
April 2018 | Volume 9 | Article 7421

Original research
published: 13 April 2018

doi: 10.3389/fimmu.2018.00742

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Jose Carlos Alves-Filho,  

Universidade de São Paulo, Brazil

Reviewed by: 
Aldo Tagliabue,  

Istituto di Ricerca Genetica e 
Biomedica (CNR), Italy  
Luisa Bracci-Laudiero,  

Consiglio Nazionale Delle  
Ricerche (CNR), Italy

*Correspondence:
Fons A. J. van de Loo  

fons.vandeloo@radboudumc.nl

Specialty section: 
This article was submitted  
to Cytokines and Soluble  

Mediators in Immunity,  
a section of the journal  

Frontiers in Immunology

Received: 12 January 2018
Accepted: 26 March 2018

Published: 13 April 2018

Citation: 
Waterborg CEJ, Beermann S, 

Broeren MGA, Bennink MB, 
Koenders MI, van Lent PLEM, 

van den Berg WB, van der Kraan PM 
and van de Loo FAJ (2018)  
Protective Role of the MER  

Tyrosine Kinase via Efferocytosis in 
Rheumatoid Arthritis Models.  

Front. Immunol. 9:742.  
doi: 10.3389/fimmu.2018.00742

Protective role of the Mer  
Tyrosine Kinase via efferocytosis 
in rheumatoid arthritis Models
Claire E. J. Waterborg, Silke Beermann, Mathijs G. A. Broeren, Miranda B. Bennink,  
Marije I. Koenders, Peter L. E. M. van Lent, Wim B. van den Berg, Peter M. van der Kraan 
and Fons A. J. van de Loo*

Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences,  
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Objective: Rheumatoid arthritis (RA) is a chronic and progressive joint disease. It appears 
that anti-inflammatory feedback mechanisms that could restrain joint inflammation and 
restore homeostasis are insufficient to perform this control. In this study, we investigated 
the contribution of the MER tyrosine kinase-mediated anti-inflammatory response on 
arthritis and whether targeting MER could be a valid approach to treat RA.

Methods: KRN serum transfer arthritis (KRN STA) was induced in either Mertk-deficient 
mice or in mice that adenovirally overexpressed Pros1. Human synovial micromasses were 
treated with MER-specific antibodies or PROS1. Collagen-induced arthritis (CIA) mice 
were treated with MER-specific agonistic antibodies or by viral overexpression of Pros1.

results: Mertk−/− mice showed exacerbated arthritis pathology, whereas Pros1 
overexpression diminished joint pathology in KRN STA. Human synovial micromasses 
challenged with MER-specific antibodies enhanced the secretion of inflammatory cyto-
kines, whereas stimulating MER with PROS1 reduced the secretion of these cytokines, 
confirming the protective role of MER. Next, we treated CIA mice with MER-specific 
agonistic antibodies, and this unexpectedly resulted in exacerbated arthritis pathology. 
This was associated with increased numbers of apoptotic cells in their knee joints and 
higher serum levels of interleukin (IL)-16C, a cytokine released by secondary necrotic 
neutrophils. Apoptotic cell numbers and IL-16C levels were enhanced during arthritis in 
Mertk−/− mice and reduced in Pros1-overexpressing mice.

conclusion: MER plays a protective role during joint inflammation and activating MER 
by its ligand PROS1 ameliorates disease. Treatment of mice with MER receptor agonistic 
antibodies is deleterious due to its counterproductive effect of blocking efferocytosis in 
the arthritic joint.

Keywords: rheumatoid arthritis, experimental arthritis, Mer tyrosine kinase, efferocytosis, anti-inflammatory

inTrODUcTiOn

Rheumatoid arthritis (RA) is a chronic disease that is characterized by synovitis and damage of both 
cartilage and bone in synovial joints, leading to functional disabilities that affect up to 1% of the 
population worldwide (1, 2). The current generation of biological drugs are inhibiting inflamma-
tory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and IL-1, depleting 
B cells by targeting cluster of differentiation (CD) 20 or by  inhibiting the co-stimulation of T cells by 
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Table 1 | List of antibodies, origin, and function.

antibody reactivity company catalog number Monoclonal/polyclonal Function Figure (F)/supplementary 
Figure (sF)

MER Human Abcam ab52968 Monoclonal [Y323] Immunohistochemistry F3A
IgG for MER – DAKO X0936 – Immunohistochemistry F3A
CD68 Human DAKO M0814 Monoclonal [KP1] Immunohistochemistry F3A
IgG for CD68 – DAKO X0931 – Immunohistochemistry F3A
Secondary antibody Mouse DAKO P0260 Polyclonal Immunohistochemistry F3A
MER Human Abcam ab176887 Monoclonal [Y323] Neutralization F3B

SF3A,B,C
IgG for MER – Abcam ab176094 – Neutralization F3B

SF3A,B,C
MER Mouse R&D systems AF591 Polyclonal Activation F4

F5A,B
F6A,B,C,D
SF4, SF5

IgG for MER – R&D systems AB-108-C – Activation F4
F5A,B
F6A,B,C,D
SF4, SF5

MER Mouse R&D systems AF591 Polyclonal Immunoprecipitation F4A
MER Mouse R&D systems AF591 Polyclonal Immunoblotting F4A
Phosphorylation Mouse Millipore 05-321 Monoclonal [4G10] Immunoblotting F4A
Cleaved Caspase-3 Mouse BD Pharmingen 559565 Monoclonal [C92-605] Immunohistochemistry F5
IgG for Cleaved Caspase-3 – DAKO X0936 – Immunohistochemistry F5
MER Mouse eBioscience 12-5751 Monoclonal [DS5MMER] Flow cytometry SF1A
F4/80 Mouse Bio-Rad MCA497 Monoclonal [Cl:A3-1] Immunofluorescence F6A

SF5A
Secondary antibody Rat Molecular probes A11006 Polyclonal Immunofluorescence F6A

SF5A
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antigen-presenting cells (3). Although biologicals have increased 
the treatment efficacy of RA patients, a substantial percentage of 
RA patients do not respond or are refractory to current treat-
ment. Furthermore, side effects of biologicals are increased risk 
of infections and the development of other autoimmune diseases 
(4). Restoring homeostasis by for example the administration of 
the anti-inflammatory cytokine IL-10 has shown little efficacy in 
clinical trials either due to counteractive effects or poor pharma-
cokinetics of this protein (5, 6). Activation of natural negative 
feedback mechanisms as a potential therapy for RA has not been 
fully explored.

