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Severe combined immunodeficiency disease (SCID) is the most severe form of primary 
immunodeficiency disorders (PID). T-cell receptor excision circle (TREC) copy number 
analysis is an efficient tool for population-based newborn screening (NBS) for SCID 
and other T  cell lymphopenias. We sought to assess the incidence of SCID among 
Saudi newborn population and examine the feasibility of using targeted next generation 
sequencing PID gene panel (T-NGS PID) on DNA isolated from dried blood spots (DBSs) 
in routine NBS programs as a mutation screening tool for samples with low TREC count. 
Punches from 8,718 DBS collected on Guthrie cards were processed anonymously for 
the TREC assay. DNA was extracted from samples with confirmed low TREC count, 
then screened for 22q11.2 deletion syndrome by real-time polymerase chain reaction 
and for mutations in PID-related genes by T-NGS PID panel. Detected mutations were 
confirmed by Sanger sequencing. Sixteen out of the 8,718 samples were confirmed 
to have low TREC copy number. Autosomal recessive mutations in AK2, JAK3, and 
MTHFD1 were confirmed in three samples. Two additional samples were positive for 
the 22q11.2 deletion syndrome. In this study, we provide evidence for high incidence 
of SCID among Saudi population (1/2,906 live births) and demonstrate the feasibility 
of using T-NGS PID panel on DNA extracted from DBSs as a new reliable, rapid, and 
cost-effective mutation screening method for newborns with low TREC assay, which can 
be implemented as part of NBS programs for SCID.

Keywords: severe combined immunodeficiency, dried blood spot, immunodeficiency, newborn screening, saudi, 
T-cell receptor excision circle, enlite, sciD
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syndrome, trisomy21, CHARGE syndrome, Kabuki synd rome, 
Ataxia telangiectasia, DOCK8-related autosomal recessive hyper 
IgE syndrome, Cartilage hair hypoplasia, Nijmegen brea kage 
syndrome, Schimke immune-osseous dysplasia, preterm infants, 
and idiopathic lymphopenia in addition to other disorders such 
as vascular leakage, chylous effusions, congenital leukemia, and 
congenital heart diseases, which cause T cell loss (19, 23–26).

Most causes of monogenic SCID have an autosomal recessive 
mode of inheritance and hence they are expected to be more 
common in areas with high rates of consanguineous marriages 
(21,  27, 28). Consanguineous marriages are common in Saudi 
Arabia with an overall incidence of 60% (29). In this study, we 
have conducted a pilot TREC-based NBS to assess the incidence 
of SCID and other combined immunodeficiencies associated 
with low TREC among the Saudi population and examine the 
clinical utility of a targeted next generation sequencing (NGS) 
PID gene panel as a confirmatory diagnostic tool for mutation 
screening of Guthrie card DBS with low TREC count.

MaTerials anD MeThODs

ethical approval
All research involving Guthrie card (DBS) samples was approved 
by the institutional review board at King Faisal Specialist 
Hospital & Research Center (KFSHRC), RAC:2130-027. The 
ethical board waived informed consent since samples were 
anonymized. This work was supported by the Kingdom of Saudi 
Arabia National Science, Technology and Innovation Plan’s 
Strategic Technologies Grant KACST: 13-BIO 755-20 under 
the King Abdulaziz City for Science and Technology (Riyadh, 
Kingdom of Saudi Arabia).

screened samples
In Saudi Arabia, NBS officially began in 2005. Currently, there are 
three NBS programs that provide screening for about 50% of all 
(570,000) newborns (30). The Newborn Screening & Biochemical 
Genetics Laboratory at King Faisal Specialist Hospital and 
Research Centre (KFSHRC) receives samples from all provinces 
of Saudi Arabia and screens about 80–90,000 live births every year. 
DBS specimens were obtained from Guthrie cards collected over 
a 12-month period (November 10, 2015–November 30, 2016). 
Within 1–3  days after completing the routine NBS tests, DBS 
samples were randomly selected with an average of 1,000 samples 
every month. Prior to anonymization, gestational age and birth 
weight data were collected. Large punches from selected DBSs 
were anonymized and coded to prevent any possibility of tracing 
the identity of the newborn behind the sample. The anonymized 
samples were then punched and processed for the TREC assay 
and potential additional second tier analyses.

