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Sepsis, a dysregulated host response to infection that causes life-threatening organ 
dysfunction, is a highly heterogeneous syndrome with no specific treatment. Although 
sepsis can be caused by a wide variety of pathogenic organisms, endothelial dysfunc-
tion leading to vascular leak is a common mechanism of injury that contributes to the 
morbidity and mortality associated with the syndrome. Perturbations to the angiopoietin 
(Ang)/Tie2 axis cause endothelial cell activation and contribute to the pathogenesis of 
sepsis. In this review, we summarize how the Ang/Tie2 pathway is implicated in sepsis 
and describe its prognostic as well as therapeutic utility in life-threatening infections.
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iNTRODUCTiON

Sepsis is a state of life-threatening organ dysfunction caused by a dysregulated host response to 
infection (1). Despite being a leading cause of global morbidity and mortality, sepsis has no known 
specific therapies (2). The current critical illness classification defines organ dysfunction by an 
increase in the Sequential [sepsis-related] Organ Failure Assessment (SOFA) score (3). However, 
sepsis is a heterogeneous syndrome that is not completely characterized using non-specific clinical 
variables. The use of generic classification models for complex, critically ill patients may impede 
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appropriate triage and management and limit the application of 
personalized treatment strategies (4). A more comprehensive 
characterization of sepsis pathophysiology may reveal new 
opportunities for precision medicine-based therapies with 
either novel or repurposed agents that target specific pathways 
contributing to disease (4, 5).

Microvascular dysfunction is the endpoint of many life-
threatening infections (6), and a well-established relationship 
exists between endothelial injury and sepsis (7–9). Determining 
the severity of microbial infections is challenging early in the 
course of disease when clinical scoring systems have limited 
prognostic utility. Many classic markers of end-organ compro-
mise (such as serum lactate, bilirubin, and creatinine clearance) 
are not informative until significant clinical deterioration has 
occurred. However, the timely recognition of sepsis is critical as 
early aggressive management can considerably reduce morbidity 
and mortality (10). Early prognostic indicators of critical illness 
severity are needed to improve early recognition, appropriate 
triage, management, and outcomes, as well as to enable rational 
health resource allocation. This review examines the role of 
the angiopoietin (Ang)/Tie2 axis in sepsis and summarizes its 
potential applications in the early recognition of sepsis and as a 
therapeutic target to improve clinical outcomes.

THe Ang/Tie AXiS iN SePSiS

Vascular function and permeability are regulated by endothelial-
specific receptor tyrosine kinases and their ligands, including 
the vascular endothelial growth factor (VEGF)-VEGF-receptors 
(VEGFRs), and the Ang-Tie receptors. The Tie1 and Tie2 recep-
tors constitute the Tie receptor family and are almost exclusively 
expressed in the endothelium (11, 12). Tie2 functions as a recep-
tor for the Ang family of proteins (Ang1, Ang2, and Ang4), while 
Tie1 is an orphan receptor that can be activated by Angs via its 
interaction with Tie2 (13). Binding of Angs to Tie2 in the stable 
vasculature promotes the formation of a Tie1/Tie2 heterodimer 
in a β1 integrin-dependent manner, resulting in Tie2 trafficking 
to cell–cell junctions (14, 15).

During vascular quiescence, mesenchymal cells secrete Ang1, 
a strong Tie2 agonist, to support endothelial survival and vas-
cular stability (16). Under these conditions, oligomerized Ang1 
promotes the trans-association of Tie2 at cell–cell contacts and 
can also anchor Tie2 to the extracellular matrix (ECM) through 
binding fibronectin, collagen, and vitronectin with high affin-
ity (17). In addition to forming adhesive structures between 
cell–cell and cell–substratum contacts, Tie2 activation by Ang1 
induces a number of downstream signaling cascades as shown in 
Figure 1. Notably, the serine kinase, Akt, is activated and results 
in the phosphorylation of the Forkhead box protein O1 (FOXO1) 
transcription factor, leading to the nuclear exclusion of FOXO1 
and decreased expression of its target genes (18–20). The inhibi-
tion of Foxo1 transcriptional activity in endothelial cells (ECs) 
induces expression of genes involved in vessel stability and the 
repression of genes involved in vascular destabilization, including 
Ang2. Consequently, during quiescence, Ang2 is constitutively 
expressed at low levels and co-localizes with von Willebrand fac-
tor (vWF) within the Weibel Palade bodies (WPBs) of ECs (21).

