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Autoantibodies (AAbs) against various retinal proteins have been associated with vision 
loss in paraneoplastic and non-paraneoplastic autoimmune retinopathies (AR). There are 
two major paraneoplastic syndromes associated anti-retinal AAbs, cancer-associated 
retinopathy (CAR), and melanoma-associated retinopathy. Some people without a can-
cer diagnosis may present symptoms of CAR and have anti-retinal AAbs. The etiology 
and pathogenesis of those entities are not fully understood. In this review, we provide 
evidence for the role of AAbs in retinal death and degeneration. Studies of epitope 
mapping for anti-recoverin, anti-enolase, and anti-carbonic anhydrase II revealed that 
although patients’ AAbs may recognize the same retinal protein as normal individuals 
they bind to different molecular domains, which allows distinguishing between normal 
and diseased AAbs. Given the great diversity of anti-retinal AAbs, it is likely some 
antibodies have greater pathogenic potential than others. Pathogenic, but not normal 
antibodies penetrate the target cell, reach their specific antigen, induce apoptosis, and 
impact retinal pathophysiology. Photoreceptors, dying by apoptosis, induced by other 
than immunologic mechanisms produce substantial amounts of metabolic debris, which 
consequently leads to autoimmunization and enhanced permeability of the blood–retinal 
barrier. AAbs that were made as a part of anti-cancer response are likely to be the cause 
of retinal degeneration, whereas others, generated against released antigens from dam-
aged retina, contribute to the progression of retinopathy. Altogether, AAbs may trigger 
retinal degeneration and may also exacerbate the degenerative process in response to 
the release of sequestered antigens and influence disease progression.

Keywords: autoantibody, retinal degeneration, cancer-associated retinopathy, melanoma-associated retinopathy, 
recoverin, enolase, transient receptor potential channel protein 1, epitope mapping

iNTRODUCTiON

Autoantibodies (AAbs) against retinal proteins have been associated with vision disturbance 
in paraneoplastic and non-paraneoplastic autoimmune retinopathies (AR). Cancer-associated 
retinopathy (CAR), a visual paraneoplastic syndrome, is characterized by sudden and unex-
plained loss of vision associated with distant cancer and the presence of AAbs (1, 2). Those 

Abbreviations: AAbs, autoantibodies; AR, autoimmune retinopathy; CAR, cancer-associated retinopathy; MAR, melanoma-
associated retinopathy; RCS, Royal College of Surgeons; RPE, retinal pigment epithelium; APC, antigen-presenting cells; 
GCAP, guanylate cyclase-activating protein; TULP1, tubby-like protein 1; IRBP, interphotoreceptor retinoid-binding protein; 
HSP27, heat shock protein 27; CAII, carbonic anhydrase II; TRPM1, transient receptor potential channel protein 1; TULP1, 
tubby-like protein 1; ERG, electroretinogram.
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FigURe 1 | Pathology of retinal degeneration. A picture that illustrates a rod 
photoreceptor cell next to normal human retina (on the left) that is composed 
of several cell layers as follows: inner and outer segments of rod and cones 
of photoreceptors cells, outer nuclear layer, outer plexiform layer, inner 
nuclear layer, inner plexiform layer, ganglion cells layer, nerve fiber layer 
(axons of ganglion cells), and outer limiting membrane that neighbors with 
vitreous. A photograph of degenerated retina from a patient who lost 
completely photoreceptor cell layer (on the right), only inner part of the  
retina remained unaffected.
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AAbs bind to various antigens present in the retina and are  
collectively called anti-retinal AAbs. CAR can be associated 
with any cancer and dysfunction of photoreceptor cells and 
other retinal cells (3). A disorder that affects people with meta-
static skin melanoma and vision loss related to the dysfunction 
of retinal bipolar cells has been separated from CAR syndrome 
and was named melanoma-associated retinopathy (MAR) 
(4–6). Autoimmune retinopathy (AR) concerns people with 
acute or subacute vision loss who present symptoms of CAR 
and have anti-retinal AAbs but without a cancer diagnosis at 
presentation (7). Autoimmune retinopathies commonly affect 
individuals of over 50 years old. As the general population grows 
older, the number of seropositive patients for anti-retinal AAbs 
increases with complaints of vision loss. In this review, we will 
provide evidence for autoimmunity as a primary contributing 
mechanism underlying retinal cell death or as a secondary 
role in exacerbating the degenerative processes in response 
to antigens being released from the degenerating retina, thus 
influencing the progression of AR. Even if AAbs did not initiate 
the pathogenic processes, they could still drastically impact the 
progression of AR. Pathology of retinal degeneration in human 
tissue is illustrated in Figure 1.

AUTOiMMUNe ReTiNAL DegeNeRATiON 
SYNDROMeS

Paraneoplastic (CAR, MAR) and non-paraneoplastic (AR)  
disorders are immunologically and symptomatically heteroge-
neous. CAR is characterized by sudden and progressive loss of 
vision associated with photosensitivity, reduced visual acuity, 
defects in color vision, constriction of visual fields, ring scotoma, 
and attenuated retinal arteriole (1, 2). The function of both 
cone and rod photoreceptor cells can be affected. In the case of 

cone-related dysfunction, patients present with photosensitivity, 
photopsias, glare, severely reduced central vision, and impaired 
color perception. Rod dysfunction manifests with night blind-
ness, impaired dark adaptation, and peripheral visual field loss, 
e.g., ring scotoma.