Trec assay
The Enlite™ Neonatal TREC assay is an FDA approved, high 
throughput (96 or 384 well) based assay (Perkin Elmer, Turku, 
Finland). The details of this assay had been described previously 
(14, 18, 31). Briefly, the assay utilizes 2-plex amplification of TREC 
and beta-actin (ACTB) in the same reaction for each specimen. It 

inTrODUcTiOn

Severe combined immunodeficiency disease (SCID) is considered 
a medical emergency since it is the most severe form of primary 
immunodeficiency disorders (PID). SCID is a genetically het-
erogeneous group of over 20 monogenic inherited inborn errors 
of the immune system characterized by lack of T  lymphocytes 
development from the thymus, in addition to deficiencies of 
B cells, NK cells, or both in some forms. Impaired cellular and 
humoral immunity makes affected infants susceptible to bacte-
rial, viral, fungal, and opportunistic infections and results in 
death within the first 2 years of life. Infants with SCID can be 
rescued with hematopoietic stem cell transplantation (HSCT) 
and for some forms by using gene therapy or enzyme replacement 
therapy (1–4).

Severe combined immunodeficiency disease meets newborn 
screening (NBS) disease criteria, as affected infants are asympto-
matic at birth, disease is lethal without treatment, and outcome 
significantly improve if early management is offered (5–7). 
HSCT is the most effective curative treatment and the outcome 
is influenced by age at diagnosis and clinical status of patients 
at presentation (8, 9). High (95%) overall survival was observed 
among infants undergoing transplantation in the first month of 
life in comparison to those treated after 3 months of age (70%) 
(3–7).

Excision and splicing of the DNA encoding the T-cell antigen 
receptor genes are required during normal T  cell development 
and differentiation to produce T cells with diverse antigen spe-
cificities. During T  cell receptor rearrangement, deleted DNA 
fragments circulate without further replication in dividing cells. 
T-cell receptor excision circle (TRECs) is an excellent marker 
of recently formed T  cells (10). In 2005, Chan and Puck first 
described the TREC assay as an excellent tool for population-
based NBS for SCID (11). TREC copy number can be determined 
from Guthrie card dried blood spots (DBSs) using real-time 
quantitative polymerase chain reaction (RT-qPCR) (12).

In 2008, the TREC assay-based NBS for SCID was first 
implemented in WI, USA (13). Universal SCID NBS was then 
recommended in 2010 by the US Advisory Committee on 
Heritable Disorders in Newborns and Children. Currently, most 
states provide NBS for SCID using the TREC assay and several 
pilot studies are ongoing in Europe and Asia (14–18). The results 
of screening three million newborns showed a SCID frequency 
of 1/58,000 children and a higher overall frequency (1/7,300) of 
significant forms of T cell lymphopenia (19). SCID incidence is 
expected to be higher in populations with high rates of consan-
guinity (20–22).

Depending on how you set the cut limit, TREC assay can 
also identify non-SCID immunodeficiencies with profound 
decrease in circulating naïve T-cells including: 22q11 deletion 

Abbreviations: DBS, dried blood spot; NBS, newborn screening; NGS, next gen-
eration sequencing; PID, primary immunodeficiency disease; qPCR, quantitative 
polymerase chain reaction; SCID, severe combined immunodeficiency disease; 
SNP, single nucleotide polymorphism; SNV, single nucleotide variant; TREC, 
T cell receptor excision circle; CNV, copy number variation; WES, whole exome 
sequencing; WGS, whole genome sequencing.
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uses a combination of end-point polymerase chain reaction (PCR)-
based deoxyribonucleic acid amplification and time-resolved 
fluorescence resonance energy transfer (TR-FRET)-based detec-
tion. Calibrator and control samples are used to calculate TREC 
and ACTB copies and for monitoring the assay performance. 
Unlike all other routine NBS assays, which use a standard 3.2 mm 
punch, for the Enlite assay uses a 1.5 mm DBS punch from each 
sample into a PCR-plate directly, which is then incubated with 
10 µL elution buffer (5× Phire® buffer mixed with elution diluent) 
followed by combined DNA amplification and hybridization, 
and signal measurement using the VICTOR Enlite fluorometer. 
And the EnLite™ workstation software was used to interpret test 
results based on two separate calibration curves, which use blanks 
and DBS calibrators A–C. The response, corrected counts, are fit-
ted against the ArcSinh transformed concentrations (copies/μL) 
using the unweighted linear regression. The test quality control 
is based on three kit control results interpretations. The initial 
manufacturer provided cutoffs were as follows: TREC positive: 
≥36/μL, TREC negative: ≥36 copies/μL, and Beta-actin (ACTB) 
copy of ≥56 copies/μL. The test result is valid when Beta-actin 
copy of ≥56 copies/μL. Since by study design, no clinical follow-
up of screen positive cases was possible and to ensure the iden-
tification of all newborns with classical SCID and possibly other 
combined immunodeficiencies with low TREC, we elected to use 
the manufacturer recommended cutoff at 36  copies/μL. To test 
the validity of this cutoff limit, a previously collected Guthrie card 
samples from nine molecularly confirmed patients with atypical 
AK2 deficiency were utilized for assay validation and setting the 
cutoff limit. Triplicate TREC copy number analysis was run in 
each sample except one, which was run in singlicate. The mean 
and median TREC copy number was 13.3 and 13.5, respectively, 
while the range was 0–28 copies/μL.