Upon stimulation of ECs by inflammatory cytokines or VEGF, 
Ang2 expression and secretion from WPB are increased, creating 
an autocrine regulatory mechanism of Tie2 signaling (36, 37).  
However, in contrast to Ang1, the action of Ang2 on Tie2 signal-
ing has an additional level of complexity that is dependent on 
the microenvironment of ECs (38–41). While the Tie1/Tie2 
heterodimeric complex enables both Ang1 and Ang2 to function 
as Tie2 agonists (14, 15), in the presence of an infection or inflam-
mation ECs shed the Tie1 ectodomain, and Ang2 binding results 
in Tie2 antagonism (14). Similarly, Tie1 shedding decreases Ang1 
agonistic activity (reduced Tie2 phosphorylation), demonstrating 
that Tie1 is required for the full activation of Tie2 (14, 15). Taken 
together, infection increases Ang2 expression and its release 
from WPBs, tipping the luminal Ang balance in favor of Ang2. 
Consequently, the increase in Ang2/Tie2 binding, particularly 
under conditions of enhanced Tie1 shedding, blocks Tie2 activa-
tion and contributes to the destabilization of the endothelium.

In addition, binding of Ang1 to Tie2 can also stimulate the 
association of vascular endothelial (VE)-protein tyrosine phos-
phatase (PTP) with the Tie receptor complex (42). Under condi-
tions of hypoxia, such as that resulting from infection-induced 
reduction in laminar flow, VE-PTP expression is up-regulated 
(43), and a negative feedback loop is triggered to limit Tie2 
activation (42, 44). As outlined in Figure 2, there are a number 
of mechanisms employed by ECs to modulate Ang/Tie2 signaling 
during infection-induced endothelial activation. Findings from 
our group (45–53) and many others (54–60) have shown that 
disruption of any of these components related to the Ang/Tie axis 
may result in endothelial dysregulation and microvascular leak, 
regardless of the microbial etiology.

Although beyond the scope of this review it should be noted 
that both coagulation and complement activation contribute to 
the course and outcome of sepsis. A connection between the 
Ang/Tie2 pathway and coagulation in sepsis was revealed in a 
proteomic analysis of septic patients with disseminated coagula-
tion (DIC). Findings from this study demonstrated that changes 
in Tie2 signaling was an initiating event in septic DIC and, at 
least in a mouse model, restoring Tie2 activation was sufficient 
to mitigate thrombosis (78). Additionally, the anticoagulant, 
activated protein C (APC) has been shown to bind and activate 
Tie2, leading to improved endothelial barrier integrity (79). Still, 
little remains known about the interplay between complement 
activation and Ang/Tie2 pathways in sepsis; this is an area that 
requires further investigation.

THe Ang/Tie PATHwAY iN SeveRe 
BACTeRiAL iNFeCTiONS

The incidence of severe sepsis in the United States is estimated at 3 
cases per 1,000 population (80, 81). Mortality due to sepsis is high 
at approximately 20–55% (80–85), estimates that are relatively 
stable over nearly the past decade (86). Despite a high burden of 
disease and improved application of management strategies (87), 
there is a lack of effective treatments specific for sepsis (5, 88).