Melanoma-associated retinopathy is characterized by symp-
toms of acquired night blindness, light sensations, visual loss, 
defect in visual fields, and reduced b-waves in the electroreti-
nogram (ERG) (8). It primarily affects bipolar cell function, but 
photoreceptors can also be damaged in MAR patients (9, 10). 
Despite significant variations in signs and symptoms, we and 
others have found some similarities in the clinical presentation 
of retinopathy associated with AAbs of the same specificity. For 
example, the clinical phenotype for anti-recoverin-associated 
retinopathy appears to be different from the retinopathy that is 
associated with anti-enolase antibodies (11–13). These disorders 
are rare. The low incidence of CAR and MAR could be related 
to the fact that most patients with carcinomas or melanoma do 
not perceive that their eye problems could be connected to their 
distant malignancy. It may also be possible that substantial sub-
jective vision loss only occurs after a critical number of rod and 
cone photoreceptors are destroyed (14–16). Retinal autoimmun-
ity can also contribute to photoreceptor cell loss in hereditary 
retinitis pigmentosa (RP) and possibly other inherited retinal 
dystrophies.

geNeRATiON OF ANTi-ReTiNAL AAbs

Autoantibodies against a variety of retinal antigens have been 
detected in patients’ blood but the precise mechanism for AAb 
origination remains unclear. Specifically, the question is whether 
the antibodies are involved in the initial pathogenesis of retinal 
disease or if they develop during the course of the disease as a 
secondary event. We contemplate three possible causes of AAb 
formation in retinal degenerative diseases: (A) the antitumor 
response, (B) the anti-microbial response, or (C) the autoimmune 
response against self-antigens that are released from a damaged 
retina (Figure 2).

 (A) There is evidence that CAR antibodies are produced as a 
part of antitumor response (17–22). Both malignant and 
benign tumors are capable of inducing a humoral immune 
response (23, 24). During antitumor response, released 
antigens are picked up and processed by antigen-presenting 
cells, which eventually leads to the production of AAbs that 
may cross-react with protein antigens in the retina. Some 
retinal antigens are identical or partially identical to the 
antigens present in cancer cells that are upregulated during 
tumorigenesis. An example of such a response are AAbs 
against recoverin, a protein normally sequestered in the 
retina but it is also produced in small cell carcinoma of the 
lung and other cancers (25–29). The process of AAb forma-
tion likely starts in the pre-malignant phase and may serve to 
limit the tumor growth (30, 31). Anti-recoverin AAbs were 
also found in patients that initially presented with ocular 
disturbances—without cancer; however, a malignancy was 
later discovered (25, 32, 33).
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FigURe 2 | Possible causes for generation of autoantibodies reacted with 
retinal antigens: anti-microbial responses (infection) against similar antigens 
released after infection, antitumor responses (tumor) against upregulated 
similar proteins, or anti-retinal responses to released sequestered proteins 
(retinal injury) from dying retinal cells.
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 (B) The second possibility for AAb generation is an anti-
microbial response, since there are putative similarities 
between proteins that exist in pathogens and the retina. 
An autoimmune response can emerge following infection 
by a microbial pathogen, whose proteins have structural 
similarities to human proteins (34). Proteins, to which 
the immune system is normally self-tolerant, might elicit 
autoimmune responses. Thus, antibodies evoked against 
pathogenic proteins can cross-react with retinal proteins 
and act as AAbs and the implicated autoantigens then 
provide a source for persistent stimulation. Exposure to 
infections by bacteria and viruses throughout the entire life 
of the host induces memory microbe-specific T and B cells, 
which then recognize self-antigens of the eye, leading to 
autoimmune processes. Cross-reactive microbial AAbs with 
retinal antigens, in particular, against conserved proteins 
with important physiological functions can cross the blood–
retinal barrier (BRB) and access similar or identical antigens 
in retinal cells (35–37). An example of such cross-reactive 
antibodies is AAb against glycolytic enzymes, which have 
important metabolic functions in both microbial and retinal 
cells. Moreover, glycolytic proteins are multifunctional, they 
not only exist in the cytosol, but are also exposed on the 
membrane of microbes, making them easily accessible to 
the immune system (36).

