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Myeloid C-type lectin receptors (CLRs) are important sensors of self and non-self that 
work in concert with other pattern recognition receptors (PRRs). CLRs have been pre-
viously classified based on their signaling motifs as activating or inhibitory receptors. 
However, specific features of the ligand binding process may result in distinct signaling 
through a single motif, resulting in the triggering of non-canonical pathways. In addition, 
CLR ligands are frequently exposed in complex structures that simultaneously bind dif-
ferent CLRs and other PRRs, which lead to integration of heterologous signaling among 
diverse receptors. Herein, we will review how sensing by myeloid CLRs and crosstalk 
with heterologous receptors is modulated by many factors affecting their signaling and 
resulting in differential outcomes for immunity and inflammation. Finding common fea-
tures among those flexible responses initiated by diverse CLR-ligand partners will help 
to harness CLR function in immunity and inflammation.
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DiveRSiTY OF SiGNALiNG MODULeS iN MYeLOiD  
C-TYPe LeCTiN ReCePTORS (CLRs)

The expression of diverse pattern recognition receptors (PRRs), including differential expression 
of CLRs, provides different subsets of immune cells with a repertoire to interpret and respond 
distinctly to the information coming from the environment. Myeloid cells are central for initiation 
and regulation of innate and adaptive immunity or tolerance and the CLR repertoire essentially 
contributes to myeloid cell function. We previously proposed a classification of myeloid CLRs 
based on their intracellular signaling motifs (1). While signaling motifs allow to predict effector 
responses following sensing by CLRs, this canonical response is subjected to modulation by the 
physical nature, affinity, and avidity of the ligand (2). Based on their intracellular signaling motifs, 
myeloid CLRs can be classified into the following broad categories (Figure 1): immunoreceptor 
tyrosine-based activating motif (ITAM)-coupled CLRs, hemi-ITAM-(hemITAM)-bearing CLRs, 
immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing CLRs, and a group of CLRs 
lacking typical signaling motifs (1, 3, 4).

Immunoreceptor tyrosine-based activating motif-coupled CLRs have a classical ITAM motifs in 
their intracellular tail, consisting of YXXL tandem repeats, or can interact with ITAM-containing 
adaptor proteins, as Fc receptor γ (FcRγ) chain or DNAX-activation protein 12 (DAP12) (5). The 
majority of them, including Dectin-2 (CLEC6A in human, Clec4n in the mouse), Mincle (CLEC4E), 
MCL (CLEC4D), BDCA-2 (human CLEC4C), DCAR (mouse Clec4b1), DCAR1 (mouse Clec4b2), 
and mannose receptor (MR) (MRC1, CD206) utilize the FcRγ chain adaptor, while MDL-1 
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FiGURe 1 | Canonical signaling modules in myeloid C-type lectin receptors (CLRs). Based on canonical intracellular signaling motifs, myeloid CLRs can be classified 
into immunoreceptor tyrosine-based activating motif (ITAM)-coupled CLRs, hemi-ITAM-(hemITAM)-bearing CLRs, immunoreceptor tyrosine-based inhibitory motif 
(ITIM)-containing CLRs, and a group of CLRs lacking typical signaling motifs. Mincle, Dectin-1, DCIR, DC-SIGN, and their corresponding canonical signaling 
pathways and adaptors are depicted as prototypical examples of each category.
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(CLEC5A) interacts with DAP12 (6–12). Hemi-ITAM-bearing 
CLRs contain a single tyrosine within an YXXL motif in their 
cytoplasmic domain (13, 14). Dectin-1 (CLEC7A), CLEC-2 
(CLEC1B), DNGR-1 (CLEC9A), and SIGN-R3 (mouse Cd209d) 
belong to the hemITAM-based CLRs category (15–20).

These ITAM or hemITAM CLRs are considered activat-
ing receptors that couple to the spleen tyrosine kinase (Syk) 
(Figure  1) (15, 21, 22). Phosphorylation of the tyrosine(s) 
in the ITAM or hemITAM motifs generates docking sites for 
the SH2 domains of Syk, which undergoes a conformational 
change that permits autophosphorylation and activation 
(23). Mincle acts as a prototypical activating CLR after rec-
ognition of glycolipids in the cell wall of some fungal and 
bacterial pathogens (24–26). Through the full ITAM of the 
FcRγ chain adaptor, Mincle couples to Syk and activates Vav 
proteins and PKCδ, which lead to downstream activation of 
CARD9/Bcl10/Malt1 and MAPK pathways, thus resulting in 
the induction of several cytokines and chemokines, including 
TNF-α, macrophage inflammatory protein 2 (MIP-2; CXCL2), 
keratinocyte-derived chemokine (KC; CXCL1), and IL-6 (7, 
27, 28). Production of inflammatory cytokines by myeloid 
cells, together with the generation of Th1 and Th17 responses, 
contribute to protective immunity upon recognition of some 
Mincle ligands (29–38).

