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Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral 
blood of adults in humans and several non-human primates. Lymphocytes that constitute 
this transitional subset can sense subtle level changes of intracellular phosphorylated 
intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg), such as 
isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation 
process operates in a rigorous framework that requires the expression of butyrophilin 
3A1 (BTN3A1/CD277) molecules, which are type I glycoproteins that belong to the B7 
family. Several studies have further shown that pAg specifically bind to the intracellular 
B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we 
highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg 
and the contribution of the different subunits to this activation process. Recent reports 
support that conformational modifications of BTN3A1 might represent a key step in the 
detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this 
mechanism will help optimize novel immunotherapeutical approaches that target defined 
functions of this unique γδ T cell subset.
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1. γδ T CeLLS COMPOSe A SPeCiAL iMMUNOLOGiCAL UNiT

Discovered in the mid-1980s, gamma delta (γδ) T lymphocytes still puzzle and fascinate by their 
unconventional features. During thymic ontogeny, γδ T cell subsets originating from common lym-
phoid precursor cells emerge before αβ T cells to represent the predominant CD3+ population at the 
fetal development. Their relative frequency then decreases after birth, while αβ T cells progressively 
predominate. Importantly, for yet unclear reasons, the expression of particular TCR Vγ and Vδ 
regions is associated with preferential tissue locations. Hence, the major human peripheral γδ T cell 
subset (frequency >80%) in healthy adult expresses a heterodimeric TCR composed of Vγ9and Vδ2 
chains, and represents about 5% of total lymphoïd cells (1, 2). By contrast, Vδ1 and Vδ3 subsets are 
mainly detected in epithelial tissues, liver, spleen, tonsils, lymph nodes, and thymus (3). Interestingly, 
γδ T cells compose the majority of circulating T  lymphocytes in some non-primate species (i.e., 
cattle, sheep, pigs, and birds), which raises questions about evolutionary processes and the biology 
of this subset (4).
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From a functional point of view, γδ T cells are involved in the 
control of microbial infections (e.g., bacteria, virus, and para-
site), cell transformation, homeostasis, and tissue repair already 
reviewed in Ref. (5, 6). Their activation during these physio- 
pathological contexts induces the release of cytotoxic and bacte-
riostatic molecules, such as perforin, granzymes, granulysin, and 
defensins, death-inducing receptor, and TNF-related apoptosis-
inducing ligand receptor (TRAIL). Activated γδ T cells also regulate 
immune responses by secreting a large panel of soluble molecules, 
such as cytokines, that can promote the clearance of either intra-
cellular pathogens (e.g., TNFα, IFNγ), extracellular bacteria, 
fungi (IL-17) or parasites (e.g., IL-4, IL-5, and IL-13); inflam-
matory (e.g., TNFα, IFNγ) or anti-inflammatory responses (e.g., 
TGFβ, IL-10); tissue healing, epithelium repair, and cell survival. 
Interestingly, complementary studies have shown that activated  
γδ T  cells, through type I IFN sensitizations, also promote 
dendritic cells (DC) maturation and, therefore, could represent 
adjuvant cells (7–9). Moreover, some γδ T cell subset, like human 
Vγ9Vδ2 T cells, can acquire an antigen-presenting cell (APC)-
like phenotype and regulate conventional CD4+/CD8+ αβ T cell 
responses (10).