 (C) The third mechanism for antibody production can be 
explained by the availability of retinal antigens during retinal 
degeneration initiated by some other the immunological 
processes. There is evidence for the activation of autoim-
mune responses secondary to retinal degeneration, due to the 
genetic mutation in different forms of RP (38–40). Causative 
mutations may initiate cellular stress in photoreceptor cells 
through the secretion of chemokines and the recruitment of 

microglia into the outer retina (41). It has been hypothesized 
that retinal proteins that are sequestered under normal 
physiological conditions, and protected from immune rec-
ognition, are released from the damaged tissue and become 
targets of the immune effector functions once exposed to 
the immune system (42, 43). The concept that new AAbs are 
produced in response to debris from regions of pathology 
implies that these AAbs function in the clearance of debris 
from the tissue (44). A variety of AAbs have been detected 
in patients with retinal diseases, but not all of them are 
against proteins that are normally present in photoreceptor 
cells, especially in outer segments. The potential antigenic 
proteins participate in the phototransduction process, by 
which the photoreceptor cells generate electrical signals in 
response to the absorption of photons (45). Photoreceptor 
cells are post-mitotic, terminally differentiated retinal cells 
that have no regenerative ability under normal physiological 
conditions, whose number inversely decreases with age—
presumably due to cell death (46). Retinal cell death is also 
associated with increased numbers of subretinal microglial 
accumulation and complement activation (47). Although the 
eye has an immune privileged status, it is still susceptible to 
immune-mediated inflammatory disease, both by infectious 
and autoimmune stimuli (48, 49). A crucial step in the activa-
tion process is the recruitment of inflammatory cells, such as 
macrophages and microglia, to the local injured area/retina; 
which leads to the release of pro-inflammatory cytokines 
and amplifies the disease’s process (50). The accumulation 
of debris in the outer segment provides a signaling mecha-
nism for the activation and chemotaxis of microglial cells 
(41). Such processes may enhance disease progression by 
augmenting apoptotic photoreceptor cell death, disrupting 
the BRB, and attracting blood macrophages into the retina 
(51, 52). Excessive deposition of complement components at 
the retinal pigment epithelial/outer segments of photorecep-
tor cell space, particularly when concentrated in deposits 
of metabolic debris, may act as a trigger for inflammatory 
macrophage activation.

The research using the dystrophic Royal College of Surgeons 
(RCS) rat model showed that anti-retinal AAbs and T cells were 
generated, with distinctive activation trends, in response to the 
availability of antigenic material being released from dying pho-
toreceptor cells during retinal degeneration (53). A strong initial 
response in anti-photoreceptor antibodies declined about the rat 
age 40  days, but later, there was a rebound, with a subsequent 
wave of antibody production, caused by an additional antigenic 
re-stimulation as more cells died and remained measurable until 
photoreceptor cells disappeared and self-antigens that were 
being released from dying cells were no longer available (53). 
This suggests that, even if AAbs did not initiate the pathogenic 
processes, they could still drastically influence their progression. 
Moreover, the adoptive transfer of anti-retinal AAbs obtained 
from RCS rats with inherited retinal degeneration induced 
disruption of the blood–retinal barrier, upregulation of MCP-1 
(CCL2) chemokine, and attracted macrophages/microglia into 
the retina. This additional influx of microglia correlated with 
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FigURe 3 | Immunofluorescent labeling of the human retina with cancer-associated retinopathy patients’ anti-retinal autoantibodies (AAbs) specific for different 
cellular structures. From left to right: AAbs label photoreceptor cells and bipolar cells, cone photoreceptors, ganglion cells, and amacrine cells; arrows point at 
immunofluorescent cells.
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increased levels of photoreceptor apoptosis, thus influencing the 
long-term photoreceptor survival (53). It is likely that early on, 
the same anti-retinal AAbs could contribute to the cell death, 
and later, to the progression of retinal degeneration by recruiting 
activated macrophages/microglia into the retina and production 
of new AAbs.

Although AAbs are frequently found in the circulation of  
patients with loss of vision, it is difficult to determine the pri-
mary mechanism of antibody formation. Assessing the cross-
reactivity between cancer-retina and microbial-retinal antigens, 
using tissue samples or purified antigens helps with identifica-
tion of the source of antigenic stimulation. However, identifying 
AAbs that were generated as a result of retinal death is much 
more difficult task. Regardless of the origination of anti-retinal 
AAbs, they are found to persist over time in the circulation and 
are associated with a stable or progressive course of vision loss 
(11). Due to the chronic nature of retinal autoimmunity, AAbs 
are likely to appear before manifestation of clinical symptoms 
though it is not possible to test non-symptomatic patients. 
Such AAbs could provide a good predictive biomarker for the 
potential development of retinal disease and neoplasm.

ReTiNAL AUTOANTigeNS

Patients with CAR, MAR, and AR have AAbs that generally 
target intracellular proteins, and only a few that are directed 
against membrane proteins, located in various retinal cell types 
(Figure 3) (54–58). Some of the first AAbs found in associa-
tion with CAR are AAbs against recoverin, a calcium-binding 
protein that plays an important function in visual phototrans-
duction (6, 59–61). Initially, only patients who had been 
diagnosed with small cell carcinoma of the lung were found to 
be seropositive for anti-recoverin AAbs (62, 63). However, in 
subsequent years, other malignancies were found to be associ-
ated with anti-recoverin AAbs (64). Anti-recoverin AAbs were 
also detected in patients with different cancers without visual 
presentation, but were not reported in healthy individuals 
without cancer, suggesting that AAbs are mainly generated 
against the cancer-expressed recoverin (65). Recoverin has 
been considered a main biomarker for CAR syndrome but 
anti-recoverin AAb presence is infrequent; in fact, only about 
5% of CAR patients possess anti-recoverin antibodies (66). 