Gram-negative and Gram-positive infections occur with simi-
lar frequencies in hospitalized patients (89), and both can trigger 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigURe 1 | Ang/Tie pathway regulation of vascular stability. In the absence of inflammation or infection (stable vasculature), Ang1 is secreted by mesenchymal  
cells (22, 23) and low levels of autocrine Ang2 are constitutively secreted (24). Binding of Angs to Tie2 promotes the interaction of Tie1 and Tie2 in a β1 integrin-
dependent manner and regulates Ang-induced Tie2 trafficking to cell–cell junctions (14, 15). Under these conditions, endothelial Tie1 enhances the activity of Ang1 
and is essential for Ang2 agonistic activity (14, 15). Oligomerized Ang1 also induces the translocation of Tie2 to cell–cell contacts and induces an Ang1-bridged Tie2 
trans-association (17). The resulting phosphorylation of Tie2 leads to the activation a number of downstream signaling pathways that are involved in vessel stability 
and endothelial barrier function. Activation of the downstream serine kinase, AKT, leads to the phosphorylation and nuclear exclusion of FOXO1, and repression of 
its target genes which include Ang2 (18–20). Ang1 inhibition of NF-κB reporter gene activity via activation of ABIN2 dampens the expression of adhesion molecules 
and pro-inflammatory cytokines (25, 26), preventing further activation of the endothelium through localized inflammatory mediators. In parallel, Ang/Tie2 signaling 
stimulates the transcriptional activity of MEF2 through the PI3K/AKT pathway to induce the expression of a second transcription factor KFL2 to ultimately counteract 
VEGF-mediated vascular permeability (↑eNOS expression; ↓VEGFR2 and ET-1 expression) (27). The increase in NO generated by eNOS combined with the negative 
regulation of Ang2 expression during quiescence significantly reduces luminal concentrations of Ang2 (28). In addition, KFL2 induces miR-30 expression, further 
blocking the transcription of Ang2 (29). The phosphorylation of Src, which generally culminates in the phosphodependent internalization of VE-cadherin, is also 
inhibited by Ang1/Tie2. Signaling through Ang1 leads to the activation of mDia, resulting in the sequestration of Src, and prevention of subsequent phosphorylation 
by VEGFR2 (30). At cell–cell junctions, Ang1/Tie2 also blocks VEGF signaling by promoting the interaction of VEGFR2 with VE-PTP (31). Lastly, activation of Tie2 
can lead to the activation of the GTPase, Rac1, via IQGAP (32), Rap1 (33), or PI3K/Akt (34)-dependent pathways to stabilize the cortical actin cytoskeleton and 
maintain adherens and tight junctions between cells (35). In the presence of LPS, activation of the RhoA-specific GTPase activating protein, p190RhoGAP, by  
Rac1, is essential for shifting the balance away from RhoA rearrangement of the actin cytoskeleton and preventing vascular permeability (32, 35). Abbreviations: 
ABIN2, A20-binding inhibitor of nuclear factor-κB-2; Ang1, angiopoietin-1; Ang2, angiopoietin-2; EC, endothelial cell; eNOS, endothelial nitric oxide synthase; ER, 
endoplasmic reticulum; ET-1, endothelin-1; FOXO1, forkhead box protein O1; GPCR, G-protein-coupled receptor; IP3R, inositol triphosphate receptor; IQGAP, IQ 
motif containing GTPase activating protein; KLF2, Krüppel-like factor-2; LPS, lipopolysaccharide; mDia, mammalian diaphanous; MEF2, myocyte enhancer factor-2; 
miR-30, microRNA-30-5p; NF-κB, nuclear factor-κB; NO, nitric oxide; PI3K, phosphoinositide triphosphate kinase; Rac1, RAS-related C3 botulinum toxin substrate 
1; Rap1, Ras-related protein 1; RBC, red blood cell; RhoA, Ras homolog gene family, member A; Src, proto-oncogene tyrosine-protein kinase; TRPC1, transient 
receptor potential channel-1; VE-cadherin, vascular endothelial-cadherin; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor 
receptor 2; VE-PTP, vascular endothelial protein tyrosine phosphatase; WPB, Weibel-Palade Body; P, phosphorylation.
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sepsis mediated in part by the production of exotoxins or the release 
of bacterial cell wall components into the systemic circulation (32). 
These microbial products modulate many host response pathways, 
including in the Ang/Tie axis. The suppression of Ang1/Tie2 sign-
aling and the associated microvascular leak are common features 