In contrast to most conventional αβ T cells which directly rec-
ognize antigenic structures composed of proteasome-generated 
peptides and polymorphic presenting molecules, that are related 
to the major histocompatibility complex (MHC) family (e.g., 
MHC class I/II molecules), the antigenic activation of γδ T cells is 
mostly MHC-independent, which strengthens their therapeutical 
interest (i.e., lack of alloreactivity) (11). The antigenic activation 
of γδ T  cells is linked with their tissue residency and the Vδ 
chain expressed (12, 13). Interestingly, several studies have now 
reported that γδ T lymphocyte subsets can be activated by various 
native or modified molecules that mainly derive from a Self ori-
gin, including MHC-like molecules in mice (e.g., T10–T22) and 
in humans (e.g., MICA/B, CD1c, CD1d, and EPCR) (14–18) and 
yet unrelated native molecules, such as F0–F1 ATP synthase, phy-
coerythrin, and apolipoprotein A-I (19). More recently, Annexin- 
A2, which is expressed in tumor cell(s) upon oxidative stress, 
has been shown to be directly recognized by human Vγ8Vδ3 
T lymphocytes (20). TLRs, dectins, and NLRs may act as γδ TCR 
costimulator (21). Of note, in most cases, the γδ TCR-dependent 
activation is also tightly regulated by a set of various molecules, 
including TLRs, dectins, and NLRs, killer Ig-like receptors (e.g., 
KIR2D, KIR3D), C-type lectins (CD94/NKG2A-C, NKG2D), 
and several costimulatory molecules shared with αβ T cells (e.g., 
LFA1, CD2, CD27, and CD28) (22). In this review, we focus our 
analysis on the γδ TCR-dependent activation modalities of the 
major peripheral Vγ9Vδ2 T cell subset.

2. HUMAN vγ9vδ2 T CeLLS ARe 
SPeCiFiCALLY ACTivATeD BY 
PHOSPHOANTiGeNS

In healthy adult primates, the major peripheral γδ T cell subset, 
which expresses a TCR composed of Vγ9 and Vδ2 chains, does 
not account for more than 10% of the total peripheral T cell pool. 
Interestingly, this lymphocyte subset expands upon microbial 

infections (e.g., Mycobacterium leprae, Mycobacterium tuberculosis)  
(23, 24). In vitro assays that rely on the incubation of peripheral 
lymphoid cells with mycobacterial lysates have evidenced Vγ9Vδ2 
T cell expansion mediated by protease-resistant and phosphatase-
sensitive components, hereafter called phosphoantigens (pAg) 
(25). These low molecular weight agonists are constituted of 
alkyl esters associated with a diphosphate moiety that carries 
their bioactivity (26–28). Isopentenyl PyroPhosphate (IPP), 
which was the first natural pAg identified from the mycobacteria 
M. smegmatis, is also synthesized in eukaryotic cells where it is 
an intermediate metabolite of the isoprenoid mevalonate (MVA) 
pathway leading to cholesterol synthesis (29). Several natural pAg 
have been further identified and characterized from vertebrates 
(e.g., DMAPP, dimethylallyl pyrophosphate) and microbes (e.g., 
HDMAPP/HMBPP, 4-hydroxy-3-dimethylallyl pyrophosphate). 
These microbial metabolites, produced from the DOXP/MEP 
(1-deoxy-d-xylulose-5-phosphate/2-C-methyl-d-erythritol-
4-phosphate) pathway (30–32), are much more efficient to 
activate Vγ9Vδ2 T  cells than MVA-derived IPP. This property 
could explain the strong reactivity displayed by Vγ9Vδ2 T cells 
in infectious contexts (33). Dysregulation of the eukaryotic MVA 
pathway, which leads to an intracellular accumulation of IPP, has 
been reported in various types of tumor cells (34). For example, 
the over-expression of HMG-CoA reductase, in non-Hodgkin 
B  cell lymphoma cell-line Daudi or breast adenocarcinoma 
cells, induces their spontaneous recognition by γ9Vδ2 T  cells 
(35). Accordingly, pharmacological MVA pathway inhibitors 
that target upstream (e.g., statins) or downstream (e.g., amino-
bisphosphonates) IPP synthesis, respectively, suppress or trigger 
pAg-induced Vγ9Vδ2 T cell activation (36).

Primate Vγ9Vδ2 T cells can specifically sense weak modifica-
tions of the expression of Self molecules, such as pAg, in a con-
tact- and TCR-dependent manner. However, the mechanisms and 
pathways involved in this peculiar antigenic activation process 
remain ill-defined. Despite several attempts, direct interactions 
between pAg and Vγ9Vδ2 TCR have never been clearly evidenced. 
While the contribution of additional molecules to this species-
specific process has been suggested by various complementary 
studies [e.g., implication of TCR CDRs (37)], this had not been 
shown until the groundbreaking evidence that butyrophilins 
could represent a first group of key molecules.

