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Combined antiretroviral therapies (cARTs) efficiently control HIV replication leading 
to undetectable viremia and drastic increases in lifespan of people living with HIV. 
However, cART does not cure HIV infection as virus persists in cellular and anatomical 
reservoirs, from which the virus generally rebounds soon after cART cessation. One 
major anatomical reservoir are lymph node (LN) follicles, where HIV persists through 
replication in follicular helper T cells and is also trapped by follicular dendritic cells. 
Natural hosts of SIV, such as African green monkeys and sooty mangabeys, generally 
do not progress to disease although displaying persistently high viremia. Strikingly, 
these hosts mount a strong control of viral replication in LN follicles shortly after peak 
viremia that lasts throughout infection. Herein, we discuss the potential interplay 
between viral control in LNs and the resolution of inflammation, which is character-
istic for natural hosts. We furthermore detail the differences that exist between non- 
pathogenic SIV infection in natural hosts and pathogenic HIV/SIV infection in humans 
and macaques regarding virus target cells and replication dynamics in LNs. Several 
mechanisms have been proposed to be implicated in the strong control of viral repli-
cation in natural host’s LNs, such as NK cell-mediated control, that will be reviewed 
here, together with lessons and limitations of in vivo cell depletion studies that have 
been performed in natural hosts. Finally, we discuss the impact that these insights on 
viral dynamics and host responses in LNs of natural hosts have for the development 
of strategies toward HIV cure.
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iNTRODUCTiON

Combined antiretroviral therapy (cART) has transformed HIV infection from a lethal disease into 
a manageable chronic infection (1). Indeed, cART efficiently controls HIV replication leading to 
undetectable virus in blood and drastic increases in lifespan of people living with HIV (2). However, 
cART does not cure HIV infection as virus persists in cellular and anatomical reservoirs, from 
which the virus most often rapidly rebounds after cART interruption (3, 4). HIV probably rebounds 
from multiple sources (5). Virus-producing cells can be detected in SIVmac-infected macaques 
under suppressive cART in nearly every tissue, and in particular in the mucosal tissues and sec-
ondary lymphoid organs (6, 7). A major anatomical viral reservoir corresponds to lymph node 
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TabLe 1 | Major similarities and differences between HIV/SIVmac infections and SIV infections in natural hosts at the level of lymph nodes (LNs).

LNs Natural host (african green 
monkeys, sooty mangabeys)

Non-natural host  
(human/macaque)

Reference

Viral replication in LN  
(17, 12, 34)

Acute phase High High (17, 33, 
34)Chronic phase Low High

Inflammation Acute phase Rapid Strong (35–39)
Chronic phase No Yes
IFN-a High in acute infection High in acute infection
Interferon-stimulated gene High in acute infection High in acute and chronic infection
TGF-β and collagen deposition No Yes

LN architecture Lymphadenopathia No Yes (12, 30, 
40)Follicular dendritic cell network Preserved Lost

Fibrosis No Yes

Location of SIV-infected cells T cell zone Yes Yes (11, 12, 
41, 42)B cell follicles Rare/absent Yes

Virus trapping Rare/absent Yes

SIV-infected cells CD4+ TCM Low High (43–47)
TCM PD-1+CTLA4+ nd Yes
TFH Rare/absent High
Plasmacytoid dendritic cell Yes Yes
macrophage Yes Yes

Antiviral immune responses HIV/SIV-specific T cell responses Weak Variable (strong in Elite controllers) (17, 48–50)
Follicular CD8+ T cells nd Yes (rare)
Follicular NK cells Yes Yes (rare)
bNAb nd Yes (rare)

The green and red colors highlight, respectively, major differences between SIV infection in natural hosts and HIV/SIV infections in non-natural hosts.
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(LN) B  cell follicles, where HIV-1/SIVmac replication persists 
in follicular helper T  cells (TFH) even in Elite controllers and 
cART-virologically suppressed individuals (8, 9). Surprisingly, 
TFH cells expand during HIV-1 and SIVmac infections (10). Thus, 
lymphoid follicles have come to be considered as major sanctuar-
ies for HIV/SIV (9). In parallel, HIV-1 and SIVmac might also 
persist in some CD4+ T  cells within the T zone of LN during 
cART (11). In this review, we will focus on the viral and host 
dynamics in LNs of natural hosts and discuss similarities and key 
differences with regard to HIV and SIVmac infections.

PRiMaRY CHaRaCTeRiSTiCS OF  
NON-PaTHOGeNiC Siv iNFeCTiON  
iN NaTURaL HOSTS

Natural hosts of SIV, such as African green monkeys (AGMs) 
(Chlorocebus aethiops), sooty mangabeys (SMs) (Cercocebus 
atys), and mandrills (Papio sphinx), generally do not progress 
to disease despite displaying persistently high viremia (12–16). 
The vast majority of the studies carried out on SIV infections 
in natural hosts have been performed using two species, SMs 
and AGMs (17). The comparison of the clinical, virological, and 
immunological parameters of infection in these species with that 
of HIV/SIVmac infections allowed advances in knowledge on 
the mechanisms linked to protection against AIDS. In particular, 
natural hosts rapidly resolve inflammation induced by SIV infec-
tion, and unlike pathogenic lentivirus infections do not develop 
chronic immune activation (see chapter below).