The TAM receptors—TYRO3, AXL, and MER (gene name 
MERTK)—are receptor tyrosine kinases that play a critical role 
in natural anti-inflammatory feedback mechanisms. The two 
principal TAM receptor protein ligands are growth arrest-specific 
6 (GAS6) and Protein S (PROS1). Notably, GAS6 is a ligand 
for all three receptors but with the highest affinity for AXL. In 
contrast, PROS1 can only activate TYRO3 and MER, but not 
AXL (7). These ligands display divalent binding activities: they 
bind to TAM receptors through a carboxy-terminal domain, and 
also, via an amino-terminal domain, to phosphatidylserine (PS) 
that is expressed as an “eat-me signal” on the surface of apop-
totic cells (7). PROS1/GAS6 binding to PS effectively opsonizes 
apoptotic cells for TAM receptor-mediated phagocytic uptake, 
a process called efferocytosis (8, 9). Additionally, the TAM 
receptors negatively regulate inflammation, among others by 
inducing Suppressor Of Cytokine Signaling (SOCS) proteins 1 
and 3 (10–16). SOCS1 and 3 inhibit TLR- and cytokine receptor 
signaling, resulting in reduced production of pro-inflammatory 

cytokines (10, 16, 17). The TAM receptors can also be shed from 
the cell surface thereby creating a soluble ectodomain. For MER, 
the enzyme responsible for this shedding is A Disintegrin AND 
Metallopeptidase Domain 17 (ADAM17) (18). By competing for 
the ligands with the membrane-bound MER, soluble MER has 
been shown to inhibit efferocytosis (19–21).

TAM receptors have been associated with numerous inflam-
matory diseases, such as multiple sclerosis, atherosclerosis, and 
various rheumatic diseases (22–26). These studies focused mainly 
on the association of the soluble ectodomains of the TAM recep-
tors with disease activity parameters. We have previously shown 
that both systemic and intra-articular adenoviral overexpression 
of Gas6 and Pros1 in collagen-induced arthritis (CIA) reduces 
inflammation and bone and cartilage erosion in murine knee 
joints (16). The objective of this study was to illuminate the 
endogenous role of the MER tyrosine kinase, and its role upon 
PROS1 stimulation, in two different experimental models of 
arthritis and a three-dimensional model of the human synovium.

MaTerials anD MeThODs

antibodies
The list of antibodies, origin, and function are given in Table 1.

In Vivo
Mice
Male DBA/1 (Janvier) were used for the CIA model and housed 
in filter top cages. Male C57BL/6 mice (Janvier) were used for 
KRN serum transfer arthritis (STA) experiments using viral 
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overexpression in knee joints. Mice were housed in individually 
ventilated cages. Both mouse strains were used at an age range 
of 10–12 weeks. The Mertk−/− strain was generated as described 
previously (27). All lines were backcrossed for >9 generations 
to a C57BL/6 background. Male Mertk−/− mice and wild-type 
(WT) littermates at 10 weeks of age were used for CIA and KRN 
STA experiments and housed in individually ventilated cages. 
Male and female mice on a C57BL/6 background were used for 
bone marrow isolations. All mice were fed a standard diet with 
freely available food and water. Mice which received a treatment 
(adenovirus or antibody) were randomly allocated to experi-
mental groups. Histological and immunohistochemical analyses 
were performed in a randomized and blinded manner. Clinical 
signs of arthritis in paws and ankle joints were monitored macro-
scopically three times per week. Cumulative scoring was based on 
redness, swelling, and, in later stages, ankylosis, with a maximal 
score of 2 per paw. Humane endpoint was defined as reaching an 
individual score higher than 6 (on a scale of 0–8), followed by 
euthanization of the mouse. All in vivo studies performed in The 
Netherlands complied with Dutch legislation and were approved 
by local authorities for the care and use of animals with related 
codes of practice. The in vivo studies executed in The United States 
of America were conducted according to guidelines established 
by the Salk Institutional Animal Care and Use Committee. Group 
sizes were determined by power calculation on basis of incidence, 
mean, and SD, and are indicated per experiment.

KRN STA
KRN STA was induced by two intraperitoneal injections, at 
day 0 and 2, of 150 µL arthritic K/BxN serum in either WT or 
Mertk−/− mice or in WT C57BL/6J mice that virally overexpressed 
luciferase (Ad Luc) or Pros1 (Ad Pros1) in their knee joints. The 
overexpression of luciferase or Pros1 was accomplished by an 
intra-articular injection into the knee joint of 1  ×  107 plaque-
forming units (PFU) of adenovirus, 24 h prior to the first serum 
injection. Mice were euthanized at day 7 or 14, respectively.

Collagen-Induced Arthritis
For induction of CIA in DBA/1 mice, bovine type II collagen was 
dissolved in 0.05 M acetic acid at a concentration of 2 mg/mL 
and emulsified in an equal volume of Freund’s complete adjuvant 
(2 mg/mL of Mycobacterium tuberculosis strain H37Ra; Difco). 
Mice were immunized with 100 µL of this emulsion intradermally 
at the base of the tail. At day 21, mice were given an intraperi-
toneal booster injection of 100 µg of type II collagen dissolved 
in phosphate-buffered saline (PBS). One day after the booster 
injection, mice were injected intravenously with 10  µg of anti-
MER (AF591) or IgG (AB-108-C) or 3 × 108 PFU of Ad Luc or 
Ad Pros1. Mice were euthanized at day 30 or day 36, respectively.

In Vitro—human
Patient Material
RA synovial tissue was obtained during surgery from the Radboud 
University Medical Center or the Sint Maartenskliniek (both 
the Netherlands). This material was considered surgery surplus 
material. For the Radboud University Medical Center, patients 
gave informed consent for the surgery, were informed and were 

able to decline the use of their material for research. According 
to Dutch law, informed consent was not necessary. In addition, 
patient material was anonymized. For the Sint Maartenskliniek, 
patients gave written informed consent for the use of their 
material for research. The patient material was pseudonymized. 
Therefore, there was no need for the approval by an ethical com-
mittee. Protocols were performed in accordance to the code of 
conduct for responsible use of human tissue in medical research 
(Gedragscode 2011, https://www.federa.org/code-goed-gebruik). 
Synovial samples were digested using Liberase TM (50  µg/mL; 
Roche) for 2 h at 37°C in Roswell Park Memorial Institute (RPMI) 
medium (Gibco). Subsequently, red blood cells were lysed. Cells 
were put in culture with RPMI medium supplemented with 10% 
heat-inactivated fetal calf serum (FCS), 1 mM pyruvate and peni-
cillin/streptomycin (P/S). Medium was refreshed weekly. Cells 
were kept at 37°C with 5% CO2.

Human Monocytes
Whole blood from healthy donors was mixed with PBS 1.5% acid 
citrate-dextrose solution A 1:1. Peripheral blood mononuclear 
cells were isolated by a density gradient centrifugation method 
using Ficoll-Paque PLUS (GE Healthcare). CD14+ cells were 
isolated with the MagniSort Human CD14 Positive Selection Kit 
according to manufacturer’s protocol (Invitrogen) (purity >90%).

