tec OCT-embedded 
liver was sectioned at 10-µm thickness using a microtome 
(Leica Biosystems), fixed with cold acetone (5 min at RT), and 

permeabilized using 1% Triton X-100 in 1X TBS (7 min at RT). 
In addition, sections were incubated for 1 h at RT in TBS + 0.1% 
Triton-X-100 + 10% goat serum (Invitrogen) and were stained 
with biotinylated mouse anti-C1q (Abcam, JL-1, 1:100) or rab-
bit monoclonal anti-HMGB1 (Abcam, EPR3507, 1:50) at 4°C 
overnight followed by the streptavidin conjugated to AF488 or 
goat anti-rabbit IgG conjugated with AF488 or PI. Images were 
obtained with LSM 510 confocal microscopy (Zeiss). Four or five 
mice were used for each group.

Western Blot analysis
To analyze the activation of C3, Western blot analysis was per-
formed to follow the cleavage of C3 protein. NHS (diluted 1:5) 
was incubated with various amounts of HMGB1 for 30 min at 
37°C, followed by the addition of 2× sodium dodecyl phosphate 
polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer 
and then in boiling water for 5 min. The samples were resolved 
on 15% or 4–15% gradient gels (Biorad). After electrotransfer 
(wet-tank transfer system, Biorad) to nitrocellulose membranes, 
membranes were blocked in 5% skim milk and probed using 
mouse anti-human C3/C3b and anti-C3a IgG (Abcam), followed 
by incubation with HRP-labeled goat anti-mouse Ig (Sigma; sec-
ondary Ab) for immunoblot analysis (37). Human IgG (Sigma) 
was heat-treated at 65°C for 20 min to obtain aggregated Ig for 
use as a positive control (38). Ig-free BSA (Sigma) was used as a 
negative control.

To monitor in  vivo complement activation by HMGB1, 
C57BL/6 mice were i.v. injected with 100 µg of HMGB1 protein. 
Blood samples were collected at 0, 30, and 90 min after the injec-
tion of HMGB1 in three mice, and Western blot analysis was 
performed to detect iC3b, a cleavage product of C3b. The relative 
band intensity was compared to that of the protein-specific band 
in control mice treated with PBS. To analyze sublytic MAC-
induced ERK phosphorylation (39), we performed a Western blot 
analysis of phosphorylated (p)-ERK. Culture medium of MEFs 
was replaced with serum-free OPTI-MEM medium (Invitrogen) 
and incubated in 5–10% NHS in the presence of 1 or 5  µg/ml 
HMGB1. Cells were washed and lysed in 1X RIPA buffer con-
taining protease and phosphatase inhibitors (Thermo Fisher 
Scientific) on ice for 1  h. The protein samples were analyzed 
using SDS-PAGE on 12% resolving gels. C5b-9, p-ERK-, and 
ERK-specific Abs (Cell Signaling) were used. The signals were 
developed with enhanced chemiluminescence (Labfrontier). To 
analyze serum HMGB1 and albumin from APAP liver injury 
model, HRP-conjugated mouse anti-HMGB1 Ab (2G7) or rabbit 
anti-albumin (Novus Biologicals) Ab was used. HRP signals were 
developed with chemiluminescence. Infrared 680-conjugated 
anti-rabbit Ab was detected by Odyssey (LICOR).

statistical analysis
All statistical tests were performed with Graph Pad Prism 6 soft-
ware (t-test or ANOVA). Statistical analysis of mean differences 
between groups was performed by unpaired two-tailed Student’s 
t-test, which was implemented in the SAS9.2 (SAS Institute 
Inc.). All P-values and n-values are indicated in figure legends. 
P-values of ≤0.05 were considered to be significant.
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FigUre 1 | Binding of high-mobility group box 1 (HMGB1) to C1q. (a) Purified C1q protein (10 µg/ml) was immobilized on a microtiter plate, and different 
concentrations of HMGB1 protein were added for an enzyme-linked immunosorbent assay (ELISA). Buffer was used as a negative control. Data are representative 
of three independent experiments. Error bars are mean ± SD. *P < 0.05 by Student’s paired t-test. (B) HMGB1 (3 µg/ml) was immobilized and incubated with 
various concentrations of C1q for the ELISA. Data are representative of three independent experiments. Error bars are mean ± SD. *P < 0.05 by Student’s paired 
t-test. (c) HMGB1 protein was biotinylated and incubated with streptavidin-coated microspheres. HMGB1-coated microspheres were incubated with 10% normal 
human serum, which was pre-absorbed with non-coated microspheres, for 30 min at 37°C, and immunofluorescence staining was performed with anti-HMGB1 
(red) and anti-C1q (green) antibodies. Biotinylated human IgG served as the positive control. Experiments were repeated at least three times and representative data 
are shown. Scale bar: 2 µm. (D) Surface plasmon resonance (SPR) analyses of HMGB1 binding to C1q protein. HMGB1 protein produced in Escherichia coli 
(HMGB1) and in eukaryotic cells (Euk-HMGB1 from R&D), left and right panels, respectively, were passed over a C1q-immobilized CM5 dextran sensor chip at 
concentrations of 1.8, 0.9, 0.45, 0.23, and 0.11 µM (upper panels). The reciprocal experiment of C1q binding to solid-phase HMGB1 protein at the concentrations 
of 200, 100, 50, 25, and 12.5 nM (lower panel) was also performed. KD = ~400 nM. (e) The interactions between HMGB1 A and B box proteins and C1q-
immobilized chip (upper panels) and reciprocal interactions (lower panels) were also evaluated using SPR assays. Both KD = ~4 μM. Colored lines in each SPR 
assay represent concentrations of proteins from high to low: purple, brown, blue, green, and indigo.
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resUlTs