Spleen tyrosine kinase activation downstream of the hemI-
TAM-bearing CLR Dectin-1 leads to similar signaling pathways 
to those described for Mincle (Figure  1), with activation of 
the CARD9/Bcl10/Malt-1 module that promotes canonical  
NF-κB signaling (27, 28, 39). Dectin-1 can also activate MAPK 
(40, 41), NFAT through phospholipase C-γ2 (42, 43), and a 

Syk-independent non-canonical NF-κB activation relying on 
the activation of the Raf-1 kinase (44). These integrated path-
ways mediate production of reactive oxygen species (ROS) and 
cytokines, such as IL-1β, IL-6, IL-10, IL-12, TNF-α, and IL-23 
to drive Th1 and Th17 differentiation, being essential for the 
development of antifungal immune responses (45–48). This  
axis is also activated in response to intestinal fungi, where 
Dectin-1 contributes to gut homeostasis (49).

Immunoreceptor tyrosine-based inhibitory motif- 
containing CLRs negatively regulate signaling initiated by 
kinase-associated heterologous receptors through the recruit-
ment of tyrosine phosphatases, such as Src homology region 
2 domain-containing phosphatase (SHP)-1 or -2 (Figure  1). 
Myeloid CLRs included in this group are human DCIR 
(CLEC4A), mDcir1 (Clec4a2), mDcir2 (Clec4a4), Clec12a 
(MICL, DCAL-2, KLRL1, CLL1), MAgH (CLEC12B), and 
Ly49Q (1, 50, 51). The ITIMs of both hDCIR and mDCIR1 have 
been shown to mediate inhibitory signaling through activation 
of the phosphatases, SHP-1 and SHP-2 (52–54). Activation of 
hDCIR on dendritic cells (DCs) leads to inhibition of TLR8-
mediated IL-12 and TNF-α production and TLR9-induced 
IFN-α production (55, 56). Sensing endogenous ligands by 
DCIR modulates innate immunity to pathogens, such as 
Plasmodium or Mycobacterium (57, 58).

Myeloid CLRs that do not bear evident ITAM or ITIM 
domains include MMR (MRC1), DEC-205 (LY75), human 
DC-SIGN (CD209), mouse SIGN-R1 (Cd209b), Langerin 
(CD207), human MGL (CLEC10A), mouse Mgl1 (Clec10a), 
mouse Mgl2 (Mgl2), CLEC-1 (CLEC1A), human DCAL-1 
(CLECL1), LOX-1 (OLR1), and LSECtin (CLEC4G). As an 
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TAbLe 1 | Myeloid C-type lectin receptors (CLRs) surveyed in this review.

Signaling module Common 
name

Gene 
name

Source of flexible signaling Signaling pathwaya Flexibility outcomeb

No immunoreceptor 
tyrosine-based 
activating motif (ITAM) 
or immunoreceptor 
tyrosine-based inhibitory 
motif (ITIM)

DC-SIGN CD209 Homotetramerization LSP1–KSR1–CNK–Raf-1 Intrinsic (80)
Sensing self and non-self LSP1–IKKε–Bcl3 Inhibitory (113–115)

KSR1–CNK–Raf-1 Activating (59, 110)
Heterologous modulation (?) Activating (148)

Raf-1–MEK Inhibitory (112)

Heterotrimerization DC-SIGN/MR/MDL-1 DNAX-activation protein 12 (DAP12) Activating (86)

 ITAM MDL-1 CLEC5A Heterotrimerization DC-SIGN/MR/MDL-1 DAP12 Activating (86)
Mannose 
receptor (MR)

MRC1 Heterotrimerization DC-SIGN/MR/MDL-1 DAP12 Activating (86)

Inhibitory ITAM Fc receptor γ (FcRγ)–Grb2−SHP-1 Inhibitory (12)
Dectin-2 CLEC6A, 

Clec4n
Heterodimerization Dectin-2/MCL FcRγ–spleen tyrosine kinase (Syk)–

NF-κB p65
Activating (85)

MCL CLEC4D Heterodimerization Mincle/MCL FcRγ–Syk Activating (81–84) 
Mincle CLEC4E Heterodimerization Mincle/MCL FcRγ–Syk Activating (81–84) 

Inhibitory ITAM FcRγ–Syk–SHP-1 Inhibitory (91, 92)
Sensing self Retarded Syk Inhibitory (104, 105)

FcRγ–Syk Activating (7, 100–103)
Heterologous modulation FcRγ−Syk Activating (140, 141, 143)

FcRγ−Syk–PKB–Mdm2 Inhibitory (146)

hemITAM CLEC-2 CLEC1B Homodimerization Syk Intrinsic (75, 76)
DNGR-1 CLEC9A Motif context Syk Intrinsic (19, 60–64)
Dectin-1 CLEC7A Subcellular location Syk Intrinsic (67–70)

Ligand size-conditioned subcellular location Syk–MAPK–reactive oxygen species Intrinsic (71–74)
Phosphatase association SHP-1–PTEN–FcRγ SHIP-1 Inhibitory (93, 94)