Human Synovial Three-Dimensional Micromasses
For the construction of micromasses, rheumatoid arthritis fibro-
blast-like synoviocytes (RAFLS) obtained from synovial samples 
(see Patient Material) and monocytes were mixed with a ratio of 
1:5 (200.000 RAFLS and 1 × 106 monocytes per micromass). The 
cell suspension was centrifuged and cell pellets were dissolved 
in ice-cold Matrigel (Corning). Using cooled pipette tips, 25 µL 
droplets were placed in 24-well culture plates which were coated 
with poly-(2-hydroxyethyl methacrylate) (Sigma-Aldrich). After 
30  min gelation at 37°C, RPMI medium supplemented with 
10% FCS, 1  mM pyruvate and P/S was added. Micromasses 
were kept at 37°C with 5% CO2. After 7  days of culture, the 
formation of a synovial-like lining was confirmed on histology 
(not shown). Subsequently, experiments were set in. In one set 
of experiments, micromasses were pre-incubated with 50  nM 
PROS1 (Haematologic Technologies) for 24 h before stimulation 
with 100  ng/mL E. coli lipopolysaccharide (LPS) (Invivogen), 
100 ng/mL Pam3Cys-Ser(Lys)4 (P3C) (Invivogen) or 10 ng/mL  
recombinant human TNF-α (Abcam). After 6 h, cells were lysed 
in TRIzol (Sigma-Aldrich) and processed for quantitative PCR 
analysis. Supernatants were collected after 24  h for further 
analysis. In another set of experiments, micromasses were treated 
with human anti-MER [Abcam; as previously described (28)]. 
Supernatants were collected after 24 h for further analysis.

In vitro—Murine
In Vitro Pros1 Overexpression
Bone marrow cells were isolated by flushing murine femur and 
tibia bones followed by red blood cell lysis. Cells were differenti-
ated into bone marrow-derived macrophages (BMMs) by cultur-
ing them in the presence of 15 ng/mL M-CSF (R&D). Medium 
was refreshed at day 4. At day 7, BMMs were transduced with 
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adenoviruses encoding for luciferase or Pros1 with a multiplicity 
of infection of 200. Viruses were removed after 2 h. After 48 h, 
cells were stimulated with 100  ng/mL LPS or 100  ng/mL P3C. 
After 6 h, cells were lysed in TRIzol and processed for quantitative 
PCR analysis. Supernatants were collected after 24 h for further 
analysis.

Cell Lines
J774A.1 macrophages were maintained in Dulbecco’s modified 
eagle medium (Life Technologies). EL-4 T cells were cultured in 
RPMI medium. Both media were supplemented with 10% FCS, 
1 mM pyruvate and P/S. Cells were kept at 37°C with 5% CO2.

Apoptosis Induction
EL-4 cells were serum-starved for 16 h and incubated with 2 µM 
Staurosporine for 4 h. This resulted in 70% apoptotic cells verified 
by Annexin V and 7-AAD staining and flow cytometry, measured 
on FACSCalibur (BD Biosciences).

In Vitro Efferocytosis Assay
J774A.1 cells were cultured on eight-well chamber slides, 
serum-starved for 16  h, and pre-incubated with anti-MER or 
IgG for 30 min. Apoptotic cells were labeled with pHrodo (Life 
Technologies) as described previously (29). J774A.1 cells were 
 co-incubated with a 10-fold excess of apoptotic cells in presence of 
anti-MER or IgG for 2 h. Excess of apoptotic cells was removed and 
J774A.1 cells were fixed with 4% paraformaldehyde (PFA). Slides 
were incubated with rat anti-mouse F4/80 (Bio-Rad) followed 
by AF488-labeled goat anti-rat IgG (Invitrogen). Nuclei were 
stained with DAPI. Pictures were taken and the ratio of phago-
cytic  macrophages compared to total number of macrophages 
was determined per well. Cells were counted as phagocytic if 
there was at least one pHrodo-labeled apoptotic cell within the 
F4/80-labeled membrane. The quantification was performed in a 
randomized and blinded manner by two independent observers.

In Vitro Secondary Necrosis Assay
J774A.1 cells were cultured on eight-well chamber slides. Bone 
 marrow neutrophils were isolated using Anti-Ly-6B.2 (7/4) Micro- 
Beads (Miltenyi Biotec) according to manufacturer’s protocol  
after flushing tibia and femur bones and red blood cell lysis. 
Neutrophils were cocultured with J774A.1 cells at a ratio 2:1 
in the presence of 5 µg/mL anti-MER or IgG for 24 or 48 h. For 
microscopy, cells were stained with F4/80 and DAPI as described for 
“in vitro efferocytosis assay” and representative pictures were taken. 
Supernatants after 48 h coculture were collected for further analysis.

Other
Adenoviruses
First generation adenoviruses encoding for luciferase (Ad Luc) 
and Pros1 (Ad Pros1) were produced as previously described (16).

Flow Cytometry MER
Bone marrow-derived macrophages were incubated with mouse 
Fc Block (BD Pharmingen) to block Fcγ receptors, diluted in 
FACS buffer [PBS, 5% FCS, 2  mM ethylenediaminetetraacetic 
acid (EDTA)]. Subsequently, surface marker expression was 
evaluated using rat anti-mouse MER PE (eBioscience). Samples 

were measured on BD FACSCalibur (BD Biosciences) and ana-
lyzed with FlowJo software (Tree Star).

Histological and Immunohistochemical Analysis
Micromasses at day 7 of culture were fixed for 2 h in 2% PFA in 
PBS/1 mM CaCl2, dehydrated, and embedded in paraffin. Sections 
were deparaffinized, rehydrated, and stained with hematoxylin 
and eosin to confirm synovial-like lining formation or were 
further processes for immunohistochemistry. Knee joints were 
fixed in formalin, decalcified with formic acid, and embedded 
in paraffin. Tissue sections were stained with safranin O and 
fast green (both BHD Chemicals) or were further processed 
for immunohistochemistry. Three semi-serial sections per joint 
were scored for histopathologic changes on an arbitrary scale 
from 0 to 3, by two independent observers in a blinded manner 
as described previously (30). The average of the three semi-serial 
sections is depicted per joint. Joint inflammation was determined 
by the presence of synovial cell infiltrates and inflammatory cell 
exudates. Connective tissue destruction was determined by the 
depletion of proteoglycans and by cartilage and bone erosion. CD 
68 and MER were evaluated on paraffin section of micromasses. 
Cleaved Caspase-3 was evaluated on paraffin sections of murine 
knee joints. Sections were deparaffinized and rehydrated. Antigen-
retrieval was performed in Tris/EDTA buffer at 60°C for MER and 
citrate buffer at 60°C for CD68 and cleaved Caspase-3. Endogenous 
peroxidase was blocked by 3% hydrogen peroxide. Tissue sections 
were incubated with 0.2 µg/mL rabbit anti-human MER (Abcam) 
or control rabbit IgG followed by incubation with biotinylated 
goat anti-rabbit (Vector Labortatories), 41  µg/mL mouse anti-
human CD68 (DAKO), or control mouse IgG, followed by rabbit 
anti-mouse horseradisch peroxidase-labeled antibody (DAKO), 
or 0.5  µg/mL rabbit anti-cleaved Caspase-3 (BD Bioscience) or 
control rabbit IgG followed by incubation with biotinylated goat 
anti-rabbit (Vector Labortatories). A biotin–streptavidin detection 
system was used according to manufacturer’s protocol for MER 
and cleaved Caspase-3 (Vector Laboratories). Bound complexes 
were visualized via reaction with diaminobenzidine (Sigma-
Aldrich). All sections were counterstained with hematoxylin. 
For cleaved Caspase-3, two to six pictures were taken of different 
areas of each joint section in a standardized and blinded manner. 
Three semi-serial tissues sections per joint were analyzed. The 
average of the three semi-serial sections was depicted per joint. 
Quantification of the staining was performed using the LAS V4.3 
software (Leica). The inflamed area was selected and the area of 
cleaved Caspase-3 positive cells was expressed as percentage.