3. THe BUTYROPHiLiN BTN3A1 
ORCHeSTRATeS vγ9vδ2 T CeLL 
ANTiGeNiC ACTivATiON iNDUCeD  
BY PHOSPHOANTiGeNS

Following the key identification of pAg as potent and specific ago-
nist compounds, the clear evidence that butyrophilin-3A (BTN3A/
CD277) molecules also play a mandatory role in the antigenic 
activation of primate Vγ9Vδ2 T cells was a groundbreaking step 
to better understand this peculiar and mysterious immunologi-
cal process (38). Phylogenetically, ubiquitously expressed type I 
glycoprotein butyrophilin (BTN) molecules share a common 
ancestor with other members of the B7-CD28 superfamily, which 
thus suggests that they display immunological functions (39). 
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FiGURe 1 | Domain organization of BTN3A isoforms. The BTN3A family 
proteins share a high structural homology, mainly through their extracellular 
domain comprising a membrane-proximal IgC and a N-terminal IgV domains. 
They are linked to a poorly conserved intracellular part via a single 
transmembrane structure (black). The submembrane region (orange) 
represents the juxtamembrane domain (JTM). BTN3A1 and BTN3A3,  
but not BTN3A2, contain an intracellular B30.2 domain. The BTN3A3  
isoform is further composed of an additional C-terminal extension (gray).
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Indeed, various studies suggest that BTN, as well as BTN-like 
(BTNL) molecules are involved in some regulatory processes by 
triggering yet unclear pathways (40). In humans, BTN genes (>10) 
are located in the telomeric part close to HLA class I region of the 
chromosome 6p. BTN molecules, which are structurally highly 
homologous, are divided in three subfamilies (BTN1, BTN2, 
and BTN3). The BTN3A (CD277) subfamily, then contains three 
isoforms BTN3A1, -A2, and -A3, belonging to the immunoglobu-
lin (Ig) superfamily and sharing a high structural homology for 
the extracellular domain composed of an Ig-like IgV and an IgC 
domain (39) (Figure 1). Of note, the sequences of both B7 and 
BTN receptors are sufficiently distinct to prevent the latter ones 
from binding to known costimulatory T ligands, such as CD28 
or CTLA-4 (41, 42). While the ectodomain of the three BTN3A 
isoforms have a very high homology (>95%), only BTN3A1 
and BTN3A3 isoforms express an intracellular portion which is  
composed of a poorly conserved PRY/SPRY B30.2 (hereafter 
called B30.2) (43). The B30.2 domain, described as a key region for  
mediating protein–protein interactions, is shared by other BTN 
family members, as well as various “immunological” proteins, such 
as TRIM (TRIpartite Motif) and pyrin families (44). The human 
genome contains four identified btnl genes, with the designations 
of BTNL2, -3, -8, and -9. btnl2, the best characterized family mem-
ber, is clustered with the btn genes on chromosome 6, but near 
to human MHC class II region, whereas the least explored family 
members btnl3, btnl8, and btnl9 are localized on chromosome 5 
(45). Interestingly, BTNL molecules share an homology with the 
murine Skint family molecules and more particulary with Skint1, 
which drives the intrathymic differentiation of murine Vγ5Vδ1 
T  cells (46). The biological function of BTN3A1 molecules is 
elusive. A recent report shows that BTN3A1 is a positive regulator 
of the nucleic acid-mediated type I IFN signaling pathway. Upon 
nucleic acid stimulation, BTN3A1 moves along microtubules 
toward the perinuclear region, where it directs the interaction of 
TBK1 with IRF3, thereby facilitating the phosphorylation of IRF3. 
This process is controlled by microtubule-associated protein 4 
(MAP4) (47). Our group described the specific and mandatory 

contribution of BTN3A1, expressed at the membrane of cellular 
targets, to the pAg-induced reactivity of primate Vγ9Vδ2 T cells 
(38). BTN3A1 is ubiquitously expressed in primates, which seems 
associated with the presence of pAg-reactive γδ T cells in these 
species (48, 49). Accordingly, BTN3A1 orthologs are not expressed 
in the rodent lineage that lacks Vγ9Vδ2 T cell counterparts specific 
for pAg. The emergence of Vγ9Vδ2 TCR and BTN3 molecules 
with eutherian placental mammals has been reported, suggesting 
a strong co-evolutionary link (50).