An important aspect of SIV infection in natural hosts is 
also their ability to preserve the function and structure of their 

tertiary and secondary lymphoid organs throughout the infec-
tion. Indeed, natural hosts avoid the widespread damage to the 
mucosal immune architecture that is observed in pathogenic 
infections (Table 1). While acute SIV infection leads to a rapid, 
near-complete loss of CD4+ T  cells in the intestine in both 
natural hosts and macaques, mucosal CD4+ T  cells partially 
recover in natural hosts, even if not to baseline levels (18–21). 
Furthermore, cART administration to SIV+ SM induces a rapid 
and substantial recovery of mucosal CD4+ T  cells that is not 
typically observed in HIV infection (22). Moreover, despite 
high viremia and high-level replication in the gut (23), natural 
hosts, in stark contrast to non-natural hosts, preserve intestinal 
Th17 cells (24, 25), retain the structural integrity of the mucosal 
barrier (26), and do not exhibit leakage of mucosal lumenal 
microbiota (i.e., microbial translocation) into systemic circula-
tion (27–29). With regard to LN during SIV infection in natural 
hosts, there is generally no sign of lymphadenopathia nor 
fibrosis and LN display a normal follicular dendritic cell (FDC) 
network (12, 30, 31) (Table 1). Another characteristic of natural 
hosts is the relatively low infection of central memory T cells 
(see below) (32). Natural hosts thus seem to have developed 
ways to protect the sites of education and memory of immune 
responses.

viRaL DYNaMiCS iN LNs DURiNG Siv 
iNFeCTiON iN NaTURaL HOSTS

Studies in SIVmac infection have shown that the viral seeding 
of LN occurs rapidly and progressively. One to three days after 
infection, some replicative viruses could already be detected in 
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the draining LN and even in systemic LN (51). Of note, during 
the eclipse phase until peak viremia, productively infected cells 
are found essentially in the extra-follicular zone of LN (41). 
Only in later phases of primary infection, and in particular dur-
ing chronic infection, viral RNA is found inside B cell follicles, 
where it replicates within TFH cells (45). In addition, virus is 
trapped within the follicles by FDCs where it remains infectious 
for 9 months or more (30, 52, 53). The mechanism driving this 
shift from the T cell zone to the B cell follicles is incompletely 
understood.

During chronic HIV/SIVmac infections, virus replication in 
LN exceeds the levels in blood by several orders of magnitude. 
In ART-naive SIVmac infection, LN are estimated to support 
~50% of viral burden, and be reduced to ~1% in the context 
of suppressive ART, with the remainder supported by mucosal 
tissue (6). In one SIVmac-infected macaque, the frequency of 
infected cells in LN was evaluated and appeared to be as high 
or slightly higher than in the gut (mean frequency ~8.7 × 105 
vRNA+ cells/g in LN and ~5.6 × 105 vRNA+ cells/g in the gut) (6). 
ART administered for >20 weeks decreased the mean frequency 
of vRNA in LN by approximately 2 log10 in SIVmac251-infected 
rhesus macaques (6).

The reason of the preservation of the normal architecture of 
LN in natural hosts might be associated with the significantly 
lower levels of viral replication in this tissue. Strikingly indeed, 
AGM and SM mount a strong viral control in LN shortly after 
peak viremia, which lasts throughout infection (12, 23, 43, 
54–56). Thus, while during the first 2  weeks post-infection 
(p.i.), the number of productively infected cells as well as the 
copy numbers of cell-associated viral DNA and RNA are similar 
between SIV infection in natural hosts and macaques, major 
differences are observed after the viremia peak between natural 
and non-natural hosts (12, 49, 56). Thus in natural hosts, viral 
replication levels decrease drastically in LNs after peak viremia, 
whereas in pathogenic infections, after a moderate decrease, a 
relatively strong viral replication generally persists throughout 
the infection in absence of cART, leading to a difference of 2–3 
log in the cell-associated viral RNA in LN during chronic infec-
tion between macaques and natural hosts. Viral RNA-producing 
cells as well as cell-associated viral RNA sometimes become 
even undetectable in LN of AGM, despite continuous high-level 
plasma viremia (12, 14, 33).