SHP-2–Syk Activating (95)
Heterologous modulation Syk Activating (124–126)

PI3K–mTOR–HIF-1α Activating (130–134)
Syk–Pyk2–ERK–SOCS-1 Inhibitory (128)

ITIM DCIR CLEC4A, 
Clec4a2

Activating ITIM IFNI–STAT1 SHP-2 hijacking (?) Activating (58)
Sensing self and non-self (?) Activating (57)

SHP-2/SHIP-1 Inhibitory (108, 109)

aDescribed in the indicated reference. In case it was not studied in depth, it might be incomplete.
bThis column indicates the inflammatory balance provided by each source of signaling flexibility. “Intrinsic” refers to specific responses triggered by particular CLRs.
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example, DC-SIGN intracellular tail is associated with a signa-
losome composed of the scaffold proteins LSP1, KSR1, and 
CNK and the kinase Raf-1 in unstimulated DCs (59) (Figure 1). 
Similar to other CLRs in this group, DC-SIGN cannot promote 
DCs activation or cytokine secretion per se, but it rather modu-
lates signaling by heterologous receptors (see below) or engages 
the endocytic machinery contributing to antigen processing 
and presentation to T cells (3).

Along this review, we will provide illustrative examples of 
how signaling pathways triggered by a CLR coupled to a par-
ticular canonical motif can vary depending on many factors. We 
will focus on Mincle, Dectin-1, DNGR-1, DCIR, and DC-SIGN 
as myeloid CLRs representative of each category of signaling 
motif. Table 1 includes the signaling module coupled to each 
CLR surveyed in this review, common and gene names, category 
of flexible signaling source, signaling pathway involved, and 
the inflammatory outcome provided by such flexibility. In this 
Table 1, CLRs are grouped based on the signaling module they 
bear (left column) and graphically illustrates how the signal-
ing pathways triggered by these receptors are more complex 
and versatile (right columns) than expected by their signaling 
modules.

SiGNALiNG FLeXibiLiTY beYOND THe 
CANONiCAL MOTiFS

Motif Context and Receptor Location 
Modulate Signaling
Classifications of receptors based on intracellular structural 
motifs stand on the fact that those domains determine the 
molecular signaling pathways initiated after ligand recognition 
(1). However, in addition to the basic ITAM and ITIM motifs, 
subtle variations in the context of the canonical motifs pro-
foundly affect the signal delivered. For example, DNGR-1 is a 
DC-specific hemITAM-bearing receptor that detects dead cells 
and promotes cross-presentation in sterile or infectious settings, 
without contributing to inflammation (Figure 2A), in contrast to 
the close-related Dectin-1 (19, 60–63). This deficiency to promote 
cytokine production through DNGR-1 hemITAM was linked to 
an isoleucine that precedes the tyrosine in DNGR-1 hemITAM 
and rescued by mutation to the glycine present in Dectin-1 hemI-
TAM (60). Signaling flexibility can thus be intrinsically provided 
by the amino acid sequence of those motifs present in a CLR. 
In this regard, residues in the neck region of DNGR-1 allow the 
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FiGURe 2 | Signaling flexibility downstream of C-type lectin receptors (CLRs). Signaling triggered downstream of CLRs goes beyond the canonical modules  
present in their intracellular domains and can be modulated by different processes. Some examples of such plasticity are represented. (A) DNGR-1 promotes 
cross-presentation of antigens to CD8+ T cells, yet not directly contributing to inflammation. (b) Mincle and MCL dimerize, boosting phagocytosis, and spleen 
tyrosine kinase (Syk)-mediated inflammatory responses. (C) Sensing of a soluble ligand from Leishmania by Mincle triggers an inhibitory immunoreceptor tyrosine-
based activating motif conformation downstream of Fc receptor γ (FcRγ), where SHP-1 dampens inflammatory responses triggered by heterologous receptors.  
(D) The phosphatase SHP-2 acts as a scaffold downstream of Dectin-1 and FcRγ-coupled CLRs, facilitating the recruitment of Syk and its inflammatory signaling. 
(e) Both self and non-self ligands share signaling pathways downstream of DC-SIGN depending on whether they are mannosylated or fucosylated glucans.
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receptor to adopt different conformations that depend on pH and 
ionic strength, modulating its function as the receptor progresses 
through the endocytic pathway (64). Even the inflammatory 
response of mouse and human Dectin-1 to the same ligand 
varies because of minor interspecies variations in the signaling 
motif, with low valency ligands inducing proinflammatory genes 
through human but not mouse Dectin-1 (65).

Receptor location also affects CLR signaling and functions.  
A single CLR may be expressed in different cell types (66) as 
diverse isoforms that may differ in subcellular location. For 
example, two isoforms of Dectin-1 have been described to bind 
β-glucans (67); isoform A is characterized by the presence of a 
stalk region including an N-linked glycosylation site, which is 
missing in isoform B (68). This glycosylation determines the cell 
surface expression of isoform A, while non-glycosylated isoform 
B is retained intracellularly, thus conditioning the response to 
ligands (69) and the sensitivity to proteolytic cleavage (70).