The combined mode of action of BTN3A1 and pAg molecules 
for triggering a strong and specific antigenic activation of primate 
Vγ9Vδ2 T cells remains unclear and controversial. BTN3A1 has 
been first proposed as a “classical” antigen-presenting molecule 
for pyrophosphate compounds. In this model, pAg would bind a 
shallow groove within the distal IgV extracellular domain, which  
induces the formation of stable complexes that then directly 
interact and stimulate the Vγ9Vδ2 TCR, similarly to the peptide-
MHC molecules and αβ TCR system (51). This model, which 
implies cognate physical interactions between a conserved por-
tion of the IgV domain of BTN3A1, pAg, and the Vγ9Vδ2 TCR, 
diverges from the data published in several studies that clearly 
show the key specific requirement for the BTN3A1 isoform in 
the pAg-mediated activation of Vγ9Vδ2 T  cells. In line with 
these observations, our model proposes that the intracellular 
B30.2 domain of the BTN3A1 isoform, but not BTN3A3, drives 
Vγ9Vδ2 T cell antigenic activation through a direct binding of 
pAg to a charged groove. This model, based on the intracellular 
sensing of pAg by BTN3A1 molecules, has been supported by 
several complementary observations. Depletion, domain swap-
ping, and mutation experiments indicate that BTN3A1 lacking 
its intracellular domain B30.2, or expressing a BTN3A3 B30.2 
domain, or at least mutated on some of its critical pAg-binding 
residues, fail to trigger an efficient pAg-induced Vγ9Vδ2 T cell 
stimulation. Conversely, chimeric BTN3A3 molecules that expres- 
sed the B30.2 domain of BTN3A1 efficiently trigger a pAg-
mediated activation (52, 53). Together, these results support 
the mandatory role played by the intracellular BTN3A1 B30.2 
domain in the pAg-binding and sensing by Vγ9Vδ2 T cells.

4. B30.2, THe LOCK/KeY SYSTeM OF 
iNTRACeLLULAR PHOSPHOANTiGeN 
SeNSiNG

While the B30.2 domains of BTN3A1 and BTN3A3 display a 
strong homology (approximately 87% amino acid identity), the 
domain of BTN3A3 fails to efficiently bind pAg and to trigger 
a significant antigenic activation of Vγ9Vδ2 T cells. The crystal 
structure of the B30.2 domain of BTN3A1 gave key information 
about pAg binding site. Importantly, specificity of the BTN3A1 
B30.2 domain is a highly positive charged pocket which is consti-
tuted by basic residues, including arginines (R442, R448, and R499), 
histidines (H381 and H408), and lysine (K423). Positively charged 
B30.2 domain represents an ideal pocket candidate for binding 
negatively charged pAg. Accordingly, the mutation from basic to 
(negatively charged) acidic residues completely abrogates pAg-
binding and Vγ9Vδ2 T cell activation (53, 54). However, these 
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FiGURe 2 | Alignment of the intracellular B30.2 domain sequences of 
BTN3A1 and BTN3A3 isoforms. Amino acid sequence alignment of the 
B30.2 domains of BTN3A1 (top line) and BTN3A3 (bottom line). Dashes 
indicate absent residues in BTN3A1. Amino acids are shown in the single 
letter designations and numbered according full length nomenclature. Gray 
boxes indicate residues which constitute the pAg-binding positively charged 
pocket. Red font highlights the single amino acid difference between 
pAg-binding pocket, in position 381, H in BTN3A1, and R in BTN3A3 
isoforms adapted from Ref. (53).
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results did not entirely explain the differences between the capac-
ity of BTN3A1 and BTN3A3 to bind pAg. Close examination 
of the amino acid differences between these isoforms revealed 
a single amino acid difference in position 381 within the bind-
ing pocket: a histidine in BTN3A1 and an arginine in BTN3A3 
(Figure 2). Swapping this single amino acid between the domains 
of each isoform (i.e., mutating the H into R in BNT3A1 and R 
into H in BTN3A3) transferred both binding and functional 
abilities to stimulate Vγ9Vδ2 T  cells. Affinity differences have 
been measured between endogenous and exogenous pAg by a 
technique called Isothermal Titration Calorimetry (ITC): KD 
≃1 mM for endogenous and KD ≃1 mM for exogenous pAg (55). 
These results also confirmed that the functional potency of those 
compounds in mediating activation of Vγ9Vδ2 T  cells despite 
is not directly proportional to the affinity (56). The endogenous 
IPP is typically 100,000-fold weaker potency than the exogenous 
HMBPP (57).