of many severe infections including bacterial sepsis (54). Reduced 
Tie2 activation during sepsis is the result of several perturbations 
to the pathway, including decreased Tie2 and Ang1 expression  
(24, 54, 57, 90–92), generation of soluble Tie receptors (14, 15, 40, 
41, 66, 93, 94), and the antagonistic activity of Ang2 (14, 15).
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FigURe 2 | Endothelial activation: dysregulation of Ang/Tie signaling during severe infection. In response to inflammation, ECs release Ang2 from WPB into the 
vascular lumen, tipping Ang2:Ang1 ratios in favor of Ang2 (21). The release of ADMA, arginase, and hemoglobin from ruptured Plasmodium falciparum infected 
erythrocytes additionally decrease the availability of NO, enhancing WPB exocytosis (61, 62). Simultaneously, the presence of infection or TNF-α leads to Tie1 
inactivation by ectodomain cleavage, thereby reducing the agnostic activity of Ang1 and promoting the antagonistic action of Ang2 (14, 15). Under conditions  
of hypoxia, such as an infection-induced reduction in laminar flow, VE-PTP expression is up-regulated (43), and a negative feedback loop is triggered that limits  
Tie2 activation by enhancing its association with VE-PTP (42). Interestingly, the transcription of Tie1 is also up-regulated in response to reduced laminar flow,  
despite ectodomain cleavage, suggesting an unknown role for the intracellular tyrosine kinase domain in signaling under these conditions (63). The resulting 
inactivation of Tie2 during infection and/or inflammation promotes FOXO1 transcriptional activity, thereby increasing Ang2 expression (15, 18, 20). The reduction  
in KFL2 expression associated with Tie2 inactivation stimulates VEGF-induced monocyte adhesion and vascular permeability (27, 64, 65). Furthermore, increased 
VEGFR2-signaling during infection leads to the activation of downstream pathways, such as PI3K/Akt and Src. Consequently, p38 MAPK-dependent activation of 
the protease, ADAM-15, induces Tie2 shedding and prevents its downstream signaling (66). In parallel, VEGFR2 activation of eNOS and Src further disrupt adherens 
junction complexes through S-nitrosylation of β-catenin (67) and phosphorylation of VE-cadherin (68, 69), respectively. Pathogens can indirectly lead to the activation 
of RhoA through GPCRs (70), for example, thrombin binding of protease-activated receptors (71, 72), to promote the formation of actin stress fibers that increase 
centripetal tension throughout the cytoskeleton (73). Furthermore, limited Tie2 activation during infection prevents p190RhoGAP inhibition of RhoA (35), and 
subsequent coupling of IP3R and TRPC1 to form a Ca2+ channel in the plasma membrane (74). This rise in intracellular Ca2+ leads to CaM-dependent activation  
of MLCK to further support EC contraction (35, 75). Lastly, TLR activation by PAMPs triggers the downstream activation of NF-κB to induce the expression of 
pro-inflammatory cytokines and adhesion molecules (76). This generates a positive feedback mechanism for endothelial destabilization, until infection and the 
associated inflammatory response are resolved (77). Abbreviations: ADAM-15, disintegrin and metalloproteinase domain-containing protein 15; ADMA, asymmetric 
dimethylarginine; Ang1, angiopoietin-1; Ang2, angiopoietin-2; Ca2+, calcium; CaM, calmodulin; CD36, cluster differentiation 36; EC, endothelial cell; eNOS, 
endothelial nitric oxide synthase; EPCR, endothelial protein C receptor ET-1, endothelin-1; FOXO1, forkhead box protein O1; GPCR, G-protein-coupled receptor; 
iRBC, Plasmodium-infected red blood cell; IP3R, inositol triphosphate receptor; IQGAP, IQ motif containing GTPase activating protein; KLF2, Krüppel-like factor-2; 
LPS, lipopolysaccharide; mDia, mammalian diaphanous; MEF2, myocyte enhancer factor-2; miR-30, microRNA-30-5p; MLCK, myosin light-chain kinase; NF-κB, 
nuclear factor-κB; NO, nitric oxide; p190RhoGAP, p190Rho GTPase-activating protein; p38 MAPK, p38 mitogen-activated protein kinase; PAMPs, pathogen-
associated molecular patterns; PI3K, phosphoinositide triphosphate kinase; Rac1, RAS-related C3 botulinum toxin substrate 1; Rap1, Ras-related protein 1;  
RhoA, Ras homolog gene family, member A; RhoGEF: Rho guanine nucleotide exchange factor; S-NO, S-nitrosylation; Src, proto-oncogene tyrosine-protein  
kinase; TRPC1, transient receptor potential channel-1; VE-cadherin, vascular endothelial-cadherin; VEGF, vascular endothelial growth factor; VEGFR2, vascular 
endothelial growth factor receptor 2; VE-PTP, vascular endothelial protein tyrosine phosphatase; WPB, Weibel-Palade Body; P, phosphorylation.
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Preclinical models of sepsis that have been used to explore 
the mechanisms and consequences of Tie2 signaling have shown 
that Tie2 expression and phosphorylation are greatly reduced 
during systemic infection. Inhibition of Tie2 activation leads 
to the nuclear localization of FOXO1 and transcription of its 
target genes, resulting in increased microvascular permeability  
(14, 15, 57, 91, 92). Tie2 mRNA levels have been shown to decline 
in response to decreases in endothelial shear stress associated with 
severe infection in a nuclear factor (NF)-κB dependent manner 
(92, 95). In contrast, the downregulation of Tie2 protein on the 
EC surface is not mediated by NF-κB but rather by the proteolytic 
cleavage of the Tie2 extracellular domain (92). In vitro studies 
have demonstrated both constitutive and VEGF-stimulated Tie2 
receptor cleavage result in the release of a 75-kDa soluble Tie2 
(sTie2) protein (66, 94, 96). The cleavage of the Tie2 ectodomain 
prevents Ang/Tie2 signaling and the circulating sTie2 which 
is generated may then function as a ligand trap, binding, and 
further inhibiting Ang activity. Indeed, the intravenous adminis-
tration of adenoviral vectors expressing sTie2 blocked Ang/Tie2 
signaling in Mycoplasma pulmonis-infected mice (97). Notably, 
the presence of sTie2 has been documented in vivo (93, 98, 99) 
and its levels are significantly increased in septic versus non-
septic Intensive Care Units (ICU) patients (100). However, recent 
evidence incorporating mathematical and in vitro experimental 
modeling suggests that the molar ratio of sTie2:Ang1 levels found 
in patients with severe sepsis would have little influence on Ang/
Tie2 activation in vivo (101).