Dna extraction
The MasterPure™ Complete DNA & RNA Purification Kit 
(epicenter, Madison, WI, USA) was used to isolate DNA from 
DBSs as recommended by the manufacturer. Briefly, six DBS 
punches were treated with proteinase K followed by adding a 
cell lysis solution and protein precipitation. Recovered DNA was 
re-suspended in 20–30 µl of TE buffer.

Targeted ngs PiD Panel (T-ngs PiD)
Ion AmpliSeq Designer software (Life Technologies, Carlsbad, 
CA, USA) was used for the design and synthesis of a multiplexed 
gene panel encompassing 265 PID genes. The list of PID genes 
screened for is provided in Table S1 in Supplementary Material. 
Primers were optimized to provide amplicons (200  bp) with 
at least 90% coverage of coding sequence and a minimum of 
10 bp flanking regions of associated introns. Ten nanograms of 
extracted DNA samples were sufficient to generate the Ion Proton 
AmpliSeq library. Details of library preparation, NGS, data 
processing, bioinformatics analysis, workflow of detecting point 
mutations, and copy number variants (CNVs) were previously 
described (28). The assay has an overall sensitivity of 96% for 
single nucleotide variants (SNVs) and 92% for detecting Indels. 
CNV analyses have a sensitivity of 100% for detecting large 
homozygous deletions (28).

sanger sequencing
Identified mutations by T-NGS PID panel were confirmed by 
standard Sanger sequencing. Details of PCR, primers design, 
and sequencing was described previously (32, 33). Sequence 
data were aligned against the reference GenBank sequences 
and examined for variation. Novel mutations were compared 
against local Saudi Genomic as well as non-Saudi population 
databases. Pathogenicity of novel mutations was determined 
based on population allele frequency and in  silico prediction 
tools.

chr.22q11.2 copy number/Deletion 
analysis
Copy number-based assays (RT-qPCR and single nucleotide 
polymorphism-microarrays) were used to detect this deletion. 
To test gDNA from NBS DBS samples with low TRECs, we used 
a TaqMan labeled TBX1 real-time qPCR copy number assay 
(ThermoScientific).1 This assay is run as a duplex real-time 
PCR of target gDNA (TBX1) as well the reference gene (RNase 
P H1 RNA gene) both of which are normally present as diploid 
copies. The comparative CT (ΔΔCT) method was then used to 
calculate the number of copies of the target sequence in each 
test sample [measures the CT difference (ΔCT) between target 
and reference sequences, then compares the ΔCT values of test 
samples to a calibrator sample(s) known to have two copies of 
the target sequence]. The copy number of the target is calcu-
lated to be two times the relative quantity.2 Samples and controls 
(known 22q11.2 deletion and normal) were run in duplicates 
in each 96-well plate. Samples with abnormal copy number for 
TBX1 (22q11.2 deletion) were repeated in duplicates as well. 
CopyCaller™ Software (ThermoFisher) was used to calculate 
target (TBX1) as well as reference (RNAse P) copy number in 
all samples.

resUlTs

neonatal guthrie card samples
We used DBS punches from 8,718 previously collected, 
anonymized Guthrie cards. A cutoff of ≥36 TRECs/μL and 
Beta-actin copy of ≥56  copies/μL was determined as normal. 
Failed DBS samples were repeated. Samples with persistently low 
TRECs and normal Beta-actin copy number were subjected to 
2nd tier testing (qPCR-based copy number analysis for 22q11.2 
deletion) to rule out 22q11.2 deletion syndrome, and Proton-Ion 
Torrent (NGS)-based targeted primary immunodeficiency genes 
analysis. Experimental work flow is shown in Figure 1.