hMgB1 Binds to c1q Protein
Treatment with HMGB1 protein by itself has a weak pro-
inflammatory activity in  vitro (16, 21), although it is a potent 
effector of inflammation when released in vivo, suggesting that 
it works with other factors (40) or upregulates pro-inflammatory 
processes in vivo. The complement system is a pivotal component 
of the early immune response, and its activation is involved in the 
development of septic shock (41). For this, we hypothesized that 
there is a potential association between HMGB1 and complement 

component system since HMGB1 is a trigger molecule of inflam-
mation, forming complex with other molecules. To determine 
whether HMGB1 binds to C1q, microtiter plates were coated 
with 10 µg/ml C1q, and HMGB1 binding to C1q was measured 
using ELISA. HMGB1 bound to the solid-phase C1q molecule 
in a concentration-dependent manner, whereas HMGB1 did not 
bind to the control buffer (Figure 1A). The reciprocal experiment, 
assessing C1q binding to solid-phase HMGB1, showed similar 
results (Figure 1B). No nonspecific binding was detected upon 
the incubation of C1q-deficient serum with HMGB1-coated wells 
(data not shown). Since NHS contains C1q in 113 ± 40 μg/ml 
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(42), we tested C1q binding to HMGB1 using NHS. Biotinylated 
HMGB1 was cross-linked with streptavidin microspheres and 
incubated with 10% NHS, which was pre-absorbed with non-
coated microspheres. By immunofluorescence staining, we 
observed that serum C1q bound HMGB1-coated microspheres 
with similar levels to that observed with the positive control, 
IgG-coated microspheres (Figure 1C).

Surface plasmon resonance analysis was performed to further 
evaluate the binding of HMGB1 to C1q. C1q protein was immo-
bilized to a CM5 dextran sensor chip, and various concentra-
tions of HMGB1 were passed over the chip. A reduced form of 
HMGB1 protein produced in E. coli exhibited binding to C1q 
in a concentration-dependent manner. Human HMGB1 protein 
produced in mouse myeloma cell line NS0 of eukaryotic cell 
(Euk-HMGB1) purchased from R&D Systems also bound to C1q 
in a dose-dependent manner. The reciprocal experiment, assess-
ing C1q binding to solid-phase HMGB1, also indicated that C1q 
and HMGB1 interacted in a dose-dependent manner, confirming 
that HMGB1 binds to C1q (Figure 1D). Both HMGB1 A and B 
box proteins exhibited C1q binding on a C1q-immobilized sensor 
chip, and reciprocal binding studies also yielded similar results 
(Figure  1E). When we tested the bindings of C1q to disulfide 
and oxidized forms of HMGB1 in a dot ELISA assay, disulfide 
form of HMGB1 showed better binding to C1q than other types 
of HMGB1 (Figure S1A in Supplementary Material). We further 
evaluated whether HMGB1 and IgG bind to the same region of 
C1q. Results suggest that HMGB1 does not alter the interaction 
between IgG and C1q in ELISA (Figure S1B in Supplementary 
Material).

hMgB1 activates the classical 
complement Pathway and Terminal 
complex Formation
It is known that serum complement proteins play an important 
role in resistance to infection, promoting the formation of a pore-
forming MAC on the bacterial cell wall that causes lytic damage. 
Since C1q is an initiator for complement cascade with C1 and 
C1 activation induces C4 cleavage to C4b, further promoting 
complement activation, we measured C4b product formation 
using ELISA after the addition of NHS on HMGB1-coated plates 
to evaluate C4 activation by HMGB1. C4b deposition increased 
in an NHS concentration-dependent manner, similar to that seen 
in the IgG-coated plates (positive control; Figure 2A). We next 
tested C3 cleavage using Western blot analysis after the incubation 
of HMGB1 with NHS. C3 in NHS was cleaved into C3a and iC3b, 
one of cleaved products of C3b, and the cleaved-product forma-
tion was proportional to the HMGB1 concentration (Figure 2B). 
We also measured levels of another complement activation 
product, C3c, the cleaved form of C3b, using microsphere beads. 
HMGB1-coated microspheres were incubated with NHS, and 
the downstream activation product of C3c was detected using an 
anti-C3c Ab conjugated with fluorescein isothiocyanate (FITC). 
The levels of the cleaved C3c product were similar to that in the 
positive control of IgG-coated microspheres (Figure  2C). In 
addition, we could observe the formation of later step products of 
C5b-9 neoantigen on the surface of microspheres using confocal 