However, the absence of AAbs against recoverin does not 
exclude a diagnosis of paraneoplastic syndrome. Thus far, 
over 30 different antigens in the retina have been identified in 
association of vision loss (67–70).

Presumed targets in retinal degeneration are photoreceptor 
cells, the outer layer of the retina (Figure 1). Recoverin is a pho-
toreceptor cell protein, in addition to several other photoreceptor 
antigens found, including arrestin, guanylate cyclase-activating 
protein, transducin-α and transducin-β, TULP1, Rab6, rhodop-
sin, and interphotoreceptor retinoid-binding protein (IRBP) 
(10, 22, 28, 54, 55, 66, 71, 72). However, sera of patients with 
CAR possess AAbs that not only react with photoreceptor cell 
antigens but also with bipolar and ganglion cells of the retina 
(62, 66, 73, 74). AAbs against glycolytic enzymes, such as eno-
lase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, and 
pyruvate kinase M2, dominate in sera of patients with AR (36). 
Antibodies against heat shock proteins, such as heat shock pro-
tein 27 (HSP27) and HSP65, have also been detected in patients 
with CAR and AR (66, 75, 76). Carbonic anhydrase II (CAII) 
is one of the major target proteins in prostate cancer-CAR and 
AR (77).

In MAR, transient receptor potential channel protein 1 
(TRPM1), a membrane autoantigen is associated with retinal 
ON bipolar cell dysfunction (57, 58, 78–80). TRPM1 is also 
found in melanocytes (57, 58). The epitope of the TRPM1 AAbs 
is localized to the short intracellular domain in the amino ter-
minal part of TRPM1 sequence (58, 80). It is hypothesized that 
TRPM1 AAbs are generated in response to abnormal TRPM1 
polypeptides, encoded by an alternate mRNA splice variant 
that is expressed by malignant melanocytes (56). These AAbs 
are infrequent, found in less than 5% of MAR patients. More 
often, AAbs against proteins involved in phototransduction have 
been detected, likely because human melanoma cells in  vitro 
express rhodopsin, transducin, and cyclic guanosine 3′,5′- 
monophosphate phosphodiesterase 6, guanylyl cyclase 1, recov-
erin, and arrestin (81). In fact, AAbs against transducin, rhodo-
psin, arrestin, and IRBP have been found in MAR in addition to 
α-enolase, CAII, myelin basic protein, mitofilin, and titin (4, 22,  
28, 82, 83). In recent years, there have been multiple reports 
of a MAR-like retinopathy with associated detachments of the 
retinal pigment epithelium (RPE) and neurosensory retina. 
Such a clinical presentation is termed paraneoplastic vitelliform 
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retinopathy. In some cases, three additional proteins, besides the 
usual anti-enolase-α, anti-bestrophin, and anti-peroxiredoxin, 
were detected in the serum (84–86).

Autoantibodies with similar specificities were found in 
patients with AR who do not have a previous history of visual 
pro  blems and develop a sudden onset of photopsias, night blind-
ness, scotomata, and visual field loss (39, 87). AAbs against 
recoverin, α-enolase, aldolase, and CAII as well as AAbs against 
heat shock proteins (HSP27, HSP60) and CRMP2 were identified 
in patients with AR (66, 76, 88, 89). It has been speculated that  
AR can also be a secondary complication of other conditions 
such as RP, birdshot retinopathy, or acute zonal occult outer 
retinopathy (AZOOR). RP patients with cystoid macular edema 
often have antibodies against CAII (90). High incidence of AAbs 
has been observed in patients with AZOOR but it is not clear 
whether this condition is autoimmune mediated (91, 92).

iMPORTANCe OF ePiTOPe  
MAPPiNg iN AR

It has been assumed that autoimmunity starts with an immune 
response to a single antigen, and it subsequently extends to other 
proteins in the same tissue, or amino acid sequence within the 
same molecule (epitopes) by a process called “epitope spread-
ing” (93, 94). Testing for epitopes for major AAbs that play a 
role in the autoimmunity of retinopathy is important because 
it could potentially distinguish normal from pathogenic anti-
bodies. There is evidence that epitope spreading plays a role in 
the formation of anti-retinal T cells and in antibody responses 
associated with ocular immunity (95). The first indication of 
different epitopes in the same antigenic protein involved in 
autoimmune uveitis was demonstrated using experimental 
autoimmune uveitis (EAU), a model for autoimmune noninfec-
tious uveitis in humans. Two proteins were found to be major 
antigens in humans and experimental animals: IRBP, also 
known as retinol binding protein-3, and arrestin, also known 
as S-Antigen (96–99). By the use of synthetic peptides of the 
human IRBP, the sequence within amino acids 1–20 was identi-
fied as a major uveitogenic epitope for the T cell response, which 
is widely recognized by different species (100). Two other IRBP 
epitopes, residues 461–480 and 651–670, are also uveitogenic 
(101). The study of EAU have shown that it is important to 
use human protein sequences in epitope mapping for human 
immune responses because the amino acid differences between 
experimental animals and human sequences may affect the 
identification of novel pathogenic epitopes and the determina-
tion of epitope spreading. In the EAU model, epitope spreading 
from the immunizing to the non-immunizing peptide was 
demonstrated for both IRBP 1–20 and 629–643 sequences and 
was consistent with the destruction of retinal tissue, increas-
ing repertoire of antigen-specific effector T-cell with disease 
progression (102).