Adams and colleagues have investigated the effects of pAg  
binding to the intracellular domain B30.2 of BTN3A1 by NMR 
spectrometry and molecular dynamics simulation. Using a 
BTN3A1 full-length intracellular domain model, they have shown 
that pAg binding induces conformational changes of the BTN3A1 
B30.2 domain. The Y382 residue, close to the positive pocket, has 
been identified as critical by showing the largest perturbation 
induced by pAg binding. ABP-treated Y352A mutants are less 
capable of mediating Vγ9Vδ2 T cell activation than the wild-type 
B30.2-containing protein (58). These conformational changes 
could represent the first signals delivered to distinguish activating 
or non-activating molecules. In fact, the BTN3A1 B30.2 domain 
is able to bind additional negatively charged small molecules, like 
malonate, citrate, adenosine-diphosphate (ADP), and nucleotidic 
pAg (59). Exogenous pAg (e.g., HMBPP/HDMAPP) induce a 
chemical shift into the B30.2 domain that extended to the binding 
site. IPP binding, a less affine pAg, induces similar shift pertur-
bations but qualitatively smaller in magnitude. These results 
confirmed the antigenic potential difference between exogenous 
and endogenous pAg. In contrast, titration of the B30.2 domain 

with malonate and citrate revealed only few chemical shifts with 
a small magnitude. Both of these nonantigenic molecules failed  
to induce perturbations in residues more distal to the pAg-bind-
ing site. Strikingly, the conformational changes induced by ADP 
occur in a different direction than those with pAg (60). NMR 
and crystallography studies suggest that a precise conformation 
of BTN3A1 B30.2 domain is required to induce Vγ9Vδ2 T cell 
activation.

Studies from Massaia’s group provided further mechanistic 
inputs about the contribution of BTN3A1 in pAg-induced 
Vγ9Vδ2 T lymphocyte activation. They showed that ABP-treated 
dendritic cells (DC) release extracellular IPP that can induce a 
significant Vγ9Vδ2 T cell proliferation (61). They identified the 
ATP-binding cassette transporter 1 (ABCA1) as a major complex 
involved in this extracellular release of IPP by ABP-treated DCs, 
with the physical cooperation of BTN3A1 and apolipoprotein  
A-I (ApoA-I) molecules (62). BTN3A1 is physically linked to  
ABCA1 but not associated with ApoA-I. Gene silencing of 
BTN3A1 in ABP-treated DCs slightly decreased the amounts of 
IPP released. This important study highlighted the existence of pAg 
membrane transporter complexes that are involved in the export 
of these compounds. Conversely, the ways by which external 
charged pAg could cross the plasmic membrane to reach intra-
cellular butyrophilins and then induce the reactivity of Vγ9Vδ2 
T cells remain unclear and will need to be further defined.