microscopy (Figure 2D). We, next, tested the formation of C5b-9 
neoantigen using ELISA. Increasing concentrations of NHS were 
added to HMGB1-coated microwell plates for 45 min, followed 
by the addition of an anti-C5b-9 Ab to monitor the accumulation 
of C5b-9 on the plates after washing. The binding of C5b-9 to the 
microwells was dependent on the dose of NHS (Figure 2E). C5b-9 
neoantigen formation was profoundly decreased in C1q-deficient 
human serum to HMGB1-coated microwells as expected, but 
it was significantly restored when added with 20 µg/ml of C1q 
protein (Figure 2F).

Moreover, we tested whether HMGB1 induces the comple-
ment activation in mouse. In vivo measurement of complement 
activation by HMGB1 was performed after injection of HMGB1 
into a mouse model. Three C57BL/6 mice were i.v. injected with 
100 µg of HMGB1 protein, and blood samples were collected at 
0, 30, and 90 min after injection. iC3b, a cleavage product of C3b, 
could be detected at 30 min. The relative band intensity of iC3b in 
mice treated with HMGB1 was increased approximately 1.5-fold 
(1.505 and 1.499, respectively) at 30 and 90  min, compared to 
that in a control mouse treated with PBS (Figures 2G,H). These 
data suggest that WT HMGB1 protein binds to C1q and activates 
C1q-dependent classical complement pathway, leading to the 
terminal activation of C5b-9.

hMgB1 B Box is Main Domain to induce 
the lytic activity of complement
We performed a complement consumption assay to further test 
our hypothesis that complement hemolytic activation can be 
mediated by HMGB1 using various truncated forms of HMGB1 
(Figure  3A). WT HMGB1 was pre-incubated with CH50 NHS 
and then hemolysin-sensitized erythrocytes (EAs) were added to 
measure the residual complement lytic activity. The complement 
consumption induced by WT HMGB1 was increased in a dose-
dependent manner, compared to that induced by the negative 
control of BSA (Figure 3B). The levels of complement consump-
tion were 36.8 and 43.4% in the presence of 30 and 50  µg/ml  
HMGB1, respectively. This suggests that HMGB1 activates com-
plement hemolytic activity.

We further determined the domain(s) of HMGB1 important 
for activating the complement system. HMGB1 A box protein 
failed to induce complement consumption (Figure 3C), although 
it bound to C1q efficiently (Figure 1E). ΔC-HMGB1, the form 
of HMGB1 lacking the acidic tail, induced activity similar to 
that of WT HMGB1 in complement consumption, indicating 
that the acidic tail of HMGB1 is not critical for complement 
activation. HMGB1 has a cleavage site between amino acids 
10 and 11, where vascular endothelial cell-associated throm-
bomodulin–thrombin complexes bind. This cleavage results 
in the formation of ΔN-HMGB1 (amino acids 11-215), a less 
potent form of HMGB1 that participates in HMGB1-induced 
coagulation (29). ΔN-HMGB1 showed significant complement 
consumption, indicating that the 10 N-terminal residues are not 
involved in complement activation (Figure 3C). Nonetheless, B 
box protein itself induced significant complement consumption. 
These data suggest that the B box domain of HMGB1 is critical 
for the activation of complement.