The subcellular location of a CLR may not only depend on 
intrinsic features in its sequence, but also on the size of the 
particle where the ligand is recognized. For example, “frustrated” 
phagocytosis mediated by Dectin-1 in response to ligands 
exposed in large particles leads to enhanced cytokine response 
and ROS production compared with soluble ligands (71–73). 
Blockade of Dectin-1 internalization following ligand exposure 
leads to sustained MAPK activation (72), suggesting that endocy-
tosis dampens Dectin-1 production of cytokines. Thus, formation 
of a phagocytic synapse by particulate β-glucan redistributes 
Dectin-1 and phosphatases along the cellular membrane, favor-
ing proinflammatory signals including ROS production (73). 
In addition, the size of the ligand-containing particle and the 

consequent location of the receptor, can lead to qualitatively dif-
ferent responses. Dectin-1-mediated phagocytosis dampens the 
nuclear translocation of neutrophil elastase, controlling the extent 
of neutrophil extracellular traps (NET) formation in response 
to small pathogens (bacteria or yeast). Consequently, Dectin-1 
blockade or deficiency leads to enhanced NETosis, as observed in 
response to non-phagocytic large pathogens (hyphae) (74).

Thus, the expected canonical response based on signaling 
modules can be altered both by slight modifications in motif 
context and the subcellular location of CLRs, taking into account 
that the latter may be affected by the size of the ligand recognized.

Multimerization of CLRs for Signaling
The signal transduction through several myeloid CLRs may 
also depend on their capacity to form dimers or multimers 
with other CLRs. CLRs bearing hemITAMs may require two 
phosphorylated tyrosines in a homodimer to bind Syk. It has 
been shown that CLEC-2 preexists as a dimer that aggregates fol-
lowing ligand binding (75, 76). The hemITAM motif of CLEC-2 
is crucial for blood-lymph separation during development  
(77, 78). Of note, thrombus stability is dependent on CLEC-2 
but not on the hemITAM, revealing a hemITAM-independent 
signaling for CLEC-2 (79).

DC-SIGN provides another example of homomultimeriza-
tion, despite lacking ITAM or ITIM domains. This CLR appears 
assembled as a tetramer, allowing multiple interactions with 
diverse pathogens that differ in size, but also increasing ligand 
avidity (80). In addition, some CLRs form heterodimers, such as 
MCL and Mincle (11, 81). These two CLRs are interrelated as they 
both sense the mycobacterial glycolipid trehalose-6,6-dimycolate 
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(TDM), triggering an FcRγ-dependent pathway (11). Indeed, 
MCL and Mincle are co-regulated and depend on each other for 
their mutual surface expression (82, 83). However, the association 
of MCL with FcRγ in this complex is species-specific, being direct 
in mouse cells (11) but requiring Mincle in rat (81). Thus, the 
interaction between these CLRs would facilitate MCL signaling 
capacity via association with Mincle and translocation to the 
plasma membrane. On the other hand, Mincle would benefit 
the endocytic capacity of MCL (Figure 2B) and both receptors 
could increase affinity or specificity for their ligands (84). MCL 
also forms a heterodimeric pattern-recognition receptor with 
Dectin-2 (85), which has a high affinity for α-mannans on the 
surface of Candida albicans (C. albicans) hyphae.

Cooperative interaction is also found in the case of dengue 
virus binding with high affinity to MR and DC-SIGN, receptors 
that subsequently handle the virus to the lower affinity receptor 
CLEC5A, which mediates signal transduction (86).

All these examples illustrate how multimerization of CLRs, 
forming either homo- or hetero-complexes, facilitates a coopera-
tive response to the ligand.

is the Function of CLRs inhibitory  
or Activating?
Another layer of complexity in CLR signaling stems from the 
ability of a single CLR to bind different ligands through its plastic 
C-type lectin domain. For instance, depending on their relative 
affinity or avidity, ligands may fine-tune signaling pathways 
downstream of ITAM motifs. Whereas the binding of high-
avidity ligands to these receptors induces activating signals, the 
binding of low-avidity ligands leads to hypophosphorylation of 
the ITAM domain and preferential association of SH2-containing 
phosphatases like SHP-1, a configuration known as “inhibitory 
ITAM” (87). Although FcαRI receptor, which associates for sign-
aling with the FcRγ chain, is the paradigmatic example of this 
inhibitory pathway (88–90), we have shown that CLRs associated 
with FcRγ chain may behave in the same fashion.