5. THe JUXTAMeMBRANe DOMAiN  
OF BTN3A1, ANOTHeR KeY PLAYeR iN 
THe SeNSiNG OF PHOSPHOANTiGeNS

The role played by the extracellular and intracellular B30.2 
domains of BTN3A1 in the antigenic activation of human  
Vγ9Vδ2 T cells has been extensively studied. Moreover, the con-
tribution of additional portions of these molecules, such as the 
juxtamembrane (JTM) domain, has also been carefully analyzed. 
The JTM domain of many transmembrane receptors, such as 
growth factor receptors, has been shown to be involved in signal-
ing processes (63). The intracellular JTM region of BTN3A, which 
is a rather flexible structure, connects the transmembrane domain 
to the B30.2 one. Our functional activation assays performed with 
BTN3A1 chimeras swapped for their JTM region support that  
this intracellular part is a strong regulator of the Vγ9Vδ2 T cell 
activation. Indeed, BTN3A1 chimeras that express the JTM 
domains from BTN1A1, BTN2A2, BTNL3, or BTNL9 fail to 
trigger the antigenic activation of Vγ9Vδ2 T cells. Interestingly, 
chimeric BTN3A1 molecules expressing the JTM domain of 
BTN3A3 induce a massive antigenic activation of Vγ9Vδ2 
T cells more efficiently than wild-type BTN3A1 (64) (Figure 3). 
Accordingly, a very recent report further supports these observa-
tions by showing that the binding of pAg, such as HMBPP, to the 
B30.2 domain perturbs residues within the JTM region, suggesting 
ligand-induced conformational changes. Interestingly, HMBPP 
could interact with residues within both the B30.2 and the JTM 
region at different contact points. Furthermore, this report also 
indicates that both key residues Ser/Thr296/297 and Thr304 fall within 
a critical functional BTN3A1 JTM region (65).
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FiGURe 3 | Alignment of sequences encoded by the intracellular 
juxtamembrane (JTM) domain from BTN3A1 and BTN3A3 isoforms. Amino 
acids sequence alignment of the JTM domains of BTN3A1 (top line) and 
BTN3A3 (bottom line). Amino acids are shown in the single letter designation 
and numbered according to full length nomenclature. Gray boxes show key 
residues, Ser/Thr296/297 and Thr304, involved in pAg binding in the JTM region 
due to the folding of the B30.2 domain in Vγ9Vδ2 T cell antigenic activation 
adapted from Ref. (64).
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The binding of pAg to the intracellular B30.2 domain has been 
shown to induce conformational changes of the JTM that could 
have important functional consequences (55). For example, these 
modifications could either spread to the extracellular domain of 
BTN3A molecules or alter its membrane topology and dynamics, 
leading to their recognition by γδ T cells.

6. THe HOLY GRAiL: UNDeRSTANDiNG 
THe CRYPTiC MeCHANiSM OF 
ANTiGeNiC ACTivATiON OF  
vγ9vδ2 T CeLLS

Despite representing significant advances by suggesting that 
butyrophilins do not operate as “classical” antigen-presenting 
partners, such as MHC and MHC-like molecules, these recent 
observations rather complicated the poor understanding of this 
peculiar antigenic activation process. Ultimately, γδ T lymphocyte 
immunologists will need to answer to the challenging question 
about the mechanism(s) by which the Vγ9Vδ2 TCR exquisitely 
and specifically sense them, following the increase of pAg levels 
and their association(s) to butyrophilins, to deliver strong and 
rapid activation signals. From a fundamental point of view, these 
future analyses should provide evidences about the intracellular 
trafficking, the dynamics of these molecules (e.g., intracellular/
membrane multimeric complexes), the regulation of this process 
in normal vs. pathological contexts (e.g., tumor cells). Basically, 
these results should bring some important information about the 
still unclear biological functions displayed by these molecules. 
On a more evolutionary side, these results should help to finally 
provide an unified overview of the antigenic activation process of 
human and murine γδ T lymphocyte subsets, some of the latter 
ones being also regulated by non-BTN3A1 butyrophilin-related 
molecules (e.g., Skint or BTNL8) (66, 67).