Trec assay
8,333 of 8,718 tested samples had an initial TREC value above the 
cutoff. 315 samples had an initial TREC or Beta-actin copy value 
below the cutoff, which led us to perform a second (repeat) TREC 
analysis (retest-rate 3.6%). Most of these samples (299 of 315, 95%)  

1 www.appliedbiosystems.com (Accessed: March 27, 2018).
2 https://tools.thermofisher.com/content/sfs/manuals/cms_062368.pdf (Accessed: 
March 27, 2018).
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FigUre 1 | Experimental workflow. Abbreviations: KFSHRC, King Faisal Specialist Hospital & Research Center; DBS, dried blood spot; TREC, T cell receptor 
excision circle; NGS, Next generation sequencing; PID, primary immunodeficiency disease; qPCR, quantitative polymerase chain reaction.
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passed the second tier with a TREC copy number above the 
cutoff. Therefore, only 16 of 8,718 (0.18% or 1/544) samples had 
persistently low TREC counts below the cutoff. These samples 
were suspected of having T-cell deficiency and were subjected to 
further investigations (recall rate 0.18%). A total of 70 samples 
with combined low TREC and beta-actin copy number failed 
both initial and repeat testing and were, therefore, excluded 
(failure rate 0.8%). Table S2 in Supplementary Material showed 
samples with duplicate low TREC copy number.

Mutations Detected by T-ngs PiD Panel
All 16 samples with low TREC assay underwent T-NGS PID 
panel. A homozygous mutation in AK2, a compound heterozy-
gous mutation in JAK3, and a homozygous mutation in MTHFD1 
were identified in three samples, respectively, and confirmed by 
Sanger sequencing. Details of the mutations, gestational age, and 
TREC level are shown in Table 1. The homozygous AK2 mutation 

is a known Saudi mutation that has been previously reported to 
cause classical reticular dysgenesis (34). It is interesting to note 
that the recessive JAK3 mutation was a compound heterozygous 
for a novel truncating and a rare deleterious mutation suggesting 
parental non-consanguinity. The JAK3 and MTHFD1 detected 
variants in samples 2 and 3 are novel.

copy number Variants
Copy number variation analyses were carried out for each of the 
low TREC samples to rule out large insertions or deletions. No 
large homozygous deletions were detected.

chr.22q11.2 copy number/ 
Deletion analysis
Among the 16 samples with low TREC copy number, two samples 
with 22q11.2 deletion were suspected by qPCR. No further con-
firmatory testing was performed.

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
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TaBle 1 | Mutations detected by T-next generation sequencing (NGS) primary immunodeficiency disease panel.

sample T cell receptor excision 
circle copies/μl (initial/

repeat)

gene Mutation Protein 
effect

Zygosity Mutation type Detected by 
T-ngs

confirmed 
by sanger

SGP2017-
00440

6/0 AK2 NM_001625:exon6: 
c.524G > C

p.R175P Homozygous SNV (29) YES YES

SGP2017-
00442

3/3 JAK3 NM_000215:exon10: 
c.1275T > A

p.Y425X Compound 
heterozygous

SNVa (novel) YES YES

NM_000215:exon3: 
c.308G > A

p.R103H (rare, 8.129e-6; 
deleterious)

YES YES

SGP2017-
00425

34/36 MTHFD1 NM_005956:exon24: 
c.2404G > A

p.V802I Homozygous SNV (rare, 7.326e-5; 
deleterious)

YES YES

SNV, single nucleotide variant.
aVery rare deleterious SNVs (http://gnomad.broadinstitute.org/) which have never been reported as homozygous.
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Prematurity
692 out of the 8,718 samples were from preterm newborns 
(<37 weeks gestation) representing 8% of all samples recruited. 
Three out of the sixteen samples with low TREC assay belonged 
to preterm newborn (19%).

sciD incidence in saudi arabia
Three suspected SCID cases were identified after screening 
8,718 Saudi newborn Guthrie card samples based on EnLite™ 
Neonatal TREC assay followed by T-NGS PID Panel and con-
firmatory Sanger sequencing. These results indicate a frequency 
of SCID of 1/2,906 live births in Saudi Arabia. Further confirma-
tory testing using flow cytometry and clinical correlation were 
not possible per protocol.