As an example, Mincle senses a soluble ligand derived from 
Leishmania that induces phosphorylation of SHP-1 coupled to 
FcRγ chain, inhibiting DC activation through heterologous 
receptors (Figure  2C) (91). In addition, SHP-1 contributes to 
deceleration of phagosome maturation upon TDM binding, sug-
gesting an inhibitory signal downstream of Mincle during phago-
cytic processes (92). MR binds the FcRγ chain and, upon sensing 
Mycobacterium tuberculosis, recruits SHP-1 to the phagosome, 
thus limiting PI(3)P generation and delaying fusion with the 
lysosome, which promotes M. tuberculosis growth (12). Following 
treatment of DCs with curdlan or depleted zymosan (lacking 
TLR-stimulating properties), Dectin-1 signaling is modulated by 
the association of SHP-1 and PTEN to the FcRγ chain, hindering 
cytokine expression, DC maturation, and T-cell proliferation (93). 
ROS production downstream of Dectin-1 sensing of C. albicans 
is also tightly regulated by the SH2-domain containing inositol  
5′ phosphatase (SHIP)-1 in response to Dectin-1 ligands (94). 
Thus, association of phosphatases to “activating” CLRs depending 
on the ligand nature, binding affinity, or avidity may contribute to 
maintenance of immune homeostasis.

Conversely, tyrosine phosphatases can contribute to activa-
tion. Contrary to SHP-1, the related tyrosine phosphatase 
SHP-2 acts as a scaffold, facilitating the recruitment of Syk to 
Dectin-1 or the adaptor FcRγ chain (95) (Figure  2D). In this 
way, DC-derived SHP-2 was crucial in  vivo for the induction 
of TNF-α, IL-6, IL-12, and Th1 and Th17 anti-fungal responses 
upon C. albicans infection (95).

Immunoreceptor tyrosine-based inhibitory motif-coupled 
receptors can also deliver an activating signal. In a model of 
tuberculosis infection in non-human primates, DCIR deficiency 
impairs STAT1-mediated type I IFN signaling in DCs, leading 
to increased production of IL-12 and differentiation of T lym-
phocytes toward Th1. Thus, DCIR-deficient mice with increased 
Th1 immunity control M. tuberculosis better than WT animals, 
but also shown increased inflammation in the lungs mediated 
by TNF-α and inducible nitric oxide synthase (iNOS) (58). This 
study suggests that DCIR acts as an activating receptor for the 
STAT1-type I IFN signaling, and speculates that DCIR may 
function as a molecular sink binding unphosphorylated inac-
tive SHP-2, therefore, limiting SHP-2′s capacity to deactivate 
STAT1.

The examples explained above illustrate a lack of correspond-
ence between the canonical motif coupled to a CLR and the 
resulting signaling pathway. Association to kinases would lead to 
activating routes, while association to phosphatases would result 
in regulatory pathways, with some exceptions like the SHP-2-
mediated CLR-induced activation (95). Association of kinases 
or phosphatases could be related to the strength of the initiating 
signal, with suboptimal phosphorylation leading to phosphatase 
binding to the hypo-phosporylated ITAM (inhibitory ITAM) 
(87). Due to the signaling flexibility offered by CLRs, a detailed 
empiric analysis for each CLR-ligand interaction in terms of type 
of ligand, concentration, and kinetics of exposition would be 
required to predict the signaling outcome.

Dealing with Self and Non-Self
C-type lectin receptors act as plastic receptors, some of them 
detecting self-ligands, other detecting non-self ligands, and 
many of them acting as dual receptors sensing self and non-self. 
It is possible that CLRs will behave as activating receptors when 
they sense non-self ligands, while CLRs bearing an ITIM motif 
will preferably bind self to dampen inflammation. However, in 
opposition to non-dangerous self, also known as “self-associated 
molecular patterns” (96, 97), Polly Matzinger proposed the exist-
ence of dangerous-self (damage-associated molecular patterns or 
DAMPs) exposed and/or released upon necrotic cell death (98, 
99). In addition, tissue damage signals concomitant to infection 
can contribute to effector responses. Thus, DNGR-1 senses tissue 
damage concomitant with viral infections and facilitates antigen 
processing of viral antigens for cross-presentation to CD8+ 
T cells, decoding the antigenicity rather than the adjuvanticity of 
the cargo (60–63). Some examples of CLRs dealing with self and 
non-self ligands are explained below.

Mincle is a plastic CLR promoting proinflammatory signals 
after sensing glycolipids in the cell wall of bacteria and fungi 
(24–26), but also sensing damaged self in the form of soluble SAP-
130 following necrosis (7). Mincle sensing of β-glucosylceramide 
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(100) or cholesterol sulfate (101) promotes immunopathology 
(102, 103). Conversely, there are reports suggesting that Mincle 
sensing of SAP-130 can also drive immunosuppression (104). 
Moreover, human albumin abolishes innate immunity by directly 
binding Mincle receptor in the microglia after subarachnoid 
hemorrhage (105). Thus, Mincle is an example of CLR that deals 
with self and non-self ligands that may result in activating or 
inhibitory signals. However, the correlation of sensing self with 
an inhibitory response and sensing non-self with an activating 
response is not established. In this regard, non-self signals from 
pathogens may mimic self-inhibitory signals to escape immune 
surveillance, which could be the case for Mincle sensing of 
Leishmania (91).

