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Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite 
considerable achievements in lung cancer diagnosis and treatment, the global control 
of the disease remains problematic. In this respect, greater understanding of the dis-
ease pathology is crucially needed for earlier diagnosis and more successful treatment 
to be achieved. Exosomes are nano-sized particles secreted from most cells, which 
allow cross talk between cells and their surrounding environment via transferring their 
cargo. Tumor cells, just like normal cells, also secrete exosomes that are termed Tumor-
Derived Exosome or tumor-derived exosome (TEX). TEXs have gained attention for their 
immuno-modulatory activities, which strongly affect the tumor microenvironment and 
antitumor immune responses. The immunological activity of TEX influences both the 
innate and adaptive immune systems including natural killer cell activity and regulatory 
T-cell maturation as well as numerous anti-inflammatory responses. In the context of 
lung cancer, TEXs have been studied in order to better understand the mechanisms 
underlying tumor metastasis and progression. As such, TEX has the potential to act both 
as a biomarker for lung cancer diagnosis as well as the response to therapy.
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iNTRODUCTiON

Lung cancer is one of the most common cancers and the leading cause of cancer-related death 
worldwide. The two histological subtypes of lung cancers are non-small cell lung cancer (NSCLC) 
that encompasses >80% of lung cancers, including adenocarcinoma, squamous-cell carcinoma, and 
large-cell carcinoma and small cell lung cancer, which accounts for the remaining 20% of cases (1).

Exosomes are small vesicles (30–100 nm in size) that originate from most cells and are released 
into biological fluids, such as saliva, plasma, urine, and breast milk. Exosomes enable cell-to-cell 
communication by transferring their contents including RNA (mRNA and non-coding RNA), DNA 
(mtDNA, ssDNA and dsDNA), proteins, and lipids (2). This communication influences physiological 
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FigURe 1 | Schematic diagram of components generally found within tumor-derived exosome. Abbreviations: HSP, heat-shock protein; miRNA, microRNA; TAA, 
tumor-associated antigen; TRAIL, tumor-necrosis-factor-related apoptosis-inducing ligand; ICAM-1, intercellular Adhesion Molecule 1; PD-L1, programmed 
death-ligand 1; MHC, major histocompatibility complex; EGFR, epidermal growth factor receptor.
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process of the recipient cell and may be involved in pathological 
conditions such as cancer (3).

The exosomes derived from tumor cells are called tumor-
derived exosomes (TEX) (4) (Figure  1). TEXs are the main 
mechanism of intracellular communication between tumor and 
host cells and enable cancer cells to modulate their surround-
ings to favor an optimal microenvironment for tumor initiation 
and progression. TEX contains a variety of different immuno-
stimulatory and immuno-inhibitory factors that support the 
cellular reprogramming of the recipient cells. For example, 
exosomes are involved in promoting cancer growth by transfer 
of oncoproteins such as K-RAS and MET or oncogenic miRNAs 
to otherwise healthy cells (5). TEX may also drive metastasis by 
creating a pre-metastatic niche and directing the disseminated 
tumor cells to future metastatic sites (6, 7). Interestingly, this does 
not occur randomly and is regulated by integrin expression on the 
TEX (8). In contrast, TEX can also induce an antitumor immune 
response by modulating killer cell lectin-like receptor K1 (KLRK1 
or NKG2D) expression on natural killer cells (NKs) and thereby 
affecting their function (9, 10).

In this article, we review the immunological effects and 
function of TEX in cancers with an emphasis on lung cancers 
development and metastasis. Since NSCLC encompasses >80% 
of lung cancers, so we summarized recent research preferentially 
for this type of lung cancer. In addition, we evaluate the potential 
of these exosomes to act as a diagnostic biomarker in lung cancer.

THe ROLe OF TeX iN THe LUNg TUMOR 
MiCROeNviRONMeNT

The tumor microenvironment consists of different components 
with various properties based on the tumor’s origin. The most 
abundant components in the tumor microenvironment are: 
carcinoma cells, immune cells, extracellular matrix (ECM), and 
stromal tissues (11, 12). The molecular and cellular nature of the 
tumor microenvironment determines malignancy by modulat-
ing local immune responses (13). TEX contain stimulatory and 
inhibitory components that, when delivered to the recipient 
cells, enable crosstalk between tumor cells and its surrounding 
environment. TEXs are involved in modulating the immune 
response, regulating epithelial–mesenchymal transition (EMT) 
and cancer-associated fibroblast function as well as playing a key 
role in angiogenesis (Figure 2).