In addition to reducing Tie2 expression, bacterial infections 
may also alter the functional activation state of this receptor, 
contributing to a leaky microvascular phenotype. Murine models 
of sepsis demonstrate a significant decline in the phosphorylated 
Tie2:total Tie2 ratio following LPS administration (91). This may 
be due, at least partly, to the influence of Tie1 on Tie2 activation. 
As already discussed, under baseline conditions, Ang1 or Ang2 
stimulation of Tie2 promotes its interaction with Tie1 to form 
a heteromeric complex that is translocated to areas of cell–cell 
contacts (14, 17, 102). Oligomerized Ang1 bridges Tie2 at cell 
junctions resulting in the formation of trans-associations with 
Tie2 that preferentially activate Akt and its downstream signal-
ing pathways, maintaining vascular quiescence (17). However in 
the mouse model, both LPS challenge and M. pulmonis infec-
tion induce cleavage of the Tie1 ectodomain responsible for its 
interaction with Tie2, thereby reducing Tie2 activation (14, 15). 
During endotoxemia, Tie1 cleavage also promotes antagonistic 
Ang2 activity resulting in the suppression of Tie2 signaling. This 
restores FOXO1 activity and establishes a positive feedback loop 
whereby FOXO1-driven Ang2 expression promotes microvascu-
lar leak during infection (14, 15).