Arrestin epitopes were studied in patients with uveitis, using 
linear synthetic peptides, spanning the entire sequence of the 
protein. Two synthetic peptides, amino acid regions 286–305 
and 306–325 are uveitogenic in the rat model of uveitis (103). 

Human patients respond to the arrestin peptides 61–80 and 
other arrestin peptides with high frequencies (104). These results 
further confirm that autoimmunity to arrestin is crucial for the 
pathology of uveitis (104). In the case of IRBP and arrestin pro-
teins, the demonstration of epitope spreading is correlated with 
clinical disease, which implies that an evolving immune response 
plays an important part in progression of chronic autoimmune 
ocular inflammation. AAbs to arrestin and IRBP are not only 
important in autoimmune uveitis but they are detected in AR 
and CAR (105).

Recoverin was one of the first presumed autoantigen in 
CAR. It has been demonstrated in in  vitro and in  vivo studies 
that this protein is immunogenic and induces the production of 
pathogenic antibodies and T cells (59, 62, 106–108). In epitope 
mapping experiments, using synthetic peptides that overlap the 
entire recoverin sequence, two major epitopes for human AAbs 
have been found within the residues 38–43 (QFQSI) and 64–70 
(KAYAQHV), in proximity to the calcium-binding domain 
EF-hand 2 (25, 107). Both mapped regions of recoverin can be 
accessible to the immune system because they exist on the surface 
of the molecule. AAb binding was found to be dependent on 
recoverin calcium-binding properties, which induce conforma-
tional changes in the recoverin protein, and enhance binding of 
AAbs to recoverin (107). The majority of antibodies to recoverin, 
both in human disease and in animals that are immunized with 
recoverin, are directed against the same major immunodominant 
region, the sequence 64–70 (107, 109). An immunization of ani-
mals, with the peptide 64–70, induced EAU in rats and the anti-
bodies that were generated affected photoreceptor cell function, 
which in turn produced an activation of the caspase-dependent 
apoptotic pathways in vitro (25, 106, 109, 110).

Cancer-associated retinopathy patients possess recoverin- 
specific cytotoxic T lymphocytes (CTLs) in the peripheral blood,  
which can recognize aberrantly expressing recoverin in cancer cells 
(109, 111). In the study of recoverin-derived HLA class I—A24- 
binding peptides to generate antitumor-recoverin CTLs, the inves-
tigators identified three recoverin epitopes: R49 (QFQSIYAKF), 
R49.2 (QFQSIYAKFF), and R64 (AYAQHVFRSF) (109). In part, 
these CTL epitope sequences (QFQS and AYAQHV) correspond 
to the major binding sites for anti-recoverin AAbs in humans 
(107). Overall, it suggested that the capacity to induce the patho-
genic effects is dependent on the region of the antigenic protein 
that is being recognized by the immune system.

Enolase-α is a major antigen in CAR and AR. Soon after its 
discovery, there was a concern about a broad association of anti-
enolase-α AAbs in an autoimmunity that is not restricted to any 
particular disease, and is occasionally found in sera of normal 
individuals (36, 112). Epitope mapping of CAR and normal sera 
revealed three binding regions of enolase within the amino acid 
residues 31–38 (FRAAVPSG), 176–183 (ANFREAMR), and 
421–428 (AKFAGRNF), and these epitopes were common for all 
AAbs tested, independent of disease status (113). However, the 
enolase sequence 56–63 (RYMGKGVS) is uniquely recognized by 
CAR sera. There are also differences in in vitro cytotoxic activities 
and cell-death-promoting activities between anti-enolase AAbs 
of healthy and CAR affected individuals (113). Anti-enolase-α 
AAbs from patients with CAR and healthy individuals did not 
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FigURe 4 | Overview of pathogenic autoimmune processes on the retina. 
Anti-retinal autoantibodies (AAbs) can provoke and can be a consequence  
of retinal degeneration. AAbs attract activated microglia/microphages that 
produce pro-inflammatory cytokines and chemokines, and induce apoptosis 
of cone and rod photoreceptor cells (showing on the right), resulting in retinal 
degeneration. Inflammatory cytokines and chemokines, activation of 
microglia and photoreceptor apoptosis can trigger secondary autoimmunity, 
and production of new anti-retinal AAbs. Cytotoxic T cells specific for retinal 
antigens are likely also involved in the pathogenic process.
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bind to the epitope involved in the plasminogen binding of 
enolase-α sequence 250—256 (FFRSGKY), suggesting that these 
conditions are not associated with distresses of the intravascular 
and pericellular fibrinolytic system (114).