Tumor-Derived exosomes and the  
immune Response
The immune system has a significant impact on cancer outcomes 
(14). The immune system acts like a double-edged sword in 
cancer by destroying cancer cells and suppressing tumor growth 
as well as supporting the chronic inflammation and suppressing 
antitumor immunity which leads to tumor progression (15) 
(Figure 3).
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FigURe 2 | The function of Lung tumor-derived exosome (TEX). TEX impact upon the tumor microenvironment by enhancing tumor cell growth and progression (1); 
modulating immune responses (2); regulating epithelial–mesenchymal transition (EMT) (3); angiogenesis (4); as well as inducing metastatic behavior in bone marrow 
progenitors (5).
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Natural Killer Cells
Lung cancer cell-associated TEX contain miR-21 and -29a which 
can both bind to intracellular toll-like receptors (TLRs) on 
immune cells including NKs, and thereby trigger a pro-meta-
static inflammatory response due to activation of NF-κB eventu-
ally resulting in metastasis and tumor growth (16).

In NKs, the C-type lectin-like receptor NKG2D serves as an 
activating receptor to trigger cytotoxicity toward cancerous cells 
that express its ligand (17). TEX originating from hypoxic tumor 
cells inhibit NK function by delivering transforming growth 
factor (TGF)-β1 to NKs and subsequently reducing NKG2D 
expression (18). In a mouse model, TEX reduced the percent-
age of NKs found within the lungs (19). The downregulation of 
cell-surface receptors particularly that of NKG2D, may account 
for the reduced activity of NKs seen in lung cancer patients (20). 
miR-23a derived from TEX may directly target CD107a, a mol-
ecule that protects NKs from granule-mediated degradation (21).

Tumor-derived exosome can also downregulate NKG2D 
expression on NKs by shedding the NKG2D ligand on tumor cells. 
This will result in receptor desensitization and internalization 
and lower activity of NKs (22–25). TEXs may also attenuate NK 
activity via other mechanisms including the down-modulation of 
interleukin (IL)-2-mediated pathways (26), suppressing perforin 
or cyclin D3 production (19) and janus kinase (Jak)3 activation 
resulting in a failure of NK-mediated cytolysis (19).

Dendritic Cells (DC) and Myeloid-Derived  
Suppressor Cells (MDSCs)
It is well-known that tumor microenvironment educate DCs 
to promote tumorigenicity. TEXs have important roles in this 
context by shuttling signaling molecules and tumor antigens and 
developing cell-to-cell communication (27).

Approximately 80% of the exosomes isolated from lung cancer 
biopsies contain epidermal growth factor receptor (EGFR) which 
has the potential to induce tolerogenic DC and regulatory T-cells, 
ultimately leading to the suppression of tumor antigen-specific 
CD8+ cells (28). In pancreatic cancer, TEX contain mir-203a, 
that decrease the expression of TLR4 on DCs and subsequently 
leads to a reduced production of downstream cytokines including 
tumor necrosis factor (TNF)-α and IL-12 (28, 29) which result 
in dysfunction of DC and cellular immunity (29). TEXs can also 
prevent DC maturation and function. In a murine delayed-type 
hypersensitivity (DTH) model, administration of TEXs loaded 
with ovalbumin result in suppression of DTH responses by 
inhibiting DC maturation via TGF-β1. This result highlights the 
roles of TEXs in the promoting tumor antigen-specific immuno-
suppression, possibly by modulating the function of DCs (30). In 
melanoma and colon cancer, TEXs promote the differentiation of 
CD14+ monocytes to MDSCs rather than to DCs (31). MDSCs are 
an immature population of myeloid cells identified in humans and 
mice that expand in cancer and have strong immunosuppressive 
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FigURe 3 | Modulation of the immune system by tumor-derived exosome (TEX). TEX modulate antitumor immune responses by (1) inhibiting T-cell activation and 
proliferation as well as apoptosis induction; (2) TEXs induce regulatory T-cells and (3) myeloid-derived suppressor cells and inhibit the function of natural killer (NK) 
and CD8+ T-cells (4). Green arrows: induction or stimulation; red arrows: inhibition.
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effects on the antitumor T-cell response (32). TEX interaction 
with monocytes, results in a monocyte phenotype that is char-
acterized by a failure to upregulate co-stimulatory molecules  
(29, 33) and decreased human leukocyte antigen-DR expres-
sion (34, 35) with unchanged CD14 surface expression (35). 
Collectively, TEXs alter monocyte differentiation to DCs and 
promote the maintenance of an immature monocyte status. These 
cells spontaneously secrete immune inhibitory cytokines such as 
TGF-β and prostaglandin E2 which inhibit T-cell proliferation 
and antitumor functions (31).