The anatomical distribution of virus replication in chronic 
infection is also very different between non-pathogenic and 
pathogenic infection. Indeed, in natural hosts, most virus is 
detected in the T cell zone, even if at extremely low levels, while 
in pathogenic HIV/SIV infection, most virus is present in fol-
licles (Figure 1). Strikingly, in natural hosts, such as AGM and 
to a lesser extent in SM, viral RNA is generally absent in follicles. 
This is not a matter of the virus, as SIVsm and SIVagm infections 
of macaques lead to high SIV levels in follicles (57, 58). Natural 
hosts are thus characterized by a limited or absent replication in 
TFH cells and frequent lack of FDC deposition of virus (35, 59). 
Understanding the underlying mechanisms of the strong viral 
control in LN in natural hosts might yield clues helpful for the 
development of strategies aiming the elimination of HIV reser-
voirs in follicles.

ReGULaTiON OF iNFLaMMaTiON iN  
LNs aND iMPaCT ON Siv iNFeCTiON  
iN NaTURaL HOSTS

The deleterious impact of unabated inflammation in HIV infec-
tion has been well documented (35). This immune activation 
is positively correlated with HIV-1/SIVmac replication in both 
ART-naïve and ART-treated settings (60, 61). Among the myriad 
of detrimental manifestations due to the persisting inflamma-
tion that have been reported, a handful could be particularly 
influential in maintaining viral burden, namely: (i) recruitment 
of target cells, (ii) impairment/exhaustion of adaptive immunity, 
and (iii) the disruption of lymphoid structures. In this section, 
we will review existing data on inflammatory pathways differing 
significantly between natural hosts versus pathogenic SIV infec-
tion. These data will be reviewed in the context of the natural 
host’s low-to-absent SIV burden in LN follicles. Hypotheses 
concerning the effect of non-natural inflammation in supporting 
LN SIV replication will be presented.

A longstanding observation in natural hosts is that they are 
devoid of the pan-lymphocyte activation and chronic inflamma-
tion seen in pathogenic HIV/SIV disease (62–64). The molecular 
and immunological distinctions of these species have been 
extensively characterized [reviewed in Ref. (35, 44, 65)]. Although 
natural hosts exhibit levels of immune activation similar to base-
line during chronic infection, detailed longitudinal studies have 
demonstrated that rapid, early immune activation is evident, 
including elevated levels of IFN-a, CD8+Ki67+ T cells and PD1 
expression in LN (63, 66, 67). The most striking confirmation is the 
massive upregulation of interferon-stimulated gene (ISG) expres-
sions during acute infection in natural hosts (68, 69) in blood, LN,  
and gut. These ISGs include many antiviral restriction factors, such 
as MX2 and Tetherin. Of note, the upregulation of ISGs occurs 
very early, starting from days 1 or 2 p.i. in AGM, concomitantly 
with a very early transient increase in IFN-α (68, 70). By contrast, 
during SIVmac infection in macaques, it was reported that the 
expression of those ISGs encoding antiviral restriction factors was 
delayed and not upregulated before peak viral replication on day 
10 (71). Thus, natural hosts seem to develop a more rapid antiviral 
innate response to SIV compared to non-natural hosts (66, 68, 
70, 71). Subsequently, natural hosts rapidly resolve total ISG 
expression to baseline before the transition to chronic infection 
despite prevalent viremia. This downregulation of ISG expression 
in natural hosts is in stark contrast to HIV/SIVmac infections, in 
which ISG expression remains elevated indefinitely (72).