To assist these complex deciphering steps, novel elements have 
been recently brought, such as the recruitment of BTN3A1 part-
ners and the contribution of other isoforms and conformational 
changes. As BTN3A1 isoforms have not been shown to directly 
interact with the Vγ9Vδ2 TCR, various independent studies 
have been conducted to identify and to characterize extra- and 
intracellular partner molecules. Consequently, different groups 

first confirmed that the expression of human BTN3A1 molecules 
in rodent cells may not be sufficient to simply induce the reac-
tivity of primate Vγ9Vδ2 T  cells (68). The transfer of human 
chromosome 6 in those cells, which triggers this species-specific 
activation, then suggested that partner molecule(s) are encoded 
by gene(s) located within this chromosome (69). Two studies 
recently reported that molecular partners, such as RhoB or peri-
plakin, cognately interact with BTN3A molecules (70). RhoB is 
a small G protein of the Rho GTPase family that regulates actin 
reorganization, vesicles transport, and apoptosis in transformed 
cells following DNA damage. RhoB contributes to various cellular 
events, including cancer progression through multiple pathways 
by regulating DNA damage responses, apoptosis, cell cycle pro-
gression, migration, and invasion (71). Lipid modifications affect 
main subcellular localizations (i.e., endosomes, Golgi vesicles,  
and nucleus) of RhoB and its levels are acutely regulated in 
response to a variety of stimuli. Using a biolayer interferometry 
approach, Kuball’s group demonstrated that RhoB binds to the 
full-length BTN3A1 intracellular domain, while binding was 
significantly reduced to the B30.2 domain alone. However, 
the precise contribution of RhoB, which is conserved between 
humans and rodents and encoded by a gene located in chromo-
some 2, to the activation of Vγ9Vδ2 T lymphocytes is yet unclear 
and will require a deeper analysis.

The plakin family member, cytoskeleton adaptor protein peri- 
plakin (PPL), whose gene is located in chromosome 16, has 
also been shown to bind to the BTN3A1 JTM (72). PPL might 
contribute to the formation of responsive and dynamic struc-
tures which could implicate both cytoskeleton components 
(e.g., intermediate filaments, actin) and pAg. Accordingly, our 
results from fluorescence recovery after photobleaching (FRAP) 
experiments have shown an immobilization of BTN3A1 mol-
ecules linked to pAg sensitization (53). This suggests that the 
antigenic activation of Vγ9Vδ2 T lymphocytes is linked to the 
recruitment and containment of BTN3A1 proteins in selected 
subcellular domains which are located in the vicinity of the 
plasma membrane and focal adhesions (LB & ES, unpublished 
observations). However, PPL knockdown using siRNAs had no 
clearly interpretable effects on BTN3A1-mediated activation of 
Vγ9Vδ2 T cells. In this work, the main evidence for a functional 
contribution of these interactions is a correlation between loss 
of PPL binding and loss of activation, induced by a deletion of 
either the VKLLEEL JTM stretch (located in exon 5 of BTN3A1) 
or only of its di-leucine motif. In so far as PPL does not bind to 
BTN3A3, while active BTN3A3 carrying the R351H mutation 
efficiently activates Vγ9Vδ2 T  lymphocytes, it seems unlikely 
that PPL is required for the Vγ9Vδ2 T  lymphocyte antigenic 
activation process.