However, the overall effect in  vivo is likely to be complex. 
Intravenous injection of TEXs into mice resulted in the accu-
mulation of MDSCs and a marked increase in the production of 
inflammatory mediators, including IL-6 and vascular endothelial 
growth factor (VEGF) (36). On the other hand, the accumula-
tion of MDSCs increased the production of immunosuppressive 
factors, such as nitric oxide and reactive oxygen species, which 
cause T-cell apoptosis (31). Both of these processes lead to tumor 
progression.

The presence of heat-shock protein 72 (HSP72) on the surface 
of TEXs, could trigger the activation of STAT3 and autocrine 
IL-6 production in MDSCs in a TLR2/MyD88-dependent man-
ner which promotes the suppressive activity of MDSCs (37–39). 
Treatment of mice with TEX significantly increased tumor 
metastasis along with the recruitment of MDSCs into the lung. 
These effects were mediated by MyD88 which is a cytoplasmic 
adaptor molecule needed for the integration and transduction of 
TLR signaling (24).

Tumor-Associated Macrophages (TAMs)
Tumor-associated macrophages are the major modulators of the 
tumor microenvironment that regulate angiogenesis, invasion, 
metastasis, as well as immunosuppression in tumor stroma (40). 
During tumor progression, circulating monocytes and other 
inflammatory lymphocytes are recruited into tumor tissue and 
alter tumor microenvironment. Monocytes are the precursors of 
TAMs that can get a continuous survival subsist in the inflamma-
tory tumor microenvironment and generate TAMs (41). TEXs 
have a pivotal role in monocyte survival and in TAM generation 
within the tumor inflammatory niche. TEXs trigger the mitogen-
activated protein kinase (MAPK) pathway in monocytes through 
delivery of functional receptor tyrosine kinase, which in turn 
leads to inhibition of apoptosis-related caspases (42).

Hsp72 and palmitoylated proteins on the TEX surface also 
modulate TLR signaling and the function of TAMs, which have 
a critical role in reinforcing tumor metastasis and invasion. 
Thus, TEX, acting through TLR2 and triggering the NF-κB 
signal pathway can promote the secretion of pro-inflammatory 
cytokines by macrophages (43). The induction of breast cancer 
invasion and metastasis by TAMs requires the upregulation 
of Wnt5α in macrophages that leads, in turn, to the activation 
of β-Catenin-independent Wnt signaling in tumor cells. TEX 
mediate the crosstalk between tumor cells and TAMs and TAM-
derived exosomes have a reciprocal supportive role in providing 
factors that activate β-Catenin-independent Wnt signaling in the 
breast cancer cells (44). This reciprocal interaction of TEX and 
TAM-derived exosomes may maintain TAM survival within the 
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inflammatory niche (45). In lung cancers, interaction between 
TAMs and tumor cells results in tumor progression via STAT3 
activation and TAM-derived IL-6 (46). This may simply be a 
result of the nature of exosomes in cell–cell communication and 
in shuttling signaling molecules.