The observation that natural hosts resolve IFN-I related 
responses prompted a series of comparative studies into plas-
macytoid dendritic cells (pDCs). pDC trafficking to LN has 
been reported for both natural and non-natural hosts. A peak of 
pDC accumulation in LN is observed approximately 7–14 days 
after SIV infection in macaques, SM, and AGMs concomitant 
with robust IFN-α and IFN-β in  situ production by pDC in 
LN (66, 73–76). The trafficking of pDC to tissues during SIV 
infection differs in several aspects between natural hosts and 
non-natural infections: (i) in AGM, an early first peak of pDC 
in LN is observed around days 1–3 p.i. (66); (ii) pDC accumulate 
in the rectal mucosa in infected humans and macaques, but not 
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FiGURe 1 | Viral and host immune cell dynamics in lymph nodes (LNs) from natural hosts versus HIV-1/SIVmac infections. Schematic representation of a LN after 
HIV or SIV infection in pathogenic models (human, macaques, top) and natural hosts [African green monkey (AGM), sooty mangabey, bottom]. (Top) HIV-1 and 
SIVmac infection in, respectively, humans and macaques result in the formation of hyperplastic germinal centers in LNs with massive B cell proliferation. TFH cells 
also expand during HIV-1 and SIVmac infections. Inflammation is uncontrolled and leads to collagen deposition and fibrosis. The follicular dendritic cell (FDC) 
network is disrupted on the long term. HIV-1 and SIVmac replicates in combined antiretroviral therapy (cART)-naïve individuals and animals in both T and B cell 
zones, but the viral burden is highest in the B cell zones (follicles). In the follicles, virus replication is concentrated within follicular helper T cells (TFH). Virus is also 
trapped by FDC and remains infectious. On cART, virus persists mostly in TFH cells in the follicles, where it is often outreach of conventional CD8+ T cells and of 
optimal drug concentrations, as well as in CTLA4+CD4+ T cells within the T zone. The latter cells have a capacity for long survival. NK cells and conventional HIV/
SIV-specific CD8+T cells are often expressing immune checkpoint inhibitors. The presence of CXRC5+CD8+T lymphocytes has been described, but their role  
needs to be further studied. (Bottom) In natural hosts, virus replication is strongly controlled during the chronic phase of infection. Most follicles are exempt of virus. 
Conventional SIV-specific CD8+ T cell responses are weak. NK cells play a major role in the control of viral replication in AGM LNs. Both the IFN-α and NK cell 
responses appear earlier than in SIVmac-infected macaques. NK cells accumulate in follicles in SIVagm-infected AGMs, which might be a direct consequence of a 
high production of IL-15 in the follicles. NK cell migration into B cell follicles in response to SIVagm infection is associated with the acquisition of CXCR5. CXCR5+ 
NK cells express high levels of Fcγ receptors and of CD107a, which raises the question if they have the capacity to control SIVagm replication through antibody-
dependent and/or -independent cellular cytotoxicity.
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in SM, which has been attributed to heightened levels of α4β7 
in SIVmac infection (77, 78), and (iii) pDC in LN during acute 
SIVmac infection are prone to apoptosis, while for natural hosts 
this is not known (39, 73). Both SM and AGM were demon-
strated to retain intact sensing and IFN-α production in pDC 
in response to their native SIV (68, 79–81). Of note, pDC from 
AGM sense more efficiently SIVagm than SIVmac or HIV-1 
viruses (81). Studies in natural hosts have revealed that SIV 
infection alters the capacity of viral sensing in cells other than 
pDC, which then can also produce IFN-I during acute infection 
(80). The contribution of pDC to IFN responses during chronic 
SIV infection remains unresolved, while some reports have not 
detected IFN-I in pDC during chronic infection (74), we have 
observed IFN-α transcripts in LN pDC as far out as 18 months 
post-infection (Bosinger, unpublished observations).

The consequences of unabated IFN production on immune 
function and viral reservoirs in HIV infection are under intense 
study. IFN-induced responses are clearly critical for the control 
of SIV in LN during acute infection, as antagonism of the IFN-α 
receptors (IFNAR) from before infection to early time points p.i. 
in macaques caused elevated levels of LN-associated SIV and 
plasma viremia (82).

The effects of IFN during chronic HIV infection are less 
clear. Mouse models have shown that persistent TLR and IFN 
signaling causes damage to the lymphoid structures (83). Several 
studies have demonstrated that irreversible fibrosis is evident in 
the LNs of SIV-infected macaques, but, interestingly, is absent in 
natural host infection (31, 84). The fibrosis in chronic HIV/SIV 
infection might be linked to persistent IFN-related inflammation, 
TGF-β produced by regulatory T cells (Treg) leading to collagen 
deposition, and/or other yet unknown factors (84). Disruption 
of IFN-I signaling in chronic infection appears to have indeed 
a beneficial effect on host immunity in certain settings. In the 
mouse model of lymphocytic choriomeningitis clone 13 infec-
tion, blockade of IFN-β signaling in chronic infection enabled 
spontaneous clearance of the virus (85–87). In a remarkable set 
of independent studies using ART-suppressed, HIV-infected 
humanized mice, disruption of IFNAR signaling reduced latent 
HIV levels and ameliorated systemic immune activation (88, 89). 
In both the LCMV and hu-mouse HIV datasets, IFN-blockade 
reduced expression of co-inhibitory molecules on CD8+ T cells 
and improved cellular antiviral responses; thus, the mechanism of 
action was presumed to be alleviation of IFN-mediated exhaus-
tion of T cell responses. These studies provide some rationale for 
IFN blockade to be applied as a therapy to lower the reservoir, but 
this hypothesis would first need validation of efficacy and safety 
in pre-clinical studies. Taken together, the observations that  
(i) SIV natural host species avoid long-term ISG expression and 
(ii) in vivo antagonism of type I IFN signaling can improve antivi-
ral immunity and reduce reservoir levels in the hu-mouse model 
suggest that the overall contribution of IFN in chronic HIV/
SIV infection is harmful by maintaining high levels of immune 
activation and contributing to immune dysfunction. However, 
exogenous administration of IFN-α to ART-suppressed, HIV-
infected patients have shown in some cases clinical benefit in 
terms of reduced levels of cell-associated HIV DNA (90–92). 
Thus, the contribution of IFN-α to chronic inflammation and 