DCIR is a myeloid CLR endowed with an ITIM motif that 
behaves as a self PRR. DCIR maintains the homeostasis of the 
immune system (106), since aged mice deficient for this CLR 
spontaneously develop several autoimmune disorders (107). 
Intravenous immunoglobulins bearing sialic acid induce a 
DCIR-mediated negative signal in DCs via SHP-2 and SHIP-1 
that promotes Treg differentiation and dampens allergy (108). 
DCIR self-sensing can also occur in the context of infection, thus 
modulating the inflammatory response. DCIR-deficient mice 
exhibited severe inflammatory disease following Chikungunya 
virus infection (109). However, reduced adaptive T-cell responses 
in DCIR-deficient mice following cerebral malaria caused by 
Plasmodium berghei renders them more resistant (57). Since no 
evidence for direct interactions between DCIR and Chikungunya 
virus and P. berghei exists, we could hypothesize that DCIR may 
be recognizing DAMPs released during infection.

DC-SIGN illustrates how a single CLR deals differently 
with a variety of self and non-self ligands. DC-SIGN binds 
high mannose and fucose (LeX, LeY, LeA, LeB) that can 
be exposed in a variety of self receptors, such as ICAM-2, 
ICAM-3, CEACAM-1, Mac1 and CEA, or non-self proteins 
(structures in pathogens, including viruses, bacteria, fungi, 
and eukaryote parasites) (3, 110–115). Upon binding of man-
nosylated glucans, either self as those present on ICAM-3 
(110) or non-self from M. tuberculosis (59), DC-SIGN couples 
to a LSP1–KSR1–CNK signalosome, leading to activation of 
Raf-1 and acetylation of the NF-κB p65 subunit, which results 
in enhancement of proinflammatory responses, including 
IL-12p70 and IL-6, although also promotes IL-10 transcrip-
tion (59) (Figure  2E). In contrast, DC-SIGN recognition of 
fucosylated glucans as presented in self proteins, such as Mac1 
(113) or non-self pathogens (Helicobacter pylori) (114), leads 
to dissociation of the LSP1-based signalosome and leaves just 
LSP1 associated with DC-SIGN. Phosphorylated LSP1 sub-
sequently recruits IKKε and CYLD. IKKε activation inhibits 
CYLD deubiquitinase activity, facilitating nuclear transloca-
tion of ubiquitinated Bcl3 that represses TLR-induced pro-
inflammatory cytokine expression, enhancing expression of 
IL-10 and Th2-attracting chemokines, and thus promoting Th2 
polarization (114) (Figure 2E). In addition, IKKε collaborates 
with type I IFNR signaling to induce and activate the transcrip-
tion factor ISGF3 that induces IL-27p28, a key cytokine for 
induction of T follicular helper cells (115). These results point 
to DC-SIGN as a dual receptor that, depending on the nature 

of the ligand, contributes to maintain homeostasis or initiates 
the immune response against some pathogens.

All these examples illustrate how a single CLR can trigger 
different signaling pathways depending on the recognition of self 
or non-self ligands. Current understanding of these processes is 
based on the study of individual CLRs. Deciphering common 
signaling patterns for self versus non-self sensing would allow 
harnessing immunity and inflammation by CLRs.

MODULATiON OF HeTeROLOGOUS 
SiGNALiNG bY MYeLOiD CLRs

In addition to the diverse response of a single CLR depending 
on the stimulus, it is fascinating how these signaling pathways 
interact with signals from heterologous receptors and lead to 
complex responses to stimuli that are simultaneously detected by 
several myeloid PRRs expressed in myeloid cells [see also Ref. 
(116, 117) for reviews focused on this topic]. In this section, we 
illustrate some examples of how myeloid CLRs cross-talk with 
surrounding heterologous receptors.

Dectin-1 Affects Simultaneous and 
Deferred Signaling Through Heterologous 
Receptors
Dectin-1 triggers a response after sensing infectious agents, 
such as diverse fungi and mycobacteria (118), Salmonella 
typhimurium (119) or Leishmania infantum (120). Dectin-1 may 
also promote proinflammatory signals following the detection 
of endogenous factors, such as vimentin from atherosclerotic 
plaques (121), galectin-9 from pancreatic carcinoma (122), or 
N-glucans on tumor cells (123). In addition to a prototypical 
activating CLR, Dectin-1 modulates signals simultaneously 
triggered through other PRRs. Dectin-1 cooperates with signals 
from TLR2/MyD88 to increase proinflammatory cytokine 
production (124–126). This synergy is exerted at the level of 
effector responses resulting in increased production of TNF-α, 
IL-12, and ROS (124) (Figure 3A, left). Dectin-1 also positively 
cooperates in the full activation of the NLRP3 inflammasome, 
participating in the priming and generation of pro-IL-1β and 
the induction of ROS required for NLRP3 activation (127). 
Conversely, Dectin-1 stimulation with depleted zymosan in bone 
marrow macrophages leads to Syk and Pyk2-ERK-dependent 
activation of SOCS-1 that downregulates IL-10 and IL-12p40 
production induced by TLR9 stimulation (128) (Figure  3A, 
right). This effect would contribute to the Dectin-1 signature in 
priming Th17 responses (40, 128). In addition, Dectin-1 protects 
against chronic liver disease by suppressing TLR4 signaling. 
This effect is mediated by reducing TLR4 and CD14 expression, 
which are regulated by Dectin-1-dependent macrophage colony 
stimulating factor expression (129).