Exosome released from TAMs also can be important on cancer 
progression. Comprehensive proteomic analysis showed TAM-
derived exosomes have different proteomic signature and higher 
proteolytic activity (47). In epithelial ovarian cancer (EOC), 
TAMs derived exosomes inhibit the migration endothelial cells 
(ECs) by targeting the miR-146b-5p/TRAF6/NF-κB/MMP2 
pathway. On the other hand, EOC-derived exosomes reverse 
this effect on ECs by transferring long non-coding RNAs (48). 
Exosomes derived from TAMs also are involved in induction of 
cisplatin resistance in gastric cancer by transferring miR-21 (49). 
Overall, the existence of different mechanisms for several cancer 
cells exosome types in tumor microenvironment enforces the role 
of exosomes as the major player in cancer progression.

T-Regulatory (Treg) and B-Regulatory (Breg) Cells
In contrast to immune cells such as NKs, B-cells, and monocytes 
that internalize TEX, TEX induce a Ca2+ influx in T-cells in the 
absence of exosome internalization. Plasma TEX from cancer 
patients cause a strong and sustained increase in inosine produc-
tion in Treg cells which suggests a functional consequence of TEX 
signaling on these recipient cells (50). TEXs also enhance Treg 
and Breg proliferation via TGF-β and IL-10-dependent mecha-
nisms and thereby increase their resistance to apoptosis (20, 31).

The level and suppressor activity of Tregs are higher in the 
peripheral blood of patients with cancer compared to healthy 
subjects (51). This may reflect the ability of TEXs to stimulate Treg 
expansion, increase their resistance to apoptosis and enhance 
their suppressor activity (52, 53).

Tumor-derived exosomes induce the conversion of 
CD4+CD25neg T  cells into CD4+CD25highFOXP3+ Treg cells. 
On the other hand, incubation of Treg with TEXs, increased 
the expression of FasL, IL-10, TGF-β1, cytotoxic T-lymphocyte 
associated protein 4 (CTLA-4), granzyme B and perforin as well 
as Smad2/3 and STAT3 phosphorylation in Tregs (52).

Tumor-derived exosomes stimulate the expression of CD39 
and adenosine production in Treg via modulation of related 
genes in the adenosine pathway (4). Treg produce adenosine 
via ATP hydrolysis by both CD39 (ATP-hydrolase) and CD73 
(5′-nucleotidase) on their surface. Adenosine is an immunosup-
pressive factor that suppress T  cell function by binding to its 
receptors A1, A2A, A2B, and A3. TEX contain surface CD39 and 
CD73, directly deliver membrane-tethered CD73 to CD39+cells 
and negatively modulate T cells function by production of extra-
cellular adenosine and thus decrease the local immunity (54). 
These TEX-mediated mechanisms are important in regulating 
tolerance of tumor and can promote tumor invasion in cancers. 
TEXs also induce loss of CD69 on the surface of conventional 
CD4+T (Tconv), which leads to their functional decline (4).

Regulatory B cells (Breg) are a subset of B cells with immu-
nosuppressive properties that mediate immunological tolerance. 
Breg produce molecules, such as IL-10, IL-35, TGF-β, programed 
death-ligand 1 (PD-L1), and IL-21, and induce the production of 

Treg and thereby prevent immunopathologic events by inhibition 
of pro-inflammatory lymphocytes (55). Elevated levels of regula-
tory Bregs are reported in PBMCs of invasive carcinoma of breast 
cancer patients (56).

It was shown that exosomes released from mycoplasma-
infected tumor cells preferentially activate IL-10-producing 
B  cells which in turn inhibit T  cell activity (57). Exosomes 
released from the esophageal cancer cells also induce Breg pro-
duction. These microvesicles carried LAMP1 and matrix metal-
loproteinase (MMP)9 and induce differentiation naive B  cells 
into TGF-β-producing regulatory B  cells which subsequently 
suppress CD8+ T-cell activities (58). These information highlight 
the importance of TEXs in tumor immunity by the mechanisms 
involved in modulation of Tregs and Bregs.