viral persistence during ART-treated HIV/SIV infections is 
still unclear. Injection of exogenous IFN-α into SIV-infected 
AGM and SM have not been able to reproduce the phenotype 
of widespread immune activation observed in non-natural hosts  
(70, 93). However, the injections of exogenous recombinant IFN-
α induced a rapid state of tolerance in vivo to this molecule. It 
is not excluded that one might need to treat for long periods of 
time with intermediate breaks to see an effect on chronic inflam-
mation. The other possible explanation is that IFN-I levels are 
not different between pathogenic and non-pathogenic infections 
and/or that IFN-I are not the major culprits of the persistent ISG 
expression (68, 70). Other factors, such as IFN-γ, might contribute  
to ISG upregulation (68, 94). Collectively these comparative stud-
ies in distinct models indicate that IFN-I signaling is (i) beneficial 
during acute infection, (ii) a major contributor to early immune 
activation, (iii) alone insufficient to cause chronic immune acti-
vation, and (iv) its impact is highly context dependent.

Several other factors have been put forward to explain the 
absence of chronic inflammation in natural hosts. For example, 
by sequencing for the first time the genome of the SM, a mutation 
was uncovered in the gene encoding TLR4, the primary receptor 
for LPS, that yields a truncated protein and attenuated signaling 
(95). Intriguingly, this mutation was also observed in the TLR4 
gene of the two other natural host species (AGM, mandrills) (95). 
This mutation might contribute to a lower monocyte/macrophage 
activation in natural hosts.

The maintenance of viral replication in LNs could impact 
systemic inflammation, due to the sheer immune “traffic” and 
recirculatory nature of immune cells. From this point of view, 
the fact that natural hosts strongly control viral replication in 
LN might contribute to their capacity to resolve inflammation. 
In this light, understanding the mechanisms by which HIV/SIV 
replication could be controlled in the LN is likely to be critical not 
only for viral eradication strategies but also for therapies aiming 
at reversing immune activation.

TaRGeT CeLLS FOR Siv iN LNs FROM 
NaTURaL HOSTS aS COMPaReD TO 
PaTHOGeNiC Hiv aND Sivmac 
iNFeCTiONS

Reducing the persistent HIV/SIV reservoir remains an essential 
milestone for the achievement of a functional cure for HIV-1 infec-
tion; however, this goal has been significantly hindered by poor 
means for identification of the CD4+ T cell subsets that harbor 
replication-competent virus, as well as by the anatomic location 
of these cells in sanctuaries for HIV. Several key differences in  
the nature of cells targeted by SIV in natural versus non-natural 
hosts have been identified, raising the fascinating hypothesis that 
the type of infected CD4+ T cells, even more than the quantity, 
could contribute to the different capacity to control immune 
activation and disease progression between the two hosts.

Central Memory CD4+ T Cells (TCM)
In vivo and in vitro comparative studies showed that the frequency 
of SIV-infected TCM in SM is significantly lower as compared 
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to both CD4+ T effector memory cells of SM and CD4+ TCM of 
macaques in both blood and LN (32, 59). Thus, SM are partially 
protecting the important CD4+ TCM cell subset from SIV infec-
tion. In line with this relative preservation from viral infection, 
CD4+ TCM cells are more preserved in SIV-infected SM com-
pared to SIV-infected rhesus macaques (46). CD4+ TCM cells are 
long-lived, self-renewing cells able to replenish the pool of non-
self-renewing, shorter lived CD4+ effector memory cells, thus 
their maintenance is key for the homeostasis of the overall CD4 
T  cell compartment and immune memory. Remarkably, a low 
contribution of infected CD4+ TCM to the overall viral reservoir 
has similarly been described in (i) long-term non-progressors 
with protective HLA alleles (96); (ii) viremic non progressors, 
i.e., rare HIV-infected individuals who maintain high CD4+ T cell 
levels despite uncontrolled viremia (97); and (iii) post-treatment 
controllers, i.e., patients with a durable control of viremia after 
ART-interruption (98). With a distinct strategy, AGMs have also 
evolved to protect memory CD4+ T  cells from viral infection. 
Indeed, CD4 molecules get downregulated from the surface of 
the CD4+ T cells when the latter get activated. Of note, these cells 
maintain their T helper functional activity (99).

The mechanisms of TCM protection are not clear. It has 
been suggested that CCR5 plays a role. Thus, CD4+ T cells from 
natural hosts express less CCR5 in blood, LN, and mucosae 
compared to humans and macaques (100, 101). It also has been 
shown that in vitro stimulation of SM CD4+ T cells, particularly 
the TCM, fail to upregulate CCR5 (32). CD4+ TCM cells express-
ing low levels of cell-surface CCR5 are less susceptible to SIV 
infection when compared to TCM of macaques both in  vivo 
and in vitro (46, 102). However, SIV from natural hosts can also 
efficiently use other coreceptors than CCR5 to infect primary 
CD4+ T cells and other factors might as well be implicated in the 
relative preservation of TCM to infection in natural hosts (103). 
LN comprises a higher fraction of TCM compared to mucosal 
tissues, the latter containing higher proportions of effector cells 
in mammals (104). Thus it is possible that in natural hosts, the 
lower ratio of TCM infection is related to the control of viral 
replication in LN, whereas the predominant virus replication 
in the gut would explain why most virus infects CD4+ effector 
T cells in natural hosts. Altogether, the viral tissue distribution 
could thus in part also explain the lower frequency of infection 
rate in TCM compared to CD4+ effector T cells in natural hosts.