Apart from direct modulation of signaling pathways triggered 
simultaneously, Dectin-1 can leave a footprint that affects deferred 
signaling by heterologous receptors, a process named as trained 
immunity (130). Trained immunity after sensing of C. albicans 
or purified β-glucan via Dectin-1 results in enhanced protec-
tion to a lethal challenge with Candida and cross-protection 
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to Staphylococcus aureus infection (130, 131). This increased 
protection upon a later infection is linked to increased proin-
flammatory responses to delayed rechallenge with different 
TLR ligands, such as LPS or Pam3Cys4 (130) (Figure  3B), or 
bacteria, i.e., Bacteroides fragilis, Escherichia coli, Staphylococcus 
aureus, Borrelia burgdorferi, or M. tuberculosis (130, 132, 133).  
In monocytes, Dectin-1 signaling triggers the PI3K-Akt path-
way, leading to activation of mTOR and HIF-1α (131). This leads 
to a shift from oxidative phosphorylation to aerobic glycolysis. 
Accumulation of fumarate, associated with glutamine replenish-
ment of the TCA cycle, inhibits KDM5 histone demethylases,  
a key step for induction of monocyte epigenetic reprogramming 

that underlies the long-lasting effects of trained immunity  
(130, 134) (Figure 3B).

Apart from β-glucan or Candida, several other self and non-
self ligands, such as chitin (135), BCG vaccine (136), and uric 
acid (137) induce trained immunity (137, 138). It would thus 
not be surprising that more CLRs could contribute to trained 
immunity. In this regard, although C. albicans mannans, poten-
tially sensed by MR, Dectin-2, or Mincle (46), have shown not 
to prime human monocytes directly (130), they are essential for  
C. albicans-induced training (133). Furthermore, both Dectin-1 
and MR are needed to trigger glycolysis upon C. albicans stimula-
tion (139); this glycolytic switch constitutes a critical metabolic 
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step in trained immunity induction (131, 139). Trained immunity 
triggered by Dectin-1 and potentially other CLRs is thus a con-
sequence of metabolic switch and epigenetic programming that 
affects deferred heterologous signaling.

Mincle-Triggered Regulatory Responses
As described before, Mincle triggers an FcRγ-mediated activat-
ing signal in response to different stimuli. In addition, Mincle 
engagement can deliver regulatory responses affecting signaling 
pathways triggered by heterologous PRRs, such as TLRs or other 
CLRs, for example, Dectin-1. This section will explore modula-
tion of heterologous receptors by Mincle.

Mincle is induced following TLR activation (7). Following 
sensing of Fonsecaea pedrosoi, Mincle triggers an incomplete 
inflammatory response that requires synergistic TLR stimulation 
to induce a potent proinflammatory response (Figure 3C, left), 
needed to clear the infection in a mouse model of chromoblas-
tomycosis (140). This cooperative activation through Mincle 
and TLRs is particularly effective in human newborn DCs. 
Co-stimulation using the Mincle agonist trehalose-6,6-dibe-
henate and the TLR7/8 agonist R848 led to enhanced caspase-1 
and NF-κB activation, Th1 polarizing cytokine production and 
autologous Th1 polarization (141).

However, Mincle exhibits a dual role in promotion and subse-
quent resolution of inflammation. Mycobacteria express ligands 
for TLRs which induce expression of Mincle that can then detect 
TDM and contribute to inflammation. Mincle via the Syk/p38 
axis can also lead to eIF5A hypusination that increases transla-
tion efficiency of iNOS, which is transcriptionally induced by 
TLR2 ligation (142). In this way, Mincle favors NO production 
that inhibits late-stage activation of NLRP3 inflammasome in 
TDM-induced inflammation, contributing to termination (142). 
Similarly, TLR2 sensing of Corynebacterium induces robust 
Mincle expression, which cooperatively detects corynebacterial 
glycolipids favoring production of granulocyte colony stimulat-
ing factor and NO (143).