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 2 | High-mobility group box 1 (HMGB1)-mediated cleavage of C4 and C3 and the formation of C5b-9 [membrane attack complex (MAC)].  
(a) Measurement of C4b. A microtiter plate was coated with Euk-HMGB1 (10 µg/ml, R&D) and incubated with various concentrations of normal human serum  
(NHS) to test the deposition of C4b using an enzyme-linked immunosorbent assay (ELISA) (left). Human IgG (10 µg/ml) was used as the positive control (right).  
(B) To determine C3a and iC3b, the cleavage product of C3b. Fifty microliters of NHS (diluted 1:5) was incubated with increasing amounts of HMGB1 for 30 min at 
37°C, then performed Western blot analysis using anti-C3/iC3b or anti-C3a antibodies. Aggregated human IgG and Ig-free BSA served as the positive and negative 
controls, respectively. Ig light chain (IgL) was used as input control. (c,D) Measurements of complement activation products of C3c, the cleaved form of C3b, and 
C5b-9. Biotinylated HMGB1s were incubated with streptavidin-coated microspheres in 10% NHS, which was pre-absorbed with non-coated microspheres, for 
30 min at 37°C. Immunofluorescence staining was performed with anti-HMGB1 and fluorescein isothiocyanate-conjugated anti-C3c antibody (Ab). For C5b-9 
deposition, immunofluorescence staining was performed with anti-HMGB1 (green) and anti-C5b-9 Ab (red). Biotinylated human IgG was used as the positive 
control. (e) A microtiter plate was coated with HMGB1 (10 µg/ml) and incubated with various concentrations of NHS to test the deposition of C5b-9 using an ELISA. 
Aggregated human IgG was used as the positive control. (F) C1q-dependent MAC formation. A microtiter plate was coated with HMGB1 (10 µg/ml) and incubated 
with various concentrations of NHS or C1q-depleted human serum (C1q-dep HS) to test the deposition of MAC formation using an ELISA for C5b-9. To restore the 
effect of C1q, 20 µg/ml of C1q was added to C1q-depleted human serum. ns: not significant. (g,h) Measurement of complement activation after HMGB1 injection 
in mice. C57BL/6 mice were intravenously injected with 100 µg of HMGB1 or PBS to observe if HMGB1 can activate complement in vivo (N = 3 per group). Blood 
samples were collected at 0, 30, and 90 min after the injection. iC3b (arrow) was detected using Western blot analysis of serum sample from one representative 
mouse. Relative band intensity of iC3b was analyzed. All data shown here are representative of at least three independent experiments with similar results. Error  
bars are mean ± SD. *P < 0.05, **P < 0.01 by Student’s paired t-test (a) or two-way ANOVA (e,F,h).
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hMgB1-Mediated Mac Formation and its 
effect to cell signaling
We also investigated whether HMGB1 could induce MAC or sub-
lytic MAC insertion on cell membranes of nearby bystander cells 
after complement action. MEFs were incubated with 1 or 5 µg/ml  
HMGB1 and 10% NHS for 1 h at 37°C and immunostained to 
detect MAC deposition. MAC was detectable on the cell surface 
(Figures 4A,B) and some inside the cell due to endocytosis or 
vesiculation (Figure 4C) (43), and its deposition was increased at 
the higher concentration of HMGB1. However, heat-inactivated 
serum did not induce MAC formation occurred by HMGB1 as 
expected. HMGB1 also induced the sublytic MAC deposition on 
bEND.3 cells, an immortalized mouse endothelial cell line, when 

these cells were cultured in the presence of HMGB1 (Figure 4D), 
demonstrating complement activation by HMGB1.

We next used a fluorometric assay to assess cell mem-
brane integrity, quantitatively triggered by sublytic MAC, 
using an in  vitro model of the blood–brain barrier (BBB) in 
which bEnd.3 cells are cocultured with LN215 astrocytoma 
cells (44). Tight junctions were monitored by immuno-
fluorescence confocal microscopy using a mouse anti-zonal 
occludin (ZO)-1 Ab. The addition of HMGB1 to 5% NHS 
significantly disrupted ZO-containing tight junctions and 
accumulation of MAC (Figures 4E,F). We evaluated the effect 
of HMGB1-mediated MAC deposition on the cell surface on 
membrane integrity. bEnd.3 cells were pre-stained with 3 µM 
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FigUre 3 | High-mobility group box 1 (HMGB1) B box activates complement cascade. (a) Schematic overview of recombinant HMGB1 proteins used: wild-type 
(WT) HMGB1, boxes A (aa 1-79) and B (aa 88-162), ΔC-HMGB1 (aa 1-185), and ΔN-HMGB1 (aa 11-215). (B,c) Complement consumption assessment. WT 
HMGB1 proteins (B) or HMGB1 variants (c) were incubated with the diluted normal human serum (NHS) containing CH50 activity in GVB2+ buffer for 30 min at  
37°C. After complement consumption by HMGB1, sRBCs were added in the consumed NHS for 30 min at 37°C. Aggregated human IgG and IgG-free BSA  
(each 30 µg/ml) were used as the positive and negative controls, respectively. Data shown are the mean ± SD of three independent repeats. *P < 0.01 vs. BSA30, 
**P < 0.001 by two-way ANOVA with Bonferroni correction.
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biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) and cul-
tured in media containing various concentrations of NHS, in 
the presence or absence of 5 µg/ml HMGB1, and the BCECF 
fluorescence in the supernatants was then measured as an 
indicator of membrane leakage (44). The release of BCECF 
into the supernatant was increased by the addition of HMGB1 
to 20% NHS (Figure S1C in Supplementary Material). These 
results suggest that HMGB1 may cause vascular permeability 
and BBB disruption in brain ischemia by promoting comple-
ment activation, consistent with our data and those described 
in a previous study (45). We next used two animal models of 
MCAO ischemia and reperfusion model and APAP-induced 
hepatotoxicity model, which represent oxidative stress model 
and direct hepatotoxicity model, respectively, to support in vivo 
experiments of HMGB1-mediated complement activation.