Anti-enolase AAbs have been associated with a number of 
cancer and autoimmune diseases but there is limited informa-
tion about the fine recognition of this antigen. Anti-enolase 
AAbs of patients with endometrial adenocarcinoma, but not 
from healthy individuals, were found to recognize 2 regions of 
enolase sequence: 53–87 and 207–238 (115). The first epitope 
that was associated with endometriosis, sequence 53–87, overlaps 
with the presumed pathogenic epitope related to CAR, sequence 
56–63 (115). One study showed that the common human enolase 
sequence 257–272 (DLDFKSPDDPSRYISP), spanning amino 
acids located within an external loop of the molecule, showed 
similarities between α-enolase and α-ERM molecule (116). The 
high specificity of antibodies to the NH2-terminal region of 
enolase-α in patients with Hashimoto’s encephalopathy suggests 
that this is the most immunogenic site and that AAbs against 
N-terminal enolase can serve as diagnostic biomarkers for the 
disease (117). The NH2-terminal region of α-enolase is located 
on the external part of the enzyme and is important for intermo-
lecular interactions (118). The overall conclusion, based on those 
findings, is that in spite of recognition of enolase-α, AAbs that are 
found in different diseases and in normal individuals are not the 
same—they can bind to different parts of molecule.

The study of fine specificity of AAbs generated against 
CAII further confirms that AAbs against common proteins 
are distinctive. During the course of retinal disease from non-
paraneoplastic (AR) to paraneoplastic stage (CAR), sera bind 
to different domains of CAII and differ from healthy control 
sera (33). The AR sera predominantly react with the following 
N-terminal epitopes: 22–26 (IAKGE) and 85–90 (DGTYRL), 
which corresponded to the catalytic core of the enzyme. The 
major epitopes for CAR AAbs are found to be reactive with the 
peptide 201–208 (CVTWIV) and 218–222 (SSEQVL) clustered 
with the α-helix, and the last sheet strand 17, the peptide 254–258 
(RQIKA). It is important to note that the N-terminal epitope 
85–90 is recognized by 91% of AR patients and the major epitope 
for CAR is the sequence 218–222 that reacts with 77% of patients. 
The analysis of epitope location in a 3D molecular structure of the 
native CAII reveals their partial or full exposure on the protein 
surface. Anti-CAII AAbs from normal healthy controls do not 
share the major determinants with CAR and AR patients. This 
remarkable finding showed the shift in epitope recognition from 
the primary AR-like epitope profile to the secondary CAR-like 
antibody profile in a patient who developed cancer 2 years after 
initial symptoms of vision loss (33). The detailed knowledge of 
epitopes recognized by anti-retinal AAbs that are associated with 
retinal paraneoplastic syndromes is valuable for development of 
new diagnostic assays for CAR, MAR, and AR, and for the study 
of mechanisms involved in pathogenesis of retinopathy.

PATHOgeNiCiTY OF ANTi-ReTiNAL AAbs

Autoantibody-mediated retinal injury can be mediated by cyto-
toxic T cells and AAbs to detect self-antigens in the cell (109).  

The perceived inability of anti-retinal AAbs to get to the retina and 
cross cell membranes to access their target intracellular antigens 
diminished the understanding of their role in the pathogenicity 
of retinopathy (Figure  4). However, a number of studies have 
demonstrated that anti-retinal AAbs can indeed penetrate the 
cells and affect their viability and cellular function (74, 80, 108, 
113, 119–123). Given the great diversity of anti-retinal AAbs, it 
is likely some antibodies have greater pathogenic potential than 
others to impact retinal pathophysiology.

It has been suggested that the AAbs reactivity with target 
cells depends on the microenvironment and genetic traits of 
individual (108, 119, 122, 124). AAbs alone might have little or no 
effect on healthy cells, but can be highly cytotoxic when coupled 
with other damaging conditions, like inflammation or cancer 
treatment. The first step in antibody pathogenicity is the ability to 
get to the antigen. As majority of antigens are intracellular, AAbs 
have to penetrate the tissue to get to the target cells. The fact that 
they can penetrate into living cells can explain their pathogenic 
potential, functioning through the activation of cell apoptosis 
after prolonged exposure of the retina to such antibodies from 
the circulation (125). Not only anti-recoverin IgGs but also their 
Fab fragments penetrate into retinal cells in vitro and in vivo by 
an active process and induce apoptosis through the caspase 3 
pathway (108, 122, 126). One study showed that the mechanism 
of cellular entry by an AAb can be mediated by a membrane proxy 
protein for the target antigen, e.g., the cell surface molecules, 
calreticulin, and myosin-1 can serve as surrogate antigens for 
penetrating anti-double-stranded DNA antibodies (127).

In retinopathy, AAbs have different antigenic specificities and 
may affect different metabolic pathways, including phototrans-
duction for recoverin, glycolysis for enolase, and pH control for  
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TAbLe 1 | Effects of major CAR autoantibodies (AAbs) on retinal cell function in vitro.