DiscUssiOn

Severe combined immunodeficiency disease epidemiology from 
worldwide registries showed a geographical and racial variation. 
For multiple socio-cultural factors, consanguineous marriages 
are a common practice in the Middle East and Northern Africa 
(MENA) region with an overall incidence ranging between 20 and 
50% (27, 35–40). This led to the abundance of autosomal reces-
sive diseases among various MENA populations. Published data 
from highly consanguineous populations such as Kuwait showed 
an estimated incidence of 1/7,500 live birth for combined immu-
nodeficiency diseases (41) and data from Saudi Arabia showed 
that SCID is the commonest PID (33%) (21). However, the true 
incidence of SCID among Saudi population was unknown. This 
study had provided the first population-based incidence of SCID 
at 1 in 2,906 Saudi live births, which is (20×) higher than the inci-
dence reported from USA NBS programs (19). Although in this 
pilot study the sample size was relatively small to ascertain this 
high incidence, we believe that it is representative of the popula-
tion of Saudi Arabia since our NBS services cover all regions of 
the country. A large scale NBS for SCID in Saudi Arabia will be 
needed to confirm this finding. This high incidence will increase 
the cost effectiveness ratio of implementing SCID NBS in such 
highly consanguineous population. This is possible provided that 
the health policy makers recognize the real incidence and the 

seriousness of such disease and provide all required resources 
to manage it.

Severe combined immunodeficiency disease is caused by muta-
tions in one of several genes including IL2RG, JAK3, DCLRE1C, 
RAG1, RAG2, IL7R, ADA, CD3D, CD3E, CD3Z, DOCK2, AK2, 
and TTC7A (23, 42, 43). Additional genetic defects in MTHFD1, 
RMRP, CORO1A, PNP, DOCK8, ATM, and BCL11B, among others 
also cause combined immunodeficiencies, which can be detected 
by low TREC copy number analysis (23). TREC NBS has revealed 
a small number of infants with non-SCID T  cell (idio pathic)  
lymphopenia for which no apparent cause was identified (44). 
Newly developed and commercially available SCID NGS gene 
panels are available for clinicians to order on newborns with low 
TREC assay. However, such panels will miss many of the possible 
causing syndromes in addition to non-SCID causing defects. 
Whole-exome sequencing (without concomitant copy number 
analysis) will miss diagnoses such as 22q11.2 deletion syndrome, 
trisomy 21, deletions, and other cytogenetic syndromes. Therefore, 
it is important to have a short list of all possible syndromes and 
genetic defects that will prompt further follow-up investigations.

Dried blood spots are potential resources for genetic and 
genomic analysis. Recent studies showed that sufficient DBS 
DNA can be extracted and used for NGS to perform whole exome 
sequencing (WES) and whole genome sequencing (WGS) without 
genome amplification (45). The use of next-generation sequencing 
has the potential to be integrated in SCID NBS programs to facili-
tate and accelerate genetic testing and final diagnosis of affected 
newborns. However, appropriate utilization of these technologies 
will require the capacity to manage and interpret large amounts 
of genetic data. Implementing such testing will also raise several 
questions about the ability of clinicians to interpret and effec-
tively communicate the generated genetic data (46, 47). A more 
focused, clinically driven NGS gene panel-based analysis covering 
entire genes (to capture known and novel variants) will be more 
appropriate for initial screening for mutations that can explain 
the low TREC counts and will reduce many of the complexities 
associated with WES or WGS. Targeted NGS gene panel assay has 
a rapid turn-around time and the lists of potential candidate vari-
ants generated is much shorter compared to WES or WGS. This 
is expected to facilitate result interpretation and reduce the risk 
of incidental findings. WES or WGS can be applied to unsolved 

http://gnomad.broadinstitute.org/
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TaBle 2 | Comparison of number of needed referrals for confirmatory studies for severe combined immunodeficiency disease based on T cell receptor excision circle 
(TREC) concentration cutoffs.