Initial experiments evidenced that agonist #20.1 BNT3A-
specific mAbs bind the IgV ectodomain of BTN3A glycoproteins, 
which leads to the activation of Vγ9Vδ2 T lymphocytes (38, 73).  
Among various hypotheses, the possibility of mAb-induced con fo- 
rmational changes, which could mimic pAg-induced modifica-
tions, deserves attention. The functional impact of pAg-induced 
changes of the intracellular B30.2 and JTM domains, that could be 
then transduced to the extracellular domain and trigger the sens-
ing of these modified Self complexes by Vγ9Vδ2 T lymphocytes, 
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FiGURe 4 | Proposed integrated model of BTN3A1 modifications induced by phosphoantigens and leading to the antigenic activation of Vγ9Vδ2 T lymphocytes. 
Intracellular accumulation of pAg could originate from a dysregulation of the Self mevalonate (MVA) pathway in pathological situations (e.g., cancer, infections) and/or 
be from exogenous origin (e.g., pathogens). In some situations, negatively charged pAg would need to be routed (e.g., import/export) via active processes (e.g., 
ABC transporters). pAg would then bind to intracellular parts of butyrophilin molecules (e.g., B30.2 ± juxtamembrane domains) at different sub-cellular locations 
during synthesis and routing steps of the molecules (e.g., ER, cell membrane). The binding of pAg to butyrophilins induces structural modifications that affect the 
dynamics of the molecules (e.g., membrane diffusion) and the immunological visibility of these molecules. Accordingly, the transition from resting to activatory state 
of these molecular complexes might also be linked to the nature of the multimerization of BTN3A1 glycoproteins (e.g., homodimers, heterodimers). The contribution 
of additional partner molecules, some of them being species-specific, regulating actin cytoskeleton modifications (e.g., RhoB, PPL) might also be important. The 
mechanisms that drive this unique antigenic activation process of human Vγ9Vδ2 T lymphocytes sensing these subtle molecular changes though a specific, 
contact-, and Vγ9Vδ2 TCR-dependent process remain a major conundrum. The question marks (?) refer to unsolved or yet unclear issues.

has been investigated. Accordingly, independent studies have 
shown that the conformation of both the B30.2 domain and 
its upstream JTM region vary upon pAg binding (58, 60). An 
important study has shown that pAg bind the B30.2 pocket and 
weakly interact with some residues constituting the JTM region. 
Based on both length and flexibility characteristics, the authors 
propose that the B30.2 domain of BTN3A1 is moved toward the 
JTM region and closer to the membrane upon ligand binding. 
Such intracellular changes would be sensed by γδ T cells through 
modifications of either the extracellular domain or interactions 
with other molecular partners (65). Non-BTN3A proteins 
composed of an intracellular B30.2 domain have been shown to 
naturally multimerize and this status is important to fulfill their 
functions (74, 75).

While first studies proposed that the ectodomain of BTN3A 
exist at the surface into either V-shaped or head-to-tail con-
formations (49, 76), recent experiments suggest that only the 
ectodomain adopts a V-shaped conformation (58). Strikingly, 
this study indicates that the expression of BTN3A1–BTN3A2 
heterodimers in lipid nanodiscs is more stable than BTN3A1 
homodimers, which suggest a role for the BTN3A2 isoform 
(which contains no intracellular B30.2 domain). A growing set 
of studies from various laboratories confirmed that BTN3A1 
molecules are mandatory for pAg-dependent activation of 

Vγ9Vδ2 T  lymphocytes. The contribution of BTN3A2 and 
BTN3A3 isoforms to this process remained to be understood 
and was analyzed. Initial functional studies, using global, and 
likely incomplete, BTN3A-knockdown (shRNA delivered 
by lentivirus) combined to a forced expression of selected 
isoforms (transfection), first showed that the expression of 
BTN3A2 and BTN3A3 isoforms is not sufficient to induce the 
activation of Vγ9Vδ2 T lymphocytes by pAg. So far, the results 
failed to demonstrate any inhibitory or activatory role played by 
non-BTN3A1 isoforms. A work from Hayday’s group proposes 
that BTN3A1 and BTN3A2 heterodimers would contribute to 
this process according to this model. The ectodomain and the 
B30.2 domain of BTN3A1 would represent active entities in 
Vγ9Vδ2 T  lymphocyte stimulation, while BTN3A2 isoforms 
would rather participate by regulating the appropriate routing 
(e.g., ER trafficking), kinetics, and/or stability of BTN3A1 (77).

Despite these major breakthroughs, the main question remains  
yet unsolved: how could such conformational changes and het- 
erodimeric associations be specifically sensed by the TCR of 
Vγ9Vδ2 T  lymphocytes. This issue represents major future 
research tracks in this field (Figure 4). To summarize, comple-
mentary research issues can be identified: (i) the subcellular 
localization for the interactions of pAg with BTN3A molecules; 
(ii) the role played by additional intra- vs. extracellular partners 
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