RNA Isolation and Quantitative PCR Analysis
3-mm synovial biopsies were disrupted using the MagNA Lyser 
(Roche). Biopsies, BMMs and micromasses were lysed with 
TRIzol. Total RNA was extracted using TRIzol/Chloroform 
extraction and treated with DNAse followed by reverse 
 transcription into cDNA using oligo(dT) primers. Quantitative 
PCR was performed with SYBR green PCR master mix using 
the StepOnePlus Real-Time PCR System (Applied Biosystems). 
Glyceraldehyde-3-phosphate dehydrogenase (Gapdh or GAPDH) 
was used as reference gene. The primer sequences are listed in 
Table 2. The CT value was set to a threshold of 40 in the samples 
in which no CT value was detected.
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Table 2 | List of oligonucleotide primer sequences.

species Oligo description sequence (5′ → 3′)

Human GAPDH_FW ATCTTCTTTTGCGTCGCCAG
Human GAPDH_RV TTCCCCATGGTGTCTGAGC
Human IL1B_FW TGGGTAATTTTTGGGATCTACACTCT
Human IL1B_RV AATCTGTACCTGTCCTGCGTGTT
Human TNF_FW TCTTCTCGAACCCCGAGTGA
Human TNF_RV CCTCTGATGGCACCACCAG
Human ADAM17_FW TCACGTTTGCAGTCTCCAAA
Human ADAM17_RV CACTCGATGAACAAGCTCTTC
Human PROS1_FW CCCTGGAGGTTACACTTGCT
Human PROS1_RV ACTGCTCCGCCAAGTAAAGT
Mouse Gapdh_FW GGCAAATTCAACGGCACA
Mouse Gapdh_RV GTTAGTGGGGTCTCGCTCCTG
Mouse Il1b_FW GGACAGAATATCAACCAACAAGTGATA
Mouse Il1b_RV GTGTGCCGTCTTTCATTACACAG
Mouse Tnf_FW CAGACCCTCACACTCAGATCATCT
Mouse Tnf_RV CCTCCACTTGGTGGTTTGCTA
Mouse Ccl2_FW TTGGCTCAGCCAGATGCA
Mouse Ccl2_RV CCTACTCATTGGGATCATCTTGCT
Mouse Ccl3_FW TTGGCTCAGCCAGATGCA
Mouse Ccl3_RV CCTACTCATTGGGATCATCTTGCT
Mouse Mmp3_FW TGAAGCCACCAACATCAGGA
Mouse Mmp3_RV TGGAGCTGATGCATAAGCCC
Mouse Mmp13_FW AGACCTTGTGTTTGCAGAGCACTAC
Mouse Mmp13_RV CTTCAGGATTCCCGCAAGAG
Mouse Mmp14_FW GCCTGCATCCATCAAACT
Mouse Mmp14_RV CAGTGCTTATCTCCTTTGAAGAAG
Mouse Il17a_FW CAGGACGCGCAAACATGA
Mouse Il17a_RV GCAACAGCATCAGAGACACAGAT
Mouse Il6_FW CAAGTCGGAGGCTTAATTACACATG
Mouse Il6_RV ATTGCCATTGCACAACTCTTTTCT
Mouse Cxcl1_FW TGGCTGGGATTCACCTCAA
Mouse Cxcl1_RV GAGTGTGGCTATGACTTCGGTTT
Mouse Mmp9_FW GGAACTCACACGACATCTTCCA
Mouse Mmp9_RV GAAACTCACACGCCAGAAGAATTT
Mouse Socs1_FW CCGTGGGTCGCGAGAAC
Mouse Socs1_RV AAGGAACTCAGGTAGTCACGGAGTA
Mouse Socs3_FW TAGACTTCACGGCTGCCAAC
Mouse Socs3_RV CGGGGAGCTAGTCCCGAA
Mouse Pros1_FW GCACAGTGCCCTTTGCCT
Mouse Pros1_RV CAAATACCACAATATCCTGAGACGTT
Mouse Adam17_FW ATCGTTGGGTCTGTTCTGGTT
Mouse Adam17_RV ATCTCAATGTTACTGTGATGAAACA
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Measurement of Cytokines and Chemokines
Cytokines and chemokines in sera and supernatants were 
measured on a Bio-Plex 200 system using a magnetic bead-based 
multiplex immunoassay. Data analysis was performed with Bio-
Plex Manager software (all Bio-Rad). IL-16C in sera and super- 
natants was examined using the mouse IL-16 DuoSet ELISA 
(DY1727; R&D systems). Murine soluble MER in sera and 
supernatants was examined using the mouse MER DuoSet ELISA 
(DY591; R&D systems). Human soluble MER in supernatants 
was  examined using the total human MER DuoSet ELISA 
(DYC891; R&D systems). All ELISAs of R&D systems were 
used according to manufacturer’s instructions using the DuoSet 
Ancillary Reagent kit 2 (DY008; R&D systems).