THe ROLe OF TeX iN eMT iN LUNg 
CANCeR

Epithelial–mesenchymal transition is a process by which epithe-
lial cells acquire mesenchymal cell properties. In this process, the 
epithelial cells lose their cell polarity and adhesion properties and 
gain a motile trait, which gives them an invasive character (59). 
This enables the epithelial cell to migrate to distant sites allowing 
metastasis and tumor progression (60). EMT is also important in 
providing the stemness characteristics of cancer cells by support-
ing the correct microenvironment (60). The importance of EMT 
in cancer, particularly lung cancer, has been highlighted (60–62). 
TEX isolated from the serum of late stage lung cancer patients, 
like highly metastatic lung cancer cells, contain high levels of 
vimentin and the TEX can induce EMT in recipient human 
bronchial epithelial cells (63). Vimentin, a member of the type 
III intermediate filament protein family, is normally expressed in 
mesenchyaml cells and is widely used as a marker for EMT (64). 
The association of vimentin expression with increased metastasis 
and invasion ability has been reported for many cancers including 
lung (63, 65, 66), prostate (67, 68), and gastric cancers (69). In 
lung cancer, vimentin changes cancer cell adhesion by regulating 
the VAV2–Rac1 pathway and modifying focal adhesion kinase 
activity (65). EMT induction in epithelial adenocarcinoma A549 
cells by TGF-β leads to the production of exosomes with a dif-
ferent cargo (70). Exosomes from mesenchymal-like A549 cells 
contain high levels of β-catenin, vimentin, and E-cadherin, as 
well as miR-23a in comparison to those from epithelial-like A549 
cells. miR-23a mediates TGF-β-induced A549 cell EMT by target-
ing E-cadherin in a smad-dependent manner (71). Interestingly, 
autologous treatment of A549 cells with these exosomes induced 
overexpression of β-catenin indicating the potential for autocrine 
signaling by TEX (71).

ANgiOgeNeSiS eNHANCeMeNT  
BY TeX iN LUNg CANCeR

Angiogenesis or the formation of a vasculature network is essen-
tial for tumor growth and metastasis. This process is regulated by 
different mechanisms and angiogenic factors, including VEGF, 
TGF-β, and fibroblast growth factor. Exosomes have a crucial role 
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in vascular tube formation and the observed effect is dependent 
upon the site of exosome origin (72). Hypoxia is a hallmark of the 
tumor microenvironment and is reported to lead to an increase in 
TEX production by tumor cells and a change in their content. The 
change in TEX cargo under the hypoxic conditions enables them 
to alleviate the stress conditions in the tumor microenvironment 
by induction of angiogenesis (73, 74) In CL1-5 lung adenocar-
cinoma cells, TEX production and the level of TEX miR-23a 
was enhanced during hypoxia-induced angiogenesis. Uptake 
of TEX-associated miR-23a by ECs enabled targeting of prolyl 
hydroxylase 1 and 2 (PHD1 and 2) leading to the accumulation 
of hypoxia-inducible factor (HIF)-1α and the enhancement of 
angiogenesis (75).

Tissue inhibitor of metalloproteinases (TIMP)-1 is a factor 
that strongly supports lung cancer progression (76–79) and 
its expression is elevated in all stages and types of lung cancer 
particularly in adenocarcinoma (73). Overexpression of TIMP-1 
induces the expression of the tumorigenic miR-210 in lung ade-
nocarcinoma cells and within their derived exosomes under the 
control of the PI3K/Akt/HIF-1 pathway. In turn, TEX released 
from these cells downregulate Ephrin A3 in ECs and promote 
angiogenesis (73). The expression of TEX miR-210 in the serum 
of lung cancer patients is increased compared to non-cancerous 
control subjects (80, 81).

Tumor-derived exosome from lung tumor cells contain EGFR 
and uptake of TEX by ECs can trigger EGFR-dependent responses 
which are accompanied by the autocrine activation of VEGF 
receptor 2 (VEGFR-2) and elevated VEGF expression promoting 
angiogenesis (82). Furthermore, administration of TEX from a 
lung cancer patient into a rat critical limb ischemia model mark-
edly augmented the expression of VEGFR-2, increased angiogen-
esis and improved blood flow (83). Together, these observations 
indicate the important role of TEX in the upregulation of tumor 
angiogenesis.