Follicular Helper T Cells (TFH)
TFH correspond to a subpopulation of memory CD4+ T  cells 
expressing high levels of CXCR5 and PD-1 residing within 
the follicles of secondary lymphoid organs. They impact the 
activation, differentiation and survival of B  cells. Several stud-
ies explored the frequencies, function, and infection rate of TFH 
cells in HIV-infected humans or SIV-infected macaques. They 
revealed that TFH cells are infected at high frequencies in chronic 
infection. Despite the high rate of HIV/SIVmac replication in 
TFH cells, these cells expand during HIV and SIVmac infections  
(45, 59, 105, 106). More recently, it was shown that TFH cells con-
stitute an important source of persistent replication-competent 
virus in ART-treated, aviremic individuals (8). By contrast,  
a low infection rate of TFH cells has been described during 

non-pathogenic infection of SM (59) and AGM (49), where fol-
licles often remain virus free. LN TFH cells showed lower levels of 
Ki-67 expression than non-TFH memory CD4+ T cells and fewer 
of the TFH cells expressed CCR5, but this was similar between 
macaques and natural hosts (59). Phenotypic studies on TFH cells 
in natural hosts are though limited so far and whether TFH cells in 
LN expand differently during SIV infection in natural hosts needs 
to be further investigated.

CD4+PD-1+CTLa-4+ T Cells
The contribution of TFH cells to the persistent reservoir progres-
sively decreases with increased length of cART (8, 107), suggest-
ing that other cell subsets, apart from TFH cells, can contribute to 
the magnitude of the pool of latently infected cells. In a recent 
study, it was found that PD-1+ cells, the subset that contributes 
most to TFH cells, were indeed the dominant contributors to the 
viral DNA pool in the B cell follicles in the LN in ART-treated 
SIV-infected macaques; however, CTLA-4+PD-1− memory CD4+ 
T-cells, a subset comprised predominantly of Tregs, were identi-
fied as a previously unrecognized component of the SIV reservoir 
(11). These cells are significantly enriched in SIV DNA in mul-
tiple tissue compartments, including the blood, LN, spleen, and 
gut and have been shown to harbor replication-competent and 
infectious virus (11). CTLA-4+PD-1− cells localized in the extra-
follicular zones of the LN in ART-treated SIV-infected macaques 
and HIV-infected humans. Therefore, in addition to PD-1+ TFH 
cells, HIV-1 and SIVmac are able to establish and maintain viral 
persistence through the specific targeting of another CD4+ T cell 
subset, CTLA-4+PD-1− cells. These cells seem to have long living 
capacities (11). Further studies are needed to determine if the 
rare SIV-producing cells in the T zone of natural host’s LNs cor-
respond, at least partially, to these CTLA-4+PD-1− cells.

Plasmacytoid Dendritic Cell
Unlike humans’ and macaques’ pDC, pDC from natural hosts 
display substantially lower CD4+ and CCR5+ surface expression 
(80). The lowered SIV receptor/coreceptor expression however 
does not affect the ability of SIVagm to infect pDCs. Indeed, 
high rates of pDC infection were detected in the spleen of AGM, 
to a similar high rate as pDC infection by HIV in cART-naïve 
humans (81).

POTeNTiaL iMMUNe-MeDiaTeD 
MeCHaNiSMS FOR viRaL CONTROL iN 
LN: THe ROLe OF CD8+ T aND NK CeLLS

There are several clear lines of evidence that CD8+ T cells play an 
important role for the overall control of HIV-1/SIVmac replica-
tion (108, 109). Some of the most convincing evidences have been 
obtained in macaques and include a temporal correlation between 
the rise of SIV-specific CD8+ T  cells and post-peak viremia 
decline, as well as the increase of viremia after in vivo depletion 
of CD8+ cells (110). Of note, most in vivo depletion studies used 
monoclonal antibodies that did not discrimi nate between CD8+ 
T and NK cells, and thus in some of these studies, the contribu-
tion of NK cells remained undetermined. Nonetheless, the role 
of CD8+ T cells in viral control is undeniable and is evident in 
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HIV controllers and rhesus macaques with specific MHC alleles 
(111, 112).