Immunoprecipitation and Immunoblotting
Tissues were snap frozen in liquid nitrogen and processed for 
immunoprecipitation and immunoblotting as described previ-
ously (31). Tissues lysed on ice in lysis buffer. Cell lysates were 
incubated overnight at 4°C with protein-G/A Sepharose to 

pre-clear lysates. For immunopreciptation (IP), cell lysates were 
incubated for 2.5 h at 4°C with anti-Mer. Protein G-Sepharose 
(Invitrogen) was added for 2  h and immunoprecipitates (IPs) 
were washed twice with lysis buffer containing 0.5 M NaCl and 
once with 50 mM Tris/HCl pH 7.5. IPs were eluted in SDS sample 
buffer, separated on polyacrylamide gels, and transferred to PVDF 
membranes. Membranes were blocked in TBST containing 5% 
bovine serum albumin and immunoblotted overnight at 4°C with 
primary antibodies diluted 1:1,000 in blocking buffer. Blots were 
then washed in TBST and incubated for 1 h at RT with secondary 
HRP-conjugated antibodies (GE Healthcare) diluted 1:5,000 in 
5% skim milk in TBST. After repeating the washes, signal was 
detected with enhanced chemiluminescence reagent.

statistics
Data are depicted as dot-plots, dot-plots with mean, mean + SD, 
or mean + SEM, as indicated per figure. Analysis of significance 
was performed using a two-tailed paired or unpaired t-test as 
indicated per experiment when comparing two groups. One-way 
ANOVA with Bonferroni’s multiple comparison test was used if 
more than two groups were compared. All data were analyzed 
with GraphPad Prism 5. Number of samples is depicted per 
experiment in figure legends. p-Values equal to or lower than 0.05 
were considered to be statistically significant.

resUlTs

genetic ablation of Mertk results in 
enhanced arthritis severity, both clinically 
and histologically
Naive Mertk−/− mice did not develop arthritis spontaneously in 
their knee joints and these knee joints were indistinguishable 
from WT knee joints (Figure 1A). KRN STA was induced and 
7  days later, more severe joint inflammation both clinically 
(Figure 1B) as well as histologically (Figures 1A,C) in Mertk−/− as 
compared to WT mice was observed. In addition, knee joints of 
Mertk−/− demonstrated more cartilage proteoglycan depletion, 
and cartilage and bone erosion than WT mice (Figures 1A,C).

adenoviral Overexpression of Pros1 
reduces inflammatory and Destructive 
Mediators and arthritis Pathology
Mertk deficiency showed an endogenous protective role of MER 
during arthritis. Therefore, next, we tested whether MER activation 
by PROS1 could further enhance this protection. Murine BMMs 
were transduced with an adenovirus overexpressing Luciferase 
(Ad Luc) or Pros1 (Ad Pros1) 48 h prior to activation of TLR4 and 
TLR2. BMMs expressed prominent levels of MER and adenoviral 
overexpression of Pros1 resulted in enhanced expression of Pros1 
(Figures S1A,B in Supplementary Material). Pros1 overexpression 
almost completely abolished the LPS- and P3C-induced gene and 
protein expression of IL-1β and TNF-α (Figure 2A). In addition, 
CCL2 protein, but not mRNA levels, were significantly reduced by 
Ad Pros1 (Figure 2A). Moreover, Adam17 expression and soluble 
MER levels were significantly reduced by Ad Pros1 (Figures S1C,D 
in Supplementary Material). This confirmed the anti-inflammatory 
capacity of Ad Pros1. Next, the effect of adenoviral overexpression 
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FigUre 1 | Effect of genetic ablation of Mertk on naive and arthritic knee joints with KRN serum transfer arthritis (STA). (a) Naive (n = 6 mice) or arthritic  
(KRN STA) wild-type (WT) and Mertk−/− mice (n = 9–15 mice) were euthanized at day 7. Shown are representative pictures of histological knee joint sections stained 
with safranin O and fast green. (b) Macroscopic score of knee joints of arthritic mice as determined by swelling and blood vessel formation (n = 18–30 knee joints).  
(c) Histological knee joint sections of arthritic mice were scored for the arthritis parameters depicted. Three semi-serial sections per joint were scored in a random 
and blinded manner with an arbitrary score from 0 to 3 (n = 10–18 knee joints). P, patella; F, femur; S, synovium. For (b,c), data are represented as mean + SEM. 
*p < 0.05, **p < 0.01 with unpaired t-test.
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of Pros1 in knee joints of mice with KRN STA was examined. 
In line with the in vitro results of Pros1 overexpression, reduced 
expression of Il1b, Tnf, and Ccl2 was detected in synovium of mice 
treated with Ad Pros1 compared to Ad Luc (Figure 2B). Histology 
taken at day 14 of KRN STA showed a significant reduction of 
proteoglycan depletion and cartilage erosion in the knee joints of 
Pros1-overexpressing mice (Figures 2C,D). In addition, both bone 
erosion and the amount of cells infiltrating into the synovium were 
reduced in mice overexpressing Pros1 (Figures 2C,D). Consistent 
with the reduction of cartilage erosion, overexpression of Pros1 
resulted in significantly diminished expression levels of multiple 
matrix metalloproteinases (MMPs) in the synovium (Figure S2A 
in Supplementary Material). In constrast to the in vitro data, Ad 
Pros1 did not affect synovial Adam 17 expression nor the serum 
concentration of soluble MER (Figures S2B,C in Supplementary 
Material).

Mer-PrOs1 Targeting Modifies the 
inflammatory cytokine Production by 
human Three-Dimensional synovial 
Micromasses
Next, we tested whether MER also mediated an anti-inflammatory 
response in three-dimensional synovial micromasses consisting 

out of RAFLS and primary macrophages, a standardized model 
for the human synovium mimicking the synovial hyperplasia and 
inflammatory responses observed in RA synovium [manuscript 
in preparation and published in Ref. (32, 33)]. After 7  days, a 
lining was formed and immunohistochemistry demonstrated 
MER+ cells dispersed throughout the micromass that had the 
same morphology as CD68+ macrophages (Figure 3A). Without 
any further stimulation, blocking MER by the addition of 
MER-specific antibodies significantly enhanced the secretion of 
TNF-α and IL-1β by human synovial micromasses (Figure 3B). 
Conversely, addition of PROS1 significantly reduced the gene 
expression and protein secretion of TNF-α and IL-1β upon 
stimulation with several TLR ligands or TNF-α (Figures 3C,D). 
None of the conditions influenced the expression of ADAM17 
or the shedding of MER (Figure S3 in Supplementary Material). 
This showed that MER exerted an anti-inflammatory effect under 
naive conditions that could be further enhanced by the addition 
of PROS1.