LUNg CANCeR MeTASTASiS AND TeX

The primary step required for metastasis is the formation of a pre-
metastatic niche: a supportive microenvironment in a secondary 
organ that enables its colonization by circulating tumor cells 
(CTCs) (84). The site of metastasis is not random but is selected 
following modification by tumor cells before the initiation of 
metastasis (85). In contrast, the metastatic niche is initiated and 
formed upon CTC arrival (86). The formation of the pre-metastatic 
niche is initiated through a variety of mechanisms that promote a 
sequence of events that begins with vascular leakage. In the lung 
cancer vascular permeability increases upon upregulation of angi-
opoietin 2 (Angpt2), MMP3, and MMP10 in the pre-metastatic 
stage (87). Texosomes can increase vascular permeability at lung 
pre-metastatic sites by reprogramming bone marrow (BM) pro-
genitors within the niche toward a provascular phenotype via the 
MET receptors. Finally; vascular leakiness facilitate extravasation 
and attraction of CTCs to the pre-metastatic site (88).

It is now evident that TEX has important roles as mediators 
in the formation of pre-metastatic niches and the resultant 
metastasis (89, 90). The role of exosomes in lung metastasis was 
first demonstrated by Janowska-Wieczorek et al. in 2005 (91). The 

authors showed that microvesicles derived from activated platelets 
(PMV) induce tumor progression, metastasis, and angiogenesis 
in lung cancer. Intravenous injection of pmv-covered Lewis Lung 
Cancer cell line (LLC) enhanced lung metastasis. These vesicles 
transferred the integrin α2β (CD41) to lung cancer cell lines and 
subsequently promote proliferation and tumor progression in 
mice (91). In addition, renal cancer stem cells trigger an angio-
genetic switch and tumor progression and play important role in 
lung pre-metastatic niche formation (92).

The small RNA content of lung TEX promotes the formation 
of a pre-metastatic niche by selectively targeting and activating 
TLR3 in lung epithelial cells. This results in enhanced chemokine 
secretion and subsequent neutrophil recruitment to the lung 
which together promotes pre-metastatic niche formation (93).

Melanoma-derived TEXs are important in the primary 
tumor formation and lung metastasis. Intravenous injection of 
labeled TEX into a naïve mouse, demonstrated lung residency 
within 24 h associated with an increased permeability of lung 
ECs at the TEX-induced pre-metastatic niche. Upregulation of 
pre-metastatic niche effector molecules such as S100A8 and 
S100A9 as well as the vascular permeability factor TNF-α was 
also observed at the site of TEX injection (94). In addition, 
TEX administration caused an upregulation of inflammatory 
and ECM-related genes (95). Importantly, TEX obtained 
from highly metastatic melanomas had a greater burden on 
the lung compared to those obtained from poorly metastatic 
melanomas. It is proposed that these melanoma TEXs pro-
mote pre-metastatic niche formation and tumor growth by 
overexpressing the oncogene MET within BM-derived DCs to 
obtain a pro-vasculogenic phenotype. In support of this, TEX 
re-program BM progenitors to increase the pro-angiogenic 
c-Kit +Tie2+ cell population in the lung pre-metastatic niche. 
In addition, TEX could also transfer the oncogene MET from 
melanoma cells to BM progenitor cells and thereby promote 
metastasis (95).

Exosome target cells selection is determined by their surface 
adhesion molecules such as integrin. Specific integrin profiles on 
the surface of tumor-derived exosomes direct them to a specific 
organ, so driving metastatic organotropism (8). For example 
α6α4 integrin heterodimer target exosomes to lung PMNs. Lung 
fibroblasts with upregulated s100 genes, are the main cells that 
uptake these exosomes and drive PMN formation (8). Exosomes 
derived from the 4175-LuT breast cancer cells have α6β4 and 
α6β1 integrins on their surface and localize in regions of the lung 
which are rich in laminin and promote lung metastasis (8).

Bone is the common metastatic site for NSCLC which result in 
osteolytic lesions (96). In NSCLC, EGFR is upregulated (97) and 
amphiregulin (AREG), an EGFR ligand, is packaged in exosomes 
derived from lung cancer cells (98, 99). NSCLC-exosomes con-
taining AREG, active the EGFR pathway in pre-osteoclasts which 
leads to an increase in the expression of RANKL and proteolytic 
enzymes in turn, triggering a vicious cycle driving osteolytic bone 
metastasis (100). Conversely, extracellular vesicles released from 
the highly metastatic bone tumors are localized preferentially to 
lung and can derive metastatic behavior (101).