Mac Deposition is reduced by anti-
hMgB1 neutralizing ab in McaO ischemia 
Mouse Model
High-mobility group box 1 is an important mediator of BBB dam-
age in ischemia-induced disruption (45). We tested the role of 
HMGB1 in BBB disruption by complement activation in mouse 
brain ischemia and reperfusion experiments, by inducing MCAO 
injury and then monitoring the release of HMGB1 from brain 
parenchymal cells. Intracellular HMGB1 was significantly reduced 
in the ipsilateral side of brain, 4 h after MCAO injury, whereas 
the contralateral side was 10.5-fold positive for HMGB1 staining 
(Figures 5A,B). Consistent with these data, the band intensity of 
HMGB1 level in serum was increased by 5.6-fold, 4 h after MCAO 

(Figure 5C). Next, we tested the formation of MAC complexes. 
MAC complexes were detected in brain vascular areas stained with 
a type IV-collagen Ab in the ipsilateral side after MCAO injury 
(Figure  5D). MAC deposition and HMGB1 colocalization in 
ipsilateral brain were increased by 2.3-fold (Figures 5E,F). These 
data suggest that ischemia-mediated HMGB1 accumulation in 
brain vascular cells induces complement activation and C5b-9 
accumulation. To evaluate the effect of HMGB1 neutralization 
on the deposition of MAC, we injected mice with an anti-HMGB1 
neutralizing Ab after induction of MCAO. Intact nuclear HMGB1 
staining in ipsilateral brain, similar to that in the contralateral sec-
tion, was detected in mice with MCAO injury; moreover, MAC 
deposition appeared sparse (Figure  5G), compared to MCAO 
injury with PBS treatment group (Figure 5H).

hMgB1-induced complement activation 
is Decreased in c1q-Deficient Mice of 
aPaP-induced hepatotoxicity Model
We investigated the effect of HMGB1 on complement activation 
in  vivo using an APAP-induced liver injury model in C1q-
deficient mice. WT and C1q-deficient mice were injected with 
APAP (400 mg/kg of body weight) to induce liver damage and 
promote extracellular release of HMGB1. Levels of ALT and C3 
in sera were measured 0, 6, and 24 h of APAP treatment to moni-
tor liver cell damage and complement activation, respectively. 
Serum ALT levels were significantly elevated in a time-dependent 
manner, especially 6 and 24 h after APAP treatment in WT mice 
(Figure 6A), and liver cells were damaged mainly at the centri-
lobular region, as indicated by the data from H&E staining of 
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FigUre 4 | High-mobility group box 1 (HMGB1)-mediated membrane attack complex (MAC) formation and its effect to cell signaling. (a,B) MEFs were cultured  
in DMEM containing 10% normal human serum (NHS) in the presence or absence of 1 µg/ml HMGB1 for 1 h at 37°C. Sublytic MAC proteins were stained using 
anti-C5b-9 antibody (Ab) (red) and observed by confocal microscopy. Blue: DAPI. Heat-inactivated (HI) NHS was used. Scale bar, 10 µm (a). MEFs were incubated 
with 10% NHS in the presence of different concentrations of HMGB1, and then the mean relative intensity of fluorescence of 10 visual fields was calculated  
(B). Error bars are mean ± SD. *P < 0.05 by Student’s paired t-test. (c) MEFs were cultured in DMEM containing 5% NHS in the presence of 1 µg/ml HMGB1  
for 1 h at 37°C. To observe MAC formation, MEFs were fixed and mouse anti-C5b-9 Ab was used for immunofluorescent analysis. Cholera toxin B-FITC (CTB  
0.5 µg/ml, Sigma) was utilized to observe the cell membrane lipid raft using confocal microscopy. Scale bar, 10 µm. (D) bEnd.3 cells were cultured in the presence 
of 5% NHS and/or 5 µg/ml HMGB1 and MAC formation was observed using Western blot analysis. (e,F) MAC formation. bEND.3 cells and LN215 cells were 
cocultured and incubated with DMEM containing 5% NHS in the presence or absence of 5 µg/ml HMGB1 for 16 h, and the alteration of tight junction (green line) 
and sublytic MAC deposition (red fluorescence, arrow) was observed by using confocal microscopy. Anti-ZO-1 Ab and anti-C5b-9 Abs were used for the study. 
Scale bar = 10 μm (e). The mean relative intensity of fluorescence of six visual fields of zonal occluding (ZO) was calculated (F). Error bars are mean ± SD. 
*P < 0.05 by Student’s paired t-test.
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liver sections (Figure 6B, left panel). By contrast, C1q-deficient 
mice had significantly lower ALT levels than that of WT mice 
after APAP treatment, and analysis of the liver sections indicated 
smaller areas of necrosis (Figure 6A left and Figure 6B right). 
C3 levels decreased in WT mice over time after APAP treat-
ment, while C3 persisted at higher levels in C1q-deficient mice 
(Figure  6A, right panel), indicating impaired consumption of 
serum C3 after APAP treatment in C1q-deficient mice. HMGB1 
was detected in necrotic areas of the centrilobular region of the 
livers in WT mice, where C1q was deposited (Figure 6C upper). 
However, HMGB1 was less readily detected (faint staining in 
a smaller area of the centrilobular regions) in livers from C1q-
deficient mice (Figure  6C, lower panel). Moreover, the serum 
HMGB1 level was lower in C1q-deficient mice, compared to that 
in WT mice (Figure 6D). We tested whether blocking HMGB1 
activity could restore serum C3 levels in WT mice after APAP 
treatment. An HMGB1 neutralizing Ab and antagonist, sRAGE, 
were injected into WT mice immediately following APAP 
injection. Neutralizing Ab treatment resulted in the significant 