AAb Autoantigen effect on function Mechanism

Anti-recoverin 23-kDa calcium-binding protein present in  
photoreceptor cells; regulates rhodopsin  
phosphorylation in a calcium-dependent  
manner in phototransduction cascade

AAbs deregulate the phototransduction,  
leading to retinal degeneration in CAR  
when access retinal cells

Inhibition of calcium-binding function
Elevation of intracellular calcium
Deregulation of phototransduction

Anti-α-enolase (likely  
anti-GAPDH, anti- 
aldolase, anti-PKM2)

46-kDa enzyme present in every cell; coverts  
2-phosphoglycerate into phosphoenolpyruvate  
in glycolytic pathway leading to ATP production

AAbs deregulate the glucose metabolism,  
leading apoptotic death when access  
retinal cells

Inhibition enolase catalytic function
Depletion of ATP
Elevation of intracellular calcium
Lowering intracellular pH

Anti-carbonic  
anhydrase II (CAII)

30-kDa enzyme present in the retina; catalyzes  
a reversible conversion of carbon dioxide to  
bicarbonate and participle in pH control and  
ion transport

AAbs impair the pH control and ion  
transport, leading to cell dysfunction  
and death when access cells

Inhibition of catalytic activity of  
CAII in a dose-dependent manner
Decrease of intracellular pH
Increasing intracellular calcium

Normal Abs Unknown None None
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CAII, they all cause an increase in the intracellular calcium 
(Table  1), which may be an initial step that triggers cell death 
(36, 128). Such a calcium-induced cytotoxicity seems to play a 
major role in AR and several other diseases.

It is conceivable that after cellular entry, anti-recoverin 
AAbs bind the antigen and block its function, which regulates 
rhodopsin phosphorylation in a Ca2+-dependent manner (129). 
Interestingly, the anti-recoverin antibody promotes rhodopsin 
phosphorylation when added to rod outer segments of photo-
receptor cells in vitro (123). Similar effects on rhodopsin phos-
phorylation are observed in rat eyes treated with anti-recoverin 
antibody, which in effect impairs the ERG responses. Co-injection 
of caspase inhibitors with anti-recoverin significantly suppresses 
the antibody-induced enhancement of rhodopsin phosphoryla-
tion, suggesting that these antibodies dysregulate cellular func-
tion. After anti-retinal antibody entry, there is a rapid increase 
in the intracellular [Ca2+], which results in the activation of 
the mitochondrial apoptotic pathway followed by cell death 
(128, 130). Not only anti-recoverin but also anti-rhodopsin, 
anti-arrestin, and anti-enolase AAbs have the ability to induce 
the influx of intracellular calcium and cytotoxicity (128). In 
consequence, AAbs could influence cell activation, proliferation, 
and death and induce expression of pro-inflammatory cytokines 
(131). It was also reported that anti-recoverin antibodies were 
found in the aqueous humor and vitreous cavity beyond the  
BRB in a patient with CAR. Altogether, the experimental findings 
suggest that antibody-mediated retinal cell death involves multi-
step process, in which anti-recoverin AAbs must reach the retina 
from the circulation and then penetrate photoreceptor cells, 
block the recoverin function, increase intracellular calcium, and 
enhance of rhodopsin phosphorylation, which in effect activates 
apoptosis (108, 122, 123, 132).

In addition to anti-recoverin AAbs, anti-enolase and anti-CAII 
antibodies also block the function of their corresponding proteins. 
Most anti-enolase antibodies bind to Müller cells and ganglion 
cells and they act on those cells, inducing apoptotic death (74). 
After anti-enolase antibody cellular internalization, the antibody 
inactivates the enzyme (133). However, the enzymatic activity of 
enolase is not inhibited when the retinal cells are treated with 
endocytosis inhibitor cytochalasin B, which blocks antibody 

entry into the cells. The anti-enolase antibody blocks the catalytic 
function and likely inhibits glycolysis by reducing glycolytic ATP. 
Such changes in ATP, as an effect of antibody action, over the 
lifetime of a patient, may slowly damage neuronal cells and lead 
to retinal degeneration. In fact, in some patients with anti-enolase 
AAbs, visual impairment has a slow progression of central vision 
loss (11). In experiments using ex vivo eye explants and intravit-
real injections of anti-enolase AAbs, the enolase antibodies are 
also capable of penetrating retinal tissue to target ganglion cells 
and inner nuclear layers and consequently induce cell-containing 
antigen apoptosis (62). The apoptotic nuclei detected by a DNA 
fragmentation assay and caspase 3-positive cells are co-localized 
to their targeted retinal layers—the ganglion cell layer and inner 
nuclear layer. Normal AAbs without specificity to retinal antigens 
did not induce pathogenic processes in retinal cells. A similar 
mechanism may occur in patients with CAR, which may lead 
to visual loss and blindness. Figure  4 illustrates the presumed 
autoimmune pathogenic process in retinal degeneration.

Anti-CAII AAbs have also the capacity to induce cellular 
damage by impairing CAII cellular function through inhibit-
ing the catalytic activity of CAII in a dose-dependent manner, 
decreasing intracellular pH, and increasing intracellular calcium, 
which in effect decreases retinal cell viability and survival (134). 
The decrease of intracellular pH, related to the function of the 
enzyme in the cell could cause acidification by changes in CO2/
H2CO3 metabolism and in proton pump activity, the Na+/H+ 
exchanger. Some anti-CAII AAbs cause a decrease of pH to below 
pH 6.8, which could lead to caspase activation in those retinal 
cells. The destabilized catalytic function of CAII and alterations 
in cytosolic pH occur very early in the process, suggesting that 
AAbs are the inducers of apoptosis (77).