CD8+ T cells in LN are generally located in the T cell zones. 
Early studies have revealed massive infiltrations of activated 
CD8+ T cells into B cell follicles in progressors, but this could be 
due to the disruption of the FDC network in late stage disease 
(113–116). Nevertheless, the magnitude of fully cytolytic CD8+ 
T cells was significantly higher in LN compared to blood (117), 
and HIV-1-specific CD8+ T  cells are preferentially located in 
LN compared to blood, including a subset of responses that is 
present solely in secondary lymphoid organs (118). This pref-
erential location of HIV-1-specific CD8+ T cells in the LN was 
also observed in chronically infected individuals on cART (118). 
These migrating CD8+ T  cells localize to the extra-follicular 
zones of the LNs, where most of endogenous HIV-1-specific 
CTL were also observed, far from sites of virus replication 
inside the follicles (117). After in vivo depletion of CD8+ cells in 
SIVmac-infected macaques, the frequency of SIV-infected cells 
in extra-follicular regions increased and reached levels similar 
to that in B cell follicles (9) confirming that CD8+ T cells exert 
control of viral replication predominantly in the T  cell zones. 
Until recently, it was considered that CD8+ T  cells generally 
do not migrate into the B cell follicles and it was further sug-
gested that antiretroviral drugs inefficiently diffuse into or are 
unequally distributed within LN (84), collectively making fol-
licles a prime sanctuary for HIV/SIV replication. Nonetheless, 
a small proportion of CD8+ T  cells expressing CXCR5+ has 
been recently described in both SIVmac and HIV-1 infections 
(119–121). The levels of these CXCR5+CD8+ T  cells in LN 
were higher in HIV-infected individuals compared to healthy 
donors, and they were detected in close proximity to viral RNA+ 
cells, probably starting from primary infection on (119, 122). 
The frequency of SIV-specific CXCR5+CD8+ T cells correlated 
negatively with that of SIV infection in TFH cells and viremia, 
suggesting a role of CXCR5+CD8+ T cells in viral control (50). 
However, other studies highlighted a regulatory phenotype of 
CXCR5+CD8+ T cells with poor capacity of viral control which 
could further impair germinal center function in HIV infection 
(120, 123). Unfortunately, little is known about these recently 
described follicular CD8+ T cells, and whether the contrasting 
results are due to the presence of distinct CXCR5+CD8+ T cell 
subsets, differences in the infection models studied or other yet 
unknown factors.

In natural hosts, the contribution of CD8+ T cells to controlling 
SIV replication may be comparatively small. Indeed, although 
SIV-specific CD8+ T cell responses were observed for SIV-infected 
SM and AGM, their magnitude and breadth were similar or even 
lower than those generally observed in HIV-1 and SIVmac pro-
gressive infections both in blood and LN (124–127). However, it 
has been suggested that these responses appear temporally earlier 
in LN of natural hosts compared to pathogenic species and that 
this confers an advantage (56). Of note, these cells do not seem to 
migrate into follicles. CD8+ T cells from natural hosts were indeed 
found to be exclusively located in the T cell zones both in non-
infected and SIV-infected animals (12). In line with this, CD8+ 
T cells in LN from AGM do not upregulate CXCR5 in response to 
SIV infection (49). To further address the question of the role(s) 

played by CD8+ T cells during natural host’s SIV infection, in vivo 
cell depletion experiments have been conducted. Administration 
of anti-CD8+ and anti-CD20+ antibodies during the first 2 weeks 
of SIVagmver90 infection in pig-tailed macaques (pathogenic infec-
tion) and AGM (non-pathogenic infection), led to dramatically 
different results in the two species (128). In pig-tailed macaques, 
a one-log increase in peak viremia and four-log increase in set-
point viremia were observed following antibody administrations. 
Moreover, these animals rapidly progressed toward disease and 
displayed CMV reactivation. By strong contrast, in AGM, deple-
tion of CD8+ and CD20+ cells did not modify peak viremia and 
the animals displayed only a minor delay in post-peak viremia 
decline compared to control animals, and all animals remained 
clinically healthy (128). In another study, treatment of SIVsm-
infected SM using a CD8α-specific Ab (OKT8F) led to a profound 
depletion of CD8+ cells in both blood and tissues such as LN, but 
only minor changes in plasma viremia (129). Similar results were 
also observed in AGMs in which CD8+ cell depletion during the 
acute phase led only to a delay of 5–10 days in the post-peak viral 
decline (130). By contrast, virtually all CD8+ in  vivo depletion 
studies conducted in non-natural host models during acute or 
chronic SIV infection have reported significant increases in viral 
loads and rapid disease progression (110, 131–133). Altogether, 
these data highlight that while CTL responses can play a large 
role in HIV controllers, they may contribute only modestly to 
the control of viral replication in LN in natural hosts. Thus, while 
CD8+ T cells might still be involved to some extent in the control 
of viral replication in the T  cell zone, they most likely do not 
represent the major cellular component of viral control in LN 
follicles during SIV infection in natural hosts.