recovery of C3 levels, 24 h after Abs-mediated HMGB1 blockage, 
compared to that in the control IgG-treated mice (Figure 6E). 
We also found similar results in WT mice treated with sRAGE 
(Figure 6F). Even though the blockade of HMGB1 did not change 
the level of ALT 24 h after APAP treatment (Figures 6E,F, left), 
serum C3 level in WT mice after APAP treatment was restored 
(Figures 6E,F, right). These results confirm the role of HMGB1-
induced complement activation in the APAP liver cell damage 
model, occasionally in the C1q-dependent manner. In summary, 
these data show that HMGB1 could activate Ab-independent and 
C1q-mediated classical complement pathway. Targeted therapy 
against HMGB1 may ameliorate the sterile inflammation pro-
moted by HMGB1-mediated complement activation (Figure 7).

DiscUssiOn

High-mobility group box 1 is a well-known mediator of sepsis. 
HMGB1 augments the inflammatory response by binding to 
bacterial substances such as LPS and LTA and stimulates TNF-α 
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FigUre 5 | Membrane attack complex (MAC) deposition is reduced by high-mobility group box 1 (HMGB1) neutralizing antibody (Ab) in middle cerebral arterial 
occlusion (MCAO) ischemia mouse model. (a) HMGB1 staining of ICR mouse brain 4 h after MCAO. Contralateral and ipsilateral brain sections were stained for 
HMGB1 and collagen (Col) IV, which visualizes most blood vessels and capillaries. The images captured at low and high magnifications are shown. (B) Pearson’s 
coefficient for the overlapping of HMGB1 and DAPI in low magnification of three fields was calculated. Error bars are mean ± SD. **P < 0.01 by Student’s paired 
t-test. (c) Serum HMGB1 was detected using Western blot analysis after MCAO. (D) Sublytic MAC deposition (arrow) was observed in mouse brain, 4 h after 
MCAO. Brain sections were immunostained against C5b-9 for confocal microscopy and immunohistochemistry. (e) Brain sections were stained against HMGB1 
and sublytic MAC after MCAO, and their colocalization could be detected in the ipsilateral brain region. (F) Pearson’s coefficient for overlapping of HMGB1 and 
sublytic MAC of 42 random visual fields was calculated. Error bars are mean ± SD. **P < 0.01 by Student’s paired t-test. (g,h) Mice were intravenously injected 
with anti-HMGB1 neutralizing Ab (100 μg/mouse) or PBS 4 h after MCAO reperfusion injury. Mouse brain sections were immunostained for HMGB1 (low 
magnification) and MAC deposition for detail observation (high magnification). All scale bars, 20 µm. Four mice were used for the study.
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production (16, 17). HMGB1 has been reported to induce weak 
TNF-α production in vitro, but the initial inflammatory mecha-
nism through which HMGB1 mediates sterile inflammation 
without bacterial factors remains to be elucidated. In this study, 
we show that HMGB1 binds to C1q molecules and subsequently 
activates C4 and C3, ultimately inducing MACs, by activating 
the classical complement pathway. Conventionally, the classical 
complement pathway is activated by C1q binding to Ag–Ab 
complexes. C1q can also be activated by an Ab-independent 
classical pathway, through the PTX3 family of serum plasma 
proteins, including C-reactive protein, serum amyloid protein, 
PTX3, and other membrane proteins like CD91 (46). Based on 

the data, we propose that HMGB1 is another ligand capable of 
Ab-independent classical pathway activation, and extracellular 
release of HMGB1 by oxidative stress or ischemic damage could 
induce sterile inflammation by binding to C1q molecule.