The lung is the common target for many metastatic primary 
tumors (102–104) but the precise molecular mechanism behind 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


7

Alipoor et al. TEX in Lung Cancer

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 819

this tissue-specific metastasis is not completely understood. It is 
illustrated that lung microenvironment promote the formation of 
PMN and possibly TEXs play the key roles in this process. Further 
studies will more clear that the mechanism of specific exosomes 
effect on tumor microenvironment and promoting lung invasion 
along with that of other organs.

THe ROLe OF TeX AS A BiOMARKeR 
AND THeiR THeRAPeUTiC iMPLiCATiONS 
iN LUNg CANCeR

Despite considerable achievement in both diagnostics and 
treatment, the global control of lung cancer remains problem-
atic (105). This lack of success is attributed to a failure of early 
disease detection due to an absence of reliable biomarkers (106). 
Biomarkers serve as indicators of a particular physiological or 
biological state in the body and are important in medicine to 
distinguish a normal or pathogenic condition or/and a response 
to a therapy (107). In the context of cancer, biomarkers can be 
prognostic and predictive markers for the risk of progression, 
recurrence or the effectiveness of a therapeutic intervention 
(108). Due to their contents reflecting abnormalities in the par-
ent cells and their stability in most biological fluids, exosomes 
have potential to serve as a promising “liquid biopsy” biomarkers 
of lung cancer (106, 109). Importantly, in comparison to tissue 
biopsy that requires surgery, exosomes-based biomarkers would 
provide a non-invasive diagnostic approach (106).

Exosomal markers such as proteins and non-coding RNAs 
have been measured in lung cancer. The analysis of 49 proteins 
attached to the membrane of plasma exosomes of 276 NSCLC 
patients indicated that some of these proteins including NY-ESO-1 
had a significant correlation with survival (110). Microarray-
based analysis of serum exosomal miRNAs in NSCLC patients 
showed a significant upregulation of miR-21 and miR-4257 in 
patients with a recurrence of the disease (111). In addition, TEX 
from NSCLC patients has increased EGFR presence (112). These 
EGFR-contained TEX activate MAPK and Akt/protein kinase B 
pathways in recipient ECs resulting in VEGF overexpression and 
increased tumor vascularity (113).

The exosomal expression of two miRNAs associated with 
Tumor suppression, namely miR-51 and miR-373, was decreased 
in lung cancer patients and this reduction was associated with 
poor prognosis (114). Other exosomal miRNAs have been 
reported as markers of therapeutic response in lung cancer. For 
example, miR-208a and miR-1246 bind to p21 and DR5 mRNAs, 
respectively, to promote tumor growth and resistance to radio-
therapy (113).

TEX-based markers may provide higher sensitivity and speci-
ficity in cancer diagnostics over conventional biopsy methods 
which require surgery. However, the lack of standardized meth-
ods for isolating pure exosome populations and the heterogeneity 
in cancer-derived exosomes present problems (108). Despite 
these concerns, there is much interest in TEX-based miRNAs 
in lung cancer with efforts made to combine purified TEX with 
next generation sequencing or proteomic analysis to achieve 
greater insight into TEX-based lung cancer diagnosis. Exosomal 

miRNA studies report miR-378a, miR-379, miR-139-5p and miR-
200b-5p (115), miR-21 (80, 111, 116), miR-155 (116), miR-23b, 
miR-10b-5p (80), and miR-4257 (111) that vary in the expression 
level in lung cancer patient in compare to healthy subjects.

However, recently a method of the using Surface-Enhanced 
Raman Spectroscopy (SERS) combined with principle compo-
nent analysis (PCA) was suggested for classification of exosomes 
based on their specific surface pattern of protein and lipids. Lipid 
and membrane proteins results in a specific Raman spectra; thus, 
the tumor-derived exosomes and normal cell-derived exosomes 
vary in their Raman spectral patterns. In this study, lung cancer 
cell-derived exosomes were differentiated from those from nor-
mal cells by 95.3% sensitivity and 97.3% specificity (117). Current 
challenges in exosome biology using conventional methods 
include the need for large amounts of highly concentrated sample 
and the presence of heterogeneity in cancer-derived exosomes. 
This approach combining SERS with PCA analysis may be good 
choice to be translated in clinical practice (117).