As an alternative to CD8+ T cells, multiple lines of evidence 
pointed toward a role of NK cells in the control of SIV replication 
in LN of natural hosts. Upon SIV infection, AGM temporarily 
display high levels of IFN-α and IL-15 in the plasma (70). These 
cytokines are known to activate NK cells and enhance their cyto-
toxic profile (134, 135). Plasma IFN-α levels correlated indeed 
with activation and cytotoxic activity (CD107a) of NK cells and 
plasma IL-15 with the proliferation (Ki-67) of NK  cells in LN 
during acute SIVagm infection (70). During the acute phase of 
SIVagm infection, CD107a+ NK cells increased to higher levels in 
LN than in blood (70). Studies in SM demonstrated a more rapid 
activation of NK cells compared to macaques (136, 137). These 
previous studies raised the hypothesis that NK cells may play a role 
in LN viral control in natural hosts. It was subsequently shown 
that upon SIVagm infection, NK cells change their distribution 
within LN and migrate into follicles, where they accumulate 
(49). The increase of NK cell numbers in follicles was associated 
with a high production of IL-15 within follicles, presented in 
membrane-bound form by FDC and antigen-presenting-like 
cells (49). By contrast, the number of functionally competent 
NK cells in LN decrease in macaques in response to SIV infection 
(49, 138). The pattern of LN homing receptors (CX3CR1, CD62L, 
CXCR3, CCR7) were similar on NK cells from SIV-infected AGM 
and MAC and do not explain the higher levels of NK cells in LN of 
AGM as compared to MAC (49). It is more likely that in SIVagm 
infection, the IL-15 in the follicles enhances the survival of 
NK cells. Interestingly, SIVagm-infected AGM showed high levels 
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of CXCR5+ NK cells in LN (49). This suggests that migration of 
NK cells into AGM follicles was CXCR5-mediated. The presence 
of CXCR5+ NK cells was observed in secondary lymphoid organs 
(LN, spleen), but not in blood or gut of SIV-infected AGM. Thus, 
the CXCR5 expression on NK cells during SIVagm infection was 
tissue-specific. Of note, this enrichment of CXCR5+ NK cells in 
secondary lymphoid organs was not observed in SIVmac-infected 
macaques. Strikingly, IL-15-mediated depletion of NK  cells in 
chronic SIVagm infection led to high viral replication in the 
follicles as well as in the T zones (49). These results indicate that 
TFH cells are not resistant to SIV infection in AGM and clearly 
reveal a crucial role for NK cells in the viral control within LN 
of a natural host.

CONCLUDiNG ReMaRKS

Herein, we summarize current knowledge on differences in LN 
of non-natural versus natural hosts. The remarkable control 
and clearance of virus from lymphoid follicles in natural hosts 
is associated with multiple differences compared to pathogenic 
infection: (1) LN architecture is preserved; (2) inflammation 
is controlled; (3) FDC network is maintained intact; (4) rapid 
mobilization of innate antiviral responses; (5) viral replication 
is strongly controlled; (6) TFH are particularly spared from virus; 
(7) NK  cells migrate into follicles; and (8) high IL-15 produc-
tion within follicles (Table  1). Collectively, natural hosts have 
developed mechanisms of protection for the most vulnerable 
lymphoid CD4+ T cell subsets: CD4+ TCM, TFH cells in LN, and 
Th17  cells in gut (35, 139). Better preservation of these cells 
likely influences the preservation of intact lymphoid structures, 
immune competencies, and immune memory (49, 55). As a con-
trol model for lentivirus infections, we must ask how we might 
exploit the knowledge garnered from natural host research. 
Given the IL-15-dependent accumulation of NK  cells (and 
potentially CD8+ T cells) in natural hosts into follicles, this could 
be envisioned therapeutically to recapitulate virus clearance in 
pathogenic hosts and HIV patients. Multiple oncology studies are 
now exploring the utility of IL-15 superagonists and heterodi-
mers to expand both CD8+ T cells and NK cells and recent studies 
evaluated these molecules in the SIV macaque model (140–143). 
Additional cytokine therapeutics (i.e., IL-21 and IFN-α) could 

also be attractive targets to mimic or induce the conditions in 
natural hosts that are conducive to virus clearance in the LNs. 
Recently, the use of NKG2A inhibitors has also been suggested as 
an attractive approach in HIV cure strategies (144). Many open 
questions remain, including delineation of factors responsible for 
the high IL-15 production in LN follicles, the maintenance of an 
intact FDC network, the upregulation of CXCR5 on NK cells in 
LN and the very rapid innate antiviral responses in natural hosts. 
The remaining gaps in the knowledge base will require future 
studies to understand how natural hosts reduce inflammation 
and how they protect LN architecture. Such ongoing studies are 
hoped to direct future strategies aimed at granting permissive 
entry of relevant effector cells into the highly restricted lymphoid 
follicles, thus creating a unique opportunity for reservoir clear-
ance and representing a further step toward HIV remission and 
cure. Altogether, studies in natural hosts of SIV continue to reveal 
clues highly relevant for understanding and managing HIV infec-
tion in humans.
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