Mer-specific antibodies  
aggravate arthritis Pathology
Treatment of RA patients with PROS1 will not be the first choice 
because the majority of PROS1 complexes with C4b-binding 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 2 | Outcome on inflammation and arthritis pathology following adenovirally overexpressing Pros1 in KRN serum transfer arthritis (STA). (a) Bone marrow-
derived macrophages were transduced with Ad Luc or Ad Pros1 and stimulated with lipopolysaccharide (LPS) or P3C for 6 (top) or 24 h (bottom). Messenger RNA 
was extracted and gene expression was determined (top). Supernatants were analyzed (bottom). Data are representative for two independent experiments (n = 3 
per experiment). (b) KRN STA was induced in mice intra-articularly injected with Ad Luc or Ad Pros1 (n = 9 mice). Knee synovial biopsies were obtained, mRNA was 
extracted and gene expression was determined (n = 6 knee synovial biopsies). (c) Shown are representative pictures of knee joint sections stained with safranin O 
and fast green. (D) Histological knee joint sections were scored for the arthritis parameters depicted. Three semi-serial sections per joint were scored in a random 
and blinded manner with an arbitrary score from 0 to 3 (n = 12 knee joints). P, patella; F, femur; S, synovium; JC, joint cavity. For (a), data are presented as dot-plots 
with mean. For (b–D), data are represented as mean + SEM. *p < 0.05, **p < 0.01, ***p < 0.001 with unpaired t-test. See also Figures S1 and S2 in Supplementary 
Material.
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protein making it inactive and it only has a half-life of approxi-
mately 2 days (34–37). Moreover, free PROS1 contains potent 
anti-coagulation activity (38). A more efficient and safer 
approach would be the use of MER-specific antibodies that were 
previously described to activate MER kinase activity (21, 31).  
We tested this approach in the CIA model. Anti-MER or IgG 
was administered intravenously at day 22 of CIA and this led 
to MER phosphorylation in lung and to a lesser extent liver 
1 h thereafter (Figure 4A). Unexpectedly, anti-MER treatment 
markedly increased arthritis severity, determined by macro-
scopic knee swelling and blood vessel formation at day 30 of 
CIA (Figure  4B). Moreover, histology of knee joints showed 
that the anti-MER treatment resulted in a trend toward more 
infiltrating cells in the synovial lining (infiltrate) and significant 
higher amount of cells in the joint cavity (exudate). Furthermore, 
higher cartilage depletion, and cartilage and bone erosion were 
observed after administration of anti-MER (Figures  4C,D). 

To determine the effect of anti-MER on the local expression 
of cytokines and MMPs, gene expression analysis of synovium 
was performed. Consistent with the increased bone destruction, 
enhanced expression of Il17a was observed in synovium of 
mice that received anti-MER. A trend of enhanced expression 
of Il6 and Cxcl1 in synovium and IL-6 and KC protein levels 
in sera was observed after anti-MER treatment (Figures S4A,B 
in Supplementary Material). Moreover, anti-MER significantly 
enhanced Mmp9 and Mmp13 expression in the synovium, 
consistent with increased cartilage erosion (Figure S4C in 
Supplementary Material). The enhanced synovial Socs3 expres-
sion could be an indication that the MER-specific antibodies 
evoked a local anti-inflammatory response (Figure S4D in 
Supplementary Material), but if so, it appeared to be overruled 
during arthritis. Anti-MER did neither induce shedding of 
soluble MER in the serum nor did it alter Adam17 expression 
(Figures S4E,F in Supplementary Material).
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FigUre 3 | Production of pro-inflammatory cytokines by three-dimensional synovial micromasses after anti-MER or PROS1 treatment. (a) Micromasses were 
examined for their protein expression of MER and CD68 (macrophage marker). Shown are representative pictures and IgG controls. (b) Micromasses were treated 
with IgG or anti-MER for 24 h. Supernatants were examined for the presence of tumor necrosis factor alpha (TNF-α) and IL-1β (n = 4). (c) Micromasses were 
preincubated with 50 nM Pros1 for 24 h and stimulated with lipopolysaccharide (LPS) (100 ng/mL), P3C (100 ng/mL), or TNF-α (10 ng/mL) for 6 h. Messenger RNA 
was extracted and gene expression was determined (n = 3). (D) Micromasses were pre-incubated with 50 nM Pros1 for 24 h and stimulated with LPS (100 ng/mL), 
P3C (100 ng/mL), or TNF-α (10 ng/mL) for 24 h. Supernatants were analyzed (n = 3). All data are representative for two independent experiments. For (b–D), data 
are presented as dot-plots with mean. *p < 0.05, **p < 0.01, ***p < 0.001 with unpaired t-test. See also Figure S3 in Supplementary Material.
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Mer Mediates efferocytosis  
in the arthritic Knee Joint
Administration of MER-specific antibodies in mice with CIA 
enhanced the joint inflammation and more apoptotic cells 
were present as detected by immunohistochemical staining of 
cleaved Caspas-3 (Figure 5A), a marker for apoptotic cells (7). 
Quantitative image analysis showed that the cleaved Caspase-3 
positive area within the inflamed area was increased by 
anti-MER treatment (Figure 5B). This suggests that the MER-
specific antibodies could have negatively influenced efferocytosis 
during arthritis in the knee joint. In agreement with this, anti-
MER reduced the efferocytosis of apoptotic cells by J774A.1 
macrophages in a dose-dependent manner (Figure S5A in 
Supplementary Material). To confirm the role of MER in effero-
cytosis during arthritis, knee joint sections from previous in vivo 
experiments were stained for cleaved Caspase-3 and quantified. 
In line with the results of the anti-MER experiments, more 
apoptotic cells in the knee joints of Mertk−/− mice with KRN STA 
were detected (Figure 5C). Systemic adenoviral overexpression 
of the MER ligand PROS1 showed less apoptotic cells in the KNR 
STA model (Figure 5D) and CIA model (Figure 5E), indicating 
efferocytosis was enhanced by Pros1 overexpression. Altogether, 
these results show that MER is involved in efferocytosis in the 

arthritic knee joint and that MER-specific antibodies inhibited 
this process.

Mer-Mediated efferocytosis limits the 
secondary necrosis of apoptotic cells  
in the arthritic Joint
Effective clearance of apoptotic cells by efferocytosis is essential 
for tissue homeostasis. If this process is impaired, apoptotic cells 
go into a process of secondary necrosis (39, 40). When neutrophils 
go into secondary necrosis, the intracellular inactive pre-IL-16 
is cleaved in a Caspase-3-dependent manner to the biologically 
active IL-16C and released (40). To show that blocking MER-
mediated efferocytosis leads to secondary necrosis, neutrophils 
were cocultured with macrophages in the presence of anti-MER 
or IgG. Anti-MER prevented the uptake of apoptotic neutrophils 
(Figure 6A) and culture supernatants showed increased IL-16C 
(Figure  6B) and TNF-α levels (Figure  6C). The IL-16C most 
likely originated from neutrophils, as IL-16C was not detectable 
in this assay in the absence of neutrophils. In these conditions, 
TNF-α protein levels and Adam17 expression were unaltered. 
However, anti-MER did abolish all soluble MER in the super-
natant (Figures S5B–D in Supplementary Material). Anti-MER 
administration led to a significant increase of systemic IL-16C 
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FigUre 4 | Effect of MER-specific antibody treatment on clinical severity and pathology of collagen-induced arthritis (CIA). (a) Mice with CIA were intravenously 
injected with IgG or anti-MER (n = 11–12 mice). Two mice were euthanized 1 h after injection. Lung, liver, and spleen were isolated and samples were 
immunoprecipitated (IP) for MER and immunoblotted for MER or phosphorylation (pY) (n = 1). (b) Macroscopic score of knee joints as determined by swelling and 
blood vessel formation (n = 20–22 knee joints). (c) Shown are representative pictures of histological knee joint sections stained with safranin O and fast green of 
each group. (D) Histological knee joint sections were scored for the arthritis parameters depicted. Three semi-serial sections per joint were scored in a random and 
blinded manner with an arbitrary score from 0 to 3 (n = 20–22 knee joints). P, patella; F, femur; S, synovium; JC, joint cavity. For (b–D), data are presented as 
mean + SEM. *p < 0.05, **p < 0.01 with unpaired t-test. See also Figure S4 in Supplementary Material.
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protein levels at day 30 of CIA (Figure  6D), suggesting that 
prevention of efferocytosis by blocking MER led to secondary 
necrosis of neutrophils in the arthritic joint. In addition, systemic 
IL-16C levels were significantly higher in Mertk-deficient mice 
(Figure 6E). Conversely, systemic levels of IL-16C were signifi-
cantly reduced in CIA mice treated with Ad Pros1 compared to 
Ad Luc (Figure  6F). This showed that MER plays a protective 
role during arthritis by mediating efferocytosis and that this 
nullifies the protective effect of agonistic MER-specific antibod-
ies in arthritis. Blocking of efferocytosis by anti-MER led to a 
pro-inflammatory cascade initiated by the secondary necrosis of 
apoptotic neutrophils.