In another study by Ueda et  al., the mass spectrometric 
quantification of 1,369 exosomal proteins in 46 serum samples of 
patient with advanced stage of NSCLC demonstrated CD91 as a 
lung adenocarcinoma specific antigen on exosomes surface (118). 
Jakobsen et al. also identified a profile of serum exosomal protein 
in NSCLC patient with advanced stage of disease. In this study, the 
authors performed a multivariate extracellular vesicle array (EV 
Array) approach to phenotype plasma exosomes and the results 
identified a panel of 30 exosomal surface protein marker includ-
ing CD91, CD317, and EGFR which could distinguish 75% of the 
patients correctly. This result suggests that EV Array analysis as 
a potential complementary method in diagnosing NSCLC (119). 
Exosomal proteins were also investigated in body fluids to survey 
exosomal biomarkers. Proteomic mass spectrometry showed that 
leucine rich alpha-2-glycoprotein 1 (LRG1) was highly expressed 
in urinary exosomes and also in cancer tissues from NSCLC 
patient in compare to healthy subjects (120). CD171 and CD151 
and tetra-spanin 8 was also suggested as potential diagnosis 
biomarker for NSCLC (121).

Besides diagnostic approaches, exosomes have been consid-
ered as suitable vehicles for drug and nucleic acid delivery to tar-
get organs. It was demonstrated that bEND.3 (brain Endothelial 
Cell Line)-derived exosomes can pass through the blood–brain 
barrier and reduce VEGF levels in  vivo by delivering drug to 
a brain tumor. This, in turn, result to a significant decrease in 
the tumor size (122). In a murine lung cancer model, cow milk 
exosomes were subjected for drug delivery for lung cancer. After 
injection of exosomes loaded with aferin-A, a tumor inhibitory 
effect was observed at doses lower in compare to unencapsulated 
drug (123).

The biological properties of exosomes give them with 
a valuable potential in medical research including cancer 
therapy. For example, since exosomes shuttle tumor-specific 
antigens, can be also attractive as anticancer vaccines (109). 
Given that uptake of TEXs is organotropism and performed 
through integrin-mediated signaling (8), thus blocking integ-
rins through decoy peptides can be a good strategy to inhibit 
exosome fusion and uptake, subsequently result in blocking of 
tumor progression (124).

https://www.frontiersin.org/Immunology/
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One of the recent immunotherapy method in treatment of 
lung cancer rely on blocking negative regulators of T-cell activa-
tion such as PD-1 and PD-L1 and inflammatory signals in the 
tumor microenvironment which can be mediated and reinforced 
by exosomes (110, 125). Another approaches such as blocking 
exosomal release or inhibition of the exosome-mediated cel-
lular crosstalk in the tumor environment may be appropriate in 
suppress the development of a favorable tumor microenviron-
ment (109). On the other hand, exosomes may modulate anti-
inflammatory signals within the tumor microenvironment which 
may effectively enhance the efficacy of immunotherapy in lung 
cancer (126).

Overall, exosomes are starting to be considered in medical 
research especially in cancer diagnosis and treatment. Because 
of their unique biological properties, such as specific targeting, 
small size, shuttling signaling, and biological molecules, as well 
as the ability to cross biological barriers; exosomes can have a 
range of applications from diagnosis biomarkers to drug delivery 
and tumor immunotherapy. Despite some limitations in exosome 
usage, such as inconvenient nature of their isolation and purifi-
cation methods, it is anticipated that exosomes will be utilized 
in cancer therapy in the near future. However, further more 

sophisticated clinical studies that address these current limita-
tions in exosome biology is needed for translation of exosome-
based technologies to clinical application.

CONCLUSiON

Exosomes mediate cross talk between the cells and their sur-
rounding environment in normal and pathological conditions. 
TEXs are emerging as the major mechanism for communication 
between cancerous cells and the tumor microenvironment, which 
has a significant effect in tumor progression and metastasis. The 
data obtained to date using analytes within TEX as potential 
markers for the diagnosis and outcomes of lung cancer has 
provided much insight although further research is still required. 
The clinical use of TEX will open a new window to lung cancer 
management and treatment in the near future.
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