35 copies/μl 30 copies/μl 25 copies/μl 20 copies/μl 15 copies/μl

Number and (%) positives after first TREC assay 315 (3.6%) 263 (3%) 199 (2.3) 161 (1.8) 124 (1.4)
Number and (%) presumptive positives (after repeated TREC assay) 16 (0.18) 12 (0.14) 8 (0.09) 3 (0.03) 3 (0.03)
Total number of referrals per annum (KSA)a 1,026 798 513 171 171
Total number of referrals per annum (UK) (14)b 1,680 554 420 210 NA
Total number of referrals per annum (Netherlands) (18)c 1,209 946 403 140 NA

Numbers were calculated based on a total of 570,000a, 700,000b, and 178,000c annual live births in KSA, UK, and Netherlands respectively.
NA, not available.
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cases for new gene discovery. All novel variants, even in known 
PID genes will require functional and experimental validation 
to prove that they are actually deleterious and will remain the 
benchmark for causal association with a disease phenotype.

Most newborns found to have low TREC counts will undergo 
extensive follow-up genetic testing to identify the possible 
underlying immune defect. This approach has revealed a broad 
range of conditions with a wide spectrum of clinical severity in 
which immune deficiency may occur, some of which were not 
previously appreciated to cause a significant immunodeficiency 
phenotype. Currently, the post-NBS genetic testing for SCID 
related molecular defects is initiated after performing full clinical 
and immunological assessments. However, the development of 
high-throughput DNA sequencing technologies has revolution-
ized the genetic testing approach potentially allowing early initia-
tion of genetic testing, even before starting immunological work 
up, which may lead to a more efficient and rapid identification of 
the genetic basis of inherited inborn errors of immunity. An ideal 
NBS NGS PID gene panel will include all PID genes known to be 
associated with low TREC counts. This list can be easily revised 
on a regular basis to include newly discovered genes. Therefore, 
we believe that this combined approach (TREC followed by NGS-
based PID gene analysis) can be used efficiently in the screening 
and diagnosis of newborns with low TREC counts.

In this study, we elected to use a high TREC copies cutoffs 
(36 copies/μL) since we had no access to patients to perform fur-
ther immunological testing. In the USA and Europe, lower cutoffs 
had been implemented in routine NBS (48). Table 2 demonstrates 
the performance of this assay in Saudi newborns based on various 
TREC copies cutoffs scenarios. At 36 copies/μL and based on a 
population of 570,000 newborns, an estimated 1,026 newborns 
will need referral for clinical and immunological evaluations 
and hence a high number of newborns will be called for retest-
ing creating unnecessary anxiety among parents and increase 
in health-care expenditures. A lower cutoff, at 20 copies/μL, is 
expected to identify all classical SCID cases and result in a more 
reasonable number of clinical referrals (171). However, an atypi-
cal SCID and other T cell lymphopenia can be missed. Case in 
point, the sample with MTHFD1 deficiency would not have been 
identified at this low cutoff (Table 1). MTHFD1 deficiency is a 
recently discovered metabolic disorder characterized by severe 
combined immunodeficiency, megaloblastic anemia, and neuro-
logical deficits (49, 50). A larger, more comprehensive pilot study 
supported by clinical outcomes of various cutoff limits should 
determine the final TREC cutoff level to be used in routine NBS 
that will ensure the identification of all babies with typical SCID.

The economical evaluation of the cost effectiveness of novel 
technologies for neonatal screening is a challenging task, as vari-
ous factors determine their outcome. Extensive genetic testing is 
already part of the routine work up of symptomatic newborns. 
It is now clear that the targeted NGS approach is a cost-effective 
and more rapid alternative to Sanger sequencing especially for 
the evaluation of large genes and multi-genetic disorders (e.g., 
Omenn syndrome) (28). The consumables cost for our targeted 
NGS method is approximately $250 per sample based upon mul-
tiplexing of approximately 40 samples per run. A comprehensive 
cost effectiveness study of implementing additional NGS-based 
testing will be needed before making it part of the TREC-based 
NBS program.

In summary, this TREC-based SCID NBS pilot study provides 
the first evidence of high incidence of SCID among the Saudi 
population and demonstrates the feasibility of using T-NGS 
PID panel from Guthrie card DBSs as a new reliable, rapid, and 
cost-effective mutation screening method for newborns with low 
TREC counts.
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