DiscUssiOn

Our study shows that MER plays a protective role during 
 experimental arthritis in the macrophage-dependent KRN STA 

model (41), the T and B cell-dependent CIA model (42, 43), and 
in a three-dimensional model of the human synovium. We found 
that activating MER by PROS1 is indeed anti-inflammatory and 
also ameliorates arthritis. However, this could not be mimicked 
by agonistic MER-specific antibodies, which also possess the 
bivalent function of blocking MER-mediated efferocytosis.

Mice with a deficiency of Mertk showed aggravated diseases 
and treatment with Pros1 by viral overexpression ameliorated 
the disease in the KRN STA model. The latter confirmed our 
previously published observation of the protective effect of 
Pros1 overexpression in the CIA model (16). MER activation via 
PROS1 delivers a negative feedback signal via the induction of 
SOCS3 that dampens inflammatory cytokine response (10, 11, 
13–17). Indeed, we found increased synovial expression of this 
gene in the CIA model after Pros1 overexpression (16). This could 
explain the arthritis protective effect of MER activation in the 
mouse models and anti-inflammatory effect of MER activation in 
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FigUre 5 | Evaluating the outcome on efferocytosis after treatment with MER-specific antibodies, Mertk gene ablation or Pros1 overexpression.  
(a) Immunohistochemical staining for cleaved Caspase-3 in knee joints of collagen-induced arthritis (CIA) mice injected with IgG or anti-MER. Shown are 
representative pictures of knee joint sections with similar microscopic scores of inflammation, in two different magnifications. (b) Pictures of knee joint sections 
shown in (a) were quantified and the cleaved Caspase-3 positive area was corrected by the total inflamed area (n = 10–12 knee joints). (c) Quantification of 
immunohistochemical staining for cleaved Caspase-3 in knee joints of wild-type (WT) or Mertk−/− mice with KRN serum transfer arthritis (STA) mice (n = 10–18 knee 
joints). (D) Quantification of immunohistochemical staining for cleaved Caspase-3 in knee joints of CIA mice intravenously injected with Ad Luc or Ad Pros1 (n = 18 
knee joints). (e) Quantification of immunohistochemical staining for cleaved Caspase-3 in knee joints of KRN STA mice intra-articularly injected with Ad Luc or Ad 
Pros1 (n = 12 knee joints). P, patella; F, femur; S, synovium. For (b–e), data are presented as mean + SEM. *p < 0.05, **p < 0.01, ***p < 0.001 with unpaired t-test. 
See also Figure S5 in Supplementary Material.
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the human synovial micromass model. It is also in line with more 
severe arthritis observed in Mertk-deficient mice and higher 
cytokine release by human synovial micromasses in the presence 
of blocking MER-specific antibodies. Whether this is all due to 
SOCS3 induction or through inducing specialized proresolving 
mediators (21), remains to be determined.

Based on our results that the endogenous protective role of 
MER during arthritis could be further enhanced by exogenously 
delivered PROS1 or viral overexpression, we envision that MER 
targeting would be a therapeutic option to treat RA patients. 
However, PROS1 will not be the first choice because this protein 
has a half-life of only 2 days and its availability is reduced due to 
complex formation with C4b-binding protein (34–37). Local viral 
delivery of the Pros1 gene could be an option, but safety is still 
an issue and an unlikely strategy to treat all affected joints in the 

RA patient. For that, treatment of RA patients with an  agonistic 
MER-specific antibody would be safer and possibly also more 
efficient. This was tested in the CIA model and unexpectedly, we 
found that this specific anti-MER antibody treatment deteriorated 
the disease due to accumulation of apoptotic cells in the joint that 
go into secondary necrosis and release their pro-inflammatory 
content thereby fueling joint inflammation. Although we cannot 
exclude that anti-MER suboptimally activates the MER receptor, 
we can conclude that anti-MER interferes with MER-mediated 
efferocytosis and appears to have a bivalent function: activation 
of the receptor but also blocking of MER-mediated efferocytosis. 
It does not appear that the inhibition of efferocytosis is due 
to shedding of the MER receptor. In all in  vivo studies, serum 
levels of soluble MER and Adam17 expression were unaltered. In 
vitro, anti-MER and adenoviral Pros1 completely abolished the 
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FigUre 6 | Assessment of secondary necrosis after treatment with MER-specific antibodies, Mertk gene ablation or Pros1 overexpression. (a) J774A.1 cells  
were incubated with IgG or anti-MER and cocultured with bone marrow neutrophils for 24 h. Cells were stained with F4/80 (green) and DAPI (blue). Representative 
pictures are shown for each group. White arrows indicate an engulfed cell (IgG group) or an apoptotic cell (anti-MER group). (b) J774A.1 cells were incubated with 
IgG or anti-MER and cocultured with bone marrow neutrophils for 48 h. Supernatants were examined for the presence of interleukin (IL)-16C (n = 6 individual 
experiments). (c) Supernatants of (b) were analyzed for the presence of tumor necrosis factor alpha (TNF-α) (n = 6 individual experiments). (D) Serum samples from 
collagen-induced arthritis (CIA) mice systemically treated with IgG or anti-MER were analyzed for IL-16C (n = 10–11 mice). (e) Serum samples from wild-type (WT) 
or Mertk−/− mice with KRN serum transfer arthritis were analyzed for IL-16C (n = 9–15 mice). (F) Serum samples from mice with CIA intravenously injected with Ad 
Luc or Ad Pros1 were analyzed for IL-16C (n = 7–8 mice). For (b,c), data are presented as dot-plots. *p < 0.05, **p < 0.01 with paired t-test. For (D–F), data are 
presented as mean + SEM. *p < 0.05 with unpaired t-test. See also Figure S5 in Supplementary Material.
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shedding of MER. The complete absence of soluble MER by MER 
activation could be due to the internalization of the receptor upon 
activation, a common method deployed by receptor tyrosine 
kinases (44).