In addition to the in vitro studies (above), animal investiga-
tions further confirmed that anti-recoverin antibodies have 
pathogenic potential. After intravitreal injection into the eye, 
anti-recoverin antibodies are capable of penetrating photorecep-
tor and bipolar cells, the normal site of recoverin expression in 
the retina, and then they induce apoptotic cell death as detected 
by an increased number of TdT-dUTP terminal nick-end labeling 
(TUNEL)-positive cells, fragmentation of DNA in a DNA lad-
der electrophoresis, and structural changes observed in electron 
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microscopy (107). Intravitreal injection of AAbs against recov-
erin, together with anti-heat shock cognate protein 70 (HSP70) 
that co-exist in patients with CAR, cause a decrease in ERG 
amplitudes and apoptotic cell death in the outer nuclear layer 
in Lewis rat eyes (113). Internalization of anti-HSP70 AAbs into 
photoreceptor cells likely blocks the biologic protection of HSP70 
chaperon functions to suppress protein aggregation, denatura-
tion, and misfolding, which in effect may promote anti-recoverin 
antibody-mediated retinal degeneration. Synergetic autoimmune 
responses against recoverin and HSP70 suggest their involvement 
in the pathogenesis of CAR (62).

In the recent years, AAbs associated with retinopathy in 
melanoma patients (MAR) caught the attention of scientists. 
In the study of ret-transgenic mice that spontaneously develop 
melanoma, the investigators observed that those transgenic mice 
frequently developed retinopathy (28). Passive transfer of MAR 
sera or spleen cells also induce morphological changes in the 
retina and stimulates functional changes as measured by the 
ERG in recipient mice (28). These pathological changes reveal 
degeneration of photoreceptors, bipolar cells, and pigment 
epithelium as well as produce retinal detachment. Some of the 
mice with melanoma tumors also had AAbs against arrestin and 
transducin.

Investigations of TRPM1 AAbs have shown that incubation of 
living retinal neurons with TRPM1-positive MAR serum cause 
accumulation of IgGs in ON bipolar cells isolated from TRPM1-
positive mice, but not knockout TRPM1−/− mice, suggesting that 
the uptake of AAbs targets the intracellular antigen, which in 
effect reduces the ON bipolar cell response to light (58, 80). MAR 
AAbs reduce the b-wave amplitude of the ERG by targeting a key 
component of the ON bipolar cell signal transduction pathway 
(80). After intravitreal administration of TRMP1-positive serum 
into mice eyes, the ERGs are altered acutely and antibodies are 
detected in bipolar cells, but only in wild-type and not in TRPM1-
knockout mice (79). Moreover, the bipolar cells appear apoptotic 
within 5 h after the injection and in 3 months, the inner nuclear 
layer was thinner and the amplitudes of the ERGs were more 
reduced. Recently published studies revealed cross-reactivity of 
TRPM1 with TRPM3, which is present in the RPE, suggesting 
that such AAbs could contribute to pathology of MAR, possibly 
inducing retinal and RPE detachments (56).

It has been argued that if healthy individuals and affected 
patients are seropositive for the same AAbs, those AAbs can-
not be pathogenic. However, studies on epitope mapping for 
anti-recoverin, anti-enolase, and anti-CAII reveal that although 
different AAbs recognize the same protein, they bind to a dif-
ferent immunogenic domain on the molecule (33, 107, 113). 
Epitope mapping shows that natural antibodies may have similar 
antigenic specificity to CAR and AR AAbs, but they can still be 

distinguished based on their fine epitope recognition pattern (see 
above). Natural antibodies are IgM and IgG classes, are usually 
cross-reactive with antigens of different origin (polyspecific) 
and recognize non-self-antigens of pathogens as well as self-
related antigens (135, 136). It is important to appreciate that 
natural antibodies provide various essential functions within the 
immune system, such as providing protection against infections 
and removing cellular debris (137).

FiNAL ReMARKS

A number of studies have revealed the existence of various reti-
nal autoantigens that specifically interact with AAbs in patients 
with autoimmune retinopathies. Such a vast repertoire of anti-
retinal AAbs observed in patients with CAR, AR, and AR is not 
surprising because other autoimmune diseases are associated 
with multiple AAbs. Anti-retinal AAbs, especially those that 
were made against cancer or microbial cross-reactive antigens, 
are likely to play a primary causative role in retinal degenera-
tion, whereas others can contribute to disease progression and 
promote damage of retinal cells. It has been argued that anti-
retinal AAbs are a result of retinal demise rather than a direct 
cause (epiphenomenon) of retinopathy. Thus, dying photore-
ceptors by apoptosis that is initiated by some other mechanisms 
(hereditary), produce substantial amounts of debris, containing 
high concentrations of antigens discharged from dying outer 
segments, and which may lead to autoimmunization and the 
enhanced permeability of the blood–retinal barrier (138, 139). 
Although not all antigens have been identified and are known 
only by their molecular mass, they can be used to follow the 
progression of retinopathy and the effects of treatment. It is 
important to remember that some anti-retinal AAbs can occur 
before the diagnosis of cancer, so they could be used in early 
cancer detection, e.g., anti-recoverin AAbs (25). Moreover, they 
can also serve as biomarkers in the context of ocular presenta-
tion and findings, despite the fact that the pathogenicity has not 
been conclusively proven.
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