 High-mobility group box 1, however, is a redox-sensitive 
protein that contains three conserved cysteine residues: Cys23, 
Cys45, and Cys106 and shows different functions depending on the 
oxidation status of three cysteines (47). Reduced form of HMGB1 
(all thiol HMGB1) has all three cysteine residues in the thiol state, 
disulfide form of HMGB1 has an intramolecular disulfide bond 
between Cys23 and Cys45 with Cys106 in the thiol state, and oxidized 
form of HMGB1 has all three cysteines in the hyperoxidized 
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FigUre 6 | High-mobility group box 1 (HMGB1)-induced complement activation is decreased in C1q-deficient mice of APAP-induced hepatotoxicity model.  
(a) Overnight fasted wild-type (WT) or C1q−/− mice (9–10 weeks old, male) were intraperitoneally (i.p.) treated with 400 mg/kg of APAP or saline. After 0, 6, and 24 h, 
mouse serum samples were collected. Serum alanine aminotransferase (ALT) activity (left) and C3 levels (right) were determined using ALT color endpoint assay and 
enzyme-linked immunosorbent assay, respectively. Each dot represents each mouse with triplicates per sample (four or five mice per group). (B,c) Mice were 
euthanized 24 h after APAP administration, and the left medial lobe of liver was fixed in 4% paraformaldehyde and 30% sucrose. Liver tissue was stained with 
hematoxylin and eosin for evaluation of necrosis and hemorrhage (B). Tissue-Tec OCT-embedded liver was stained with anti-C1q and anti-HMGB1 antibodies (Abs) 
for immunofluorescence analysis (c). (D) Serum HMGB1 protein from WT and C1q−/− mice was detected using Western blot analysis 24 h after APAP injection.  
(e) Anti-HMGB1 (2G7) or mouse IgG (5 μg/mouse) was i.p. administrated immediately after APAP administration to block HMGB1. After 24 h, mouse serum 
samples were collected and ALT activity (left panel) and concentration of C3 (right panel) were determined. Saline was used as a negative control. (F) HMGB1 was 
i.p. injected with sRAGE (5 µg/mouse) as described in (e). N = 4–5 mice/group. Data = mean ± SEM. Student’s t-test (unpaired two-tailed) was used to calculate 
the P-value. All scale bars, 20 µm. Data are representative of three (a–e) or two (F) independent experiments.

11

Kim et al. HMGB1 Activates Classical Complement Pathway

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 705

sulfonic acid state. All three kinds of HMGB1 show the binding 
to C1q (48). We used “reduced form of HMGB1” in vitro study. 
We observed that “disulfide form of HMGB1” also showed the 
complement activation (data not shown), and further investiga-
tion is necessary for the complement activation by oxidized form 
of HMGB1.

In an APAP-induced acute liver injury model, the metabolic 
product of APAP, N-acetyl-p-benzoquinoneimine, induces mito-
chondrial dysfunction and eventual cell necrosis (49, 50), as well 
as the release of DAMP molecules like HMGB1 and heat-shock 
proteins (51). HMGB1 released from damaged hepatocytes pro-
motes inflammatory processes, and the neutralization of HMGB1 
can attenuate liver injury (52). In our study, APAP induced cellu-
lar necrosis in the centrilobular regions, where HMGB1 and C1q 
molecules were deposited, as well as high levels of serum HMGB1 

in WT mice. Moreover, serum C3 was significantly reduced, but 
could be restored when HMGB1 was blocked by sRAGE treat-
ment and neutralizing anti-HMGB1 Ab, suggesting that C3 con-
sumption is HMGB1-mediated. By contrast, C1q-deficient mice 
showed attenuated centrilobular necrosis and HMGB1 staining 
after APAP treatment and higher levels of serum C3. A previous 
report showed that APAP injection elevates serum HMGB1 levels 
(53). Singhal et al. (36) showed that complement is activated after 
APAP-induced liver injury, and C3 fragments are deposited at 
centrilobular regions. Our findings, along with these data, suggest 
that HMGB1 is the missing link between complement activation 
and liver injury in the APAP-induced liver injury mouse model.