The importance of MER in efferocytosis is demonstrated 
by the fact that adult Mertk−/− mice exhibit apoptotic cell 
accumulation in multiple tissues (13, 45, 46). During arthritis, 
neutrophils migrate in high numbers into the joint cavity (47). 
Neutrophils are short-lived cells and die by apoptosis (48). 
Apoptotic cells which are not taken up by phagocytes undergo 
secondary necrosis (39, 40, 49). We showed that neutrophils 
(which do not express Mertk) went into secondary necrosis 
when cocultured with anti-MER-treated macrophages, as 
shown by increased levels of IL-16C. IL-16C is processed from 
its inactive pre-form in a Caspase-3-dependent manner to the 
biologically active IL-16C, in neutrophils (40). Additionally, 
serum of anti-MER-treated mice and Mertk−/− mice contained 
higher levels of IL-16C during arthritis. Conversely, protective 
effects were observed when Pros1 was virally overexpressed as 

IL-16C serum levels were reduced in these mice. IL-16C is a 
pro-inflammatory cytokine that induces among other IL-6 (50). 
We found that the IL-16C levels correlated significantly with 
the synovial gene expression of Il6 (R2 =  0.8349; p =  0.0002) 
in the CIA model. Enhanced levels of IL-16 are observed in 
RA patients, associated with joint destruction and inflamma-
tion, making it tempting to speculate secondary necrosis plays 
an aggravating role during RA (51, 52). Noteworthy, IL-16 
is an extraordinarily effective parameter to measure clinical 
responses during early treatment (53).

Little has been described about the TAM receptors and their 
ligands in human synovium. One study showed that human RA 
fibroblast-like synoviocytes respond to GAS6, likely via TYRO3 
and AXL (54). Another study showed the presence of AXL in 
human synovial lining cells and also the presence of GAS6 in 
synovium and synovial fluid (55). We showed that targeting 
the MER-PROS1 axis in a human three-dimensional model 
of the synovium is beneficial both at homeostasis and in an 
 inflammatory environment. Moreover, the cleaved soluble form 
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of MER, present in human synovial fluid of RA patients, impairs 
efferocytosis (manuscript in preparation).

PROS1 protein therapy and PROS1 gene therapy are not 
the first choice for treatment of RA patients whereas the use of 
antibodies, such as anti-TNF-α, is the first-line biological after 
methotrexate. However, our study showed that activating the 
MER receptor using an antibody strategy may have a counterpro-
ductive effect of blocking MER-mediated efferocytosis, leading to 
necrotic cell death that stimulates inflammation. In summary, our 
data show that MER-mediated efferocytosis plays a crucial role in 
the arthritis process suggesting that preserving or stimulating this 
pathway is a therapeutic option in RA.
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FigUre s1 | Expression of MER, soluble MER and, Pros1and Adam17 by 
bone marrow-derived macrophages (BMMs). (a) BMMs were analyzed with 
flow cytometry for the membrane protein expression of MER. Red = unstained, 
blue = stained for MER. (b,c) BMMs were transduced with Ad Luc or Ad Pros1 
and stimulated with lipopolysaccharide (LPS) (100 ng/mL) or P3C (100 ng/mL) 
for 6 h. Messenger RNA was extracted and gene expression was determined 
(n = 3 per experiment). (D) BMMs were transduced with Ad Luc or Ad Pros1 
and stimulated with LPS (100 ng/mL) or P3C (100 ng/mL) for 24 h. 
Supernatants were analyzed (n = 3 per experiment). For (b), data are presented 
as dot-plots with mean. For (c,D), data are presented as mean + SEM. 
*p < 0.01, ***p < 0.001 with unpaired t-test comparing Ad Luc to Ad Pros1 
conditions. All data are representative for two independent experiments. 
ND = not detected. See also Figure 2.

FigUre s2 | Effect of local adenoviral Pros1 overexpression on 
metalloproteinase expression, Adam17 expression and soluble MER levels in 
KRN STA. KRN STA was induced in mice overexpressing luciferase (Ad Luc) or 
Pros1 (Ad Pros1) in their knee joints and mice were euthanized at day 14.  
(a,b) Knee synovial biopsies were obtained, mRNA was extracted and gene 
expression was determined (n = 6 knee synovial biopsies). (c) Serum samples 
from the same mice were analyzed for soluble MER (n = 12 mice). Data are 
represented as mean + SEM. **p < 0.01, ***p < 0.001 with unpaired t-test. 
See also Figure 2.

FigUre s3 | Expression of Pros1, Adam17, and soluble MER levels by three-24 
dimensional synovial micromasses after anti-MER or PROS1 treatment. (a–c) 
Micromasses were treated with IgG or anti-MER for 24 h, mRNA was extracted 
and gene expression was determined (n = 4). (B) Micromasses were treated with 
IgG or anti-MER for 24 h. Supernatants were examined for the presence of 
soluble MER (n = 4). (D,e) Micromasses were preincubated with 50 nM Pros1 
for 24 h and stimulated with lipopolysaccharide (LPS) (100 ng/mL), P3C  
(100 ng/mL) or tumor necrosis factor alpha (TNF-α) (10 ng/mL) for 6 h. 
Messenger RNA was extracted, and gene expression was determined (n = 3). 
(F) Micromasses were pre-incubated with 50 nM Pros1 for 24 h and stimulated 
with LPS (100 ng/mL), P3C (100 ng/mL) or TNF-α (10 ng/mL) for 24 h. 
Supernatants were analyzed (n = 3). All data are representative for two 
independent experiments. For (a–c), data are presented as dot-plots with 
mean. For (D–F), data are presented as mean + SEM. See also Figure 3.

FigUre s4 | Local and systemic effects of anti-MER on inflammation and 
destruction in collagen-induced arthritis (CIA). Knee synovial biopsies were 
obtained at day 30 from mice with CIA intravenously injected with 10 µg IgG or 
anti-MER. Messenger RNA was extracted and gene expression was determined 
for (a) cytokines and chemokines, (c) metalloproteinases, or (D) SOCS genes 
and (e) Adam17 (n = 10 knee synovial biopsies). (b,F) Serum samples from the 
same mice were analyzed for IL-6 and KC by Bio-Plex Multiplex Immunoassay or 
soluble MER (n = 10–11 mice). All data are presented as mean + SEM. 
*p < 0.05, **p < 0.01 with unpaired t-test. See also Figure 4.
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