Interestingly in murine models, Gram-negative bacteria may 
increase Ang2 expression by a different mechanism than that of 
Gram-positive bacteria. LPS has been shown to increase Ang2 
expression via nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase 2 signaling through the inhibition of NFκ-B 
kinase subunit β/NF-κB and mitogen-activated protein kinase 
(MAPK)/activator protein 1 pathways (103), as well as the his-
tone/protein deacetylase, Sirtuins 3 (24). Although mice treated 
with Gram-positive cell wall components (peptidoglycan and 

lipoteichoic acid) also exhibit elevated levels of Ang2 (24, 104), 
a comparison of bacterial etiologies among septic ICU patients 
revealed that Ang2/Ang1 ratios were significantly higher among 
patients with Gram-negative than those with Gram-positive 
infections (105). Recent evidence suggests that increased 
circulating Ang2 in Gram-positive infections is not the result 
of de novo biosynthesis, but rather the stimulated secretion of 
intracellular storage pools in response to the binding of cell wall 
components to TLR2 (24). While mechanistic differences may 
account for the more robust Ang2 increase observed in Gram-
negative bacterial infections, these findings require in  vivo 
confirmation.

During sepsis, an increase in Ang1 or decrease in Ang2 levels 
can enhance survival in murine bacterial sepsis models (56, 90, 
106, 107). The overexpression of Ang1 using an adenoviral con-
struct expressing human Ang1 (rh-Ang1) was found to attenuate 
LPS-induced expression of endothelial adhesion molecules in  
mouse lungs and kidneys, resulting in decreased leukocyte infil-
tration into interstitial spaces and minimizing hemodynamic 
instability (106, 107). In these mice, endothelial nitric oxide 
synthase (eNOS) expression was preserved and inducible nitric 
oxide (NO) synthase activity was decreased, contributing to 
reduced microvascular permeability in major organs (106, 107). 
The corresponding anti-inflammatory and anti-permeability 
effects of overexpressing Ang1 ultimately resulted in reduced 
organ injury as well as enhanced survival in endotoxemic mice 
compared to their Fc-controls. Despite the observed protective 
effect, little remains known as to how elevated levels of Ang1 
impact the innate immune response. However, a recent study 
demonstrated that the improved survival conferred by the 
administration of rh-Ang1 in a mouse model of cerebral malaria 
(CM) was independent of its direct effects on parasitemia as both 
mice receiving rh-Ang1 and the Fc control had comparable para-
site burdens (45). These findings suggest that increasing Ang1 
levels during severe infection does not impair the host’s ability 
to resolve infection.

The protective effect observed with Ang1 has also been des-
cribed in a cecal ligation and perforation (CLP) model of mice with 
one functional Ang2 allele (Ang2±), suggesting Ang2 contributes 
to multi-organ dysfunction and death in sepsis (56). In contrast, 
compared to their wild-type littermates, Ang2−/− knockout mice 
developed acute kidney injury following LPS exposure (90). 
Interestingly, the complete loss of Ang2 was previously observed 
to result in developmental abnormalities in mouse vasculature 
(108) likely rendering Ang2−/− mice susceptible to LPS-induced 
kidney injury. Nevertheless, these pre-clinical studies suggest that 
increasing circulating Ang1 and reducing Ang2 are associated 
with improved endothelial function during bacterial sepsis.

Bacterial pathogens are an important cause of sepsis, at least 
in part, due to their ability to induce systemic microvascular 
dysfunction through their interactions with the Ang/Tie system.