Dectin-1 and Mincle are involved in the recognition of 
Fonse caea monophora, a pleomorphic fungus also responsible 
for chromoblastomycosis (144, 145). Signaling triggered by 
Dectin-1 initiates protective immunity against the fungus by 
activating IRF1 and IL-12p35 transcription. However, these 
responses are dampened by the Mincle/Syk axis, in a process 
involving PI3K/PKB-mediated activation of the E3 ubiquitin 
ligase Mdm2, leading to degradation of IRF1 and repression 
of IL-12p35 production (Figure 3C, right). In this way, Mincle 
sensing of F. monophora dampens induction of protective Th1 
immunity triggered by Dectin-1 (146). Mincle is also targeted 
by Leishmania parasites to evade the priming of Th1 immu-
nity initiated by DCs. As explained above, Mincle recruits 
SHP-1 to an inhibitory ITAM configuration in the coupled 
FcRγ chain, and this results in inhibition of DC activation 
by heterologous receptors sensing Leishmania or LPS (91) 
(Figure 2C). Mincle ligation can also reduce TLR4-mediated 
inflammation, whereas Mincle deletion or knockdown results 
in exaggerated inflammation in response to LPS. This effect 
is mediated through the control of TLR4 correceptor CD14 
expression (147).

Tailoring immunity Through DC-SiGN
DC-SIGN engagement does not generally induce the expression 
of cytokines by itself, but rather modulates responses initiated 
by TLRs. Thus, glycans from the helminth Fasciola hepatica 
are recognized by DC-SIGN leading to enhanced TLR-induced 
IL-10 and IL-27p28, triggering a tolerogenic program that 
differentiates naive CD4+ T  cells into regulatory T  cells (148) 
(Figure 3D, left). However, the interaction of DC-SIGN with the 
salivary protein Salp15 from the tick Ixodes scapularis dampens 
inflammatory responses triggered by Borrelia burgdorferi. Raf-1 
activation downstream of DC-SIGN sensing Salp15 results in 
MEK-dependent decrease of IL-6 and TNF mRNA stability and 
impaired nucleosome remodeling at the IL-12p35 promoter, 
modulating TLR-induced DC activation and T cell proliferation 
(112) (Figure 3D, right).

All these examples clearly illustrate how signaling pathways 
triggered by CLRs can have an impact on responses mediated 
by surrounding heterologous receptors, adding an extra layer of 
complexity to our understanding of CLR-mediated responses.

CONCLUDiNG ReMARKS

Classical sorting of myeloid CLRs based on the structure of the 
C-type lectin domain does not have functional significance. 
A more recent classification based on the presence of ITAM, 
hemITAM, or ITIM intracellular signaling motifs associated with 
the receptors has been useful as a starting point to predict the 
functional outcome of signaling CLRs (1). However, many factors 
may alter the expected canonical response. Minor variations in 
the context of the canonical motifs result in different signaling 
and effector outcomes (60, 65). Subcellular location depending 
on the isoform (69) or conformation of the receptor based on 
specific residues (64) also affects the function of the receptor. 
CLR signaling also depends on the size of the particle, where 
the ligand is recognized, affecting quantitatively the strength of 
the reaction (71–73) and also leading to qualitatively different 
responses (74, 149). Cooperative binding and signal transduction 
may be a consequence of multimerization. There are examples of 
homodimerization (75, 76) and formation of hetero-complexes 
(11, 81, 84–86). Hetero-complexes result in a mutual benefit for 
involved receptors, combining avidity for the ligand, capacity for 
endocytosis and/or signal transduction capabilities.

The plasticity of the C-type lectin domain allows binding 
to different ligands that, depending on their relative affinity or 
avidity, may trigger activating or inhibitory signaling pathways 
downstream of the same motifs. For example, low-avidity ligands 
drive a Syk-dependent association with SHP-1 to the ITAM 
domain (87, 88, 90), with a growing list of examples illustrating 
CLRs coupled to the FcRγ chain (12, 91–93). Conversely, tyrosine 
phosphatases may contribute to activation (95) and ITIM-
containing CLRs may trigger activating signals (58). These results 
evidence the fine regulation of signaling though a single receptor 
based on differential interaction with diverse ligands, leading 
to the hypothesis that sensing self-ligands through CLRs could 
drive tolerance while non-self ligands could provoke immunity. 
However, dangerous-self could rather contribute to immunity 
and some non-self ligands could inhibit immune response for 
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evasion, making the final outcome of a single response rather 
unpredictable. In addition, the concerted sensing of complex 
ligands by a variety of PRRs leads to complex integrated 
responses. CLRs may affect signals of heterologous receptors that 
are simultaneously triggered, either enhancing or modulating the 
response (59, 91, 115, 124–126, 128, 142, 146). Of note, Dectin-1 
induces a metabolic switch and epigenetic programming that 
affects deferred heterologous signaling (130, 131). In conclusion, 
understanding how different signaling pathways triggered by 
CLRs and heterologous receptors act in concert during sensing 
self and non-self remain a fascinating endeavor.

Research in the field of CLRs has gained much attention con-
sidering the diversity of members, ligands, expression pattern on 
clinically relevant cellular populations and their relevant func-
tion on the initiation, and regulation of immunity and inflam-
mation. Some of these features have been illustrated here and 
offer multiple possibilities to harness CLR-triggered responses. 
However, CLR manipulation may lead to unexpected outcomes 
and needs to be tested empirically. In addition, deciphering 
molecular signatures common to signaling pathways triggered 
by CLRs in response to different ligands will help to understand 
their precise role in immunity and inflammation.
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