We further confirmed the role of HMGB1 in complement acti-
vation using another sterile inflammation mouse model, MCAO. 
HMGB1 is severely depleted in neurons of infarction cores, 
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FigUre 7 | High-mobility group box 1 (HMGB1)-induced complement activation model. HMGB1 protein is actively secreted or passively released by stress injury on 
cells or organs in the forms of three different redox statuses, which may differently modulate immunological activities. Extracellular HMGB1 can activate the classical 
pathway of complement system in an antibody (Ab)-independent manner after binding to C1q, resulting in forming C5b-9 membrane attack complexes (MAC) where 
HMGB1 is accumulated. Thus, HMGB1-induced complement activation is proposed to be able to exacerbate sterile inflammation.
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consistent with a previous report (54), and some HMGB1 was 
deposited in the microvascular wall of the ipsilateral side, 4 h after 
MCAO injury. Complement activation products of C5b-9 were 
significantly colocalized with the sites of HMGB1 deposition. 
However, HMGB1 was not depleted in neurons, and the deposi-
tion of C5b-9 was not readily detectable in the microvascular 
wall when HMGB1 was neutralized after MCAO injury. BBB is 
disrupted to cause brain edema during the early phase of ischemic 
brain injury. Our findings, along with the observation that anti-
HMGB1 Ab treatment protects BBB from ischemia-induced 
disruption in rats (45), lead us to conclude that HMGB1-mediated 
complement activation plays an important role in the permeabil-
ity of BBB. Recently, C5a plays an important role in regulating 
HMGB1 release in sepsis (55). C5a alters BBB integrity in a human 
in vitro model of systemic lupus erythematosus and experimental 
murine lupus (56, 57). Neutralization of C5a prevents breakdown 
of the BBB in experimental sepsis and suppression of HMGB1 
release (58, 59), suggesting that HMGB1-mediated complement 
activation is an important therapeutic target.

Wild type, ΔC-HMGB1, ΔN-HMGB1, and the B box could 
induce complement consumption. It is interesting that HMGB1 
B box, but not A box, could activate the classical complement 
pathway, even though both A and B boxes could bind to C1q. 
Amyloid-β (Aβ) activates the pathway in an Ab-independent 
manner (28), and aggregated Aβ shows multimeric binding to 
C1q to activate the classical pathway (60). The pro-inflammatory 
effect of the B box domain may be due to the tendency of B box to 
dimerize or oligomerize more readily than A box (61) and other 
data from our laboratory (unpublished observations), suggesting 

that multimeric binding of B box to C1q occurs in initial comple-
ment activation. The interaction study of HMGB1 B box with C1q 
will help to clarify the molecular basis of HMGB1-C1q binding. 
In C1q- and IgG-binding assay, HMGB1 did not inhibit their 
association, suggesting that HMGB1 does not displace IgG from 
C1q. It is possible that the six globular heads of C1q serve as 
multiple binding sites for HMGB1 and IgG individually.

Membrane attack complexes are important in mediating 
complement-related cell lysis or tissue damage by extensive depo-
sition (39), whereas a suboptimal-dose deposition of MACs can 
contribute to sublytic effects of inflammatory responses. These 
sublytic effects are mediated via the activation of several signaling 
events, including NF-κB, protein kinase C, and MAPK pathway 
activation, Ca++ influx/mobilization (27, 39). In our study, co-
incubation of HMGB1 with NHS resulted in either significant cell 
lysis or sublytic effects (ERK phosphorylation) (data not shown). 
HMGB1 is one of the main factors contributing to ischemia– 
reperfusion injury and is a potential therapeutic target for 
ischemia (45, 62). Our data show that extracellular HMGB1 
generated during ischemic injury may activate the classical com-
plement pathway and induce lytic or sublytic MAC deposition, 
which creates a subclinical condition (39, 63). Considering that 
HMGB1, 2, and 3 are very homologous, and further investigation 
is necessary to determine whether HMGB2 and 3 have similar 
functions in the classical pathway of complement activation.

The binding of HMGB1 and C1q, however, reciprocally 
regulates human macrophage polarization (48). Son et al. show 
that HMGB1 interacts with C1q (KD = 200 nM), which tail binds 
to leukocyte-associated Ig-like receptor (LAIR)-1 resulting in 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


13

Kim et al. HMGB1 Activates Classical Complement Pathway

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 705

SHP-1 recruitment for anti-inflammatory response (48). These 
contradictory observations show that HMGB1 could show both 
pro- and anti-inflammatory functions by its binding to various 
receptors or ligands. HMGB1 may trigger pro-inflammatory 
macrophages during the onset of inflammation, but mono-
cytes may be skewed to anti-inflammatory macrophages as 
C1q levels rise and bind to LAIR-1. It is not clear how both 
pro- and anti-inflammatory responses possibly depend on its 
concentration. HMGB1 is abundant in the microenvironment 
in many chronic diseases such as Alzheimer’s disease (64), 
atherosclerosis (65), seizures (66, 67), and cancers (68, 69). 
Chronic activation of the classical complement pathway, either 
by deposition of HMGB1 or through its cooperative interac-
tion with endogenous molecules such as Aβ (64), could trigger 
sterile inflammation and accelerate disease progression. We 
propose a novel Ab-independent classical complement path-
way, promoted by HMGB1 binding to C1q, which augments the 
inflammatory process. HMGB1-mediated sterile inflammation 
by complement activation is, therefore, an exciting therapeutic 
target in chronic inflammatory conditions. Our results suggest 
that HMGB1 neutralization exhibits promising potential as 
a therapeutic strategy toward sterile inflammation caused by 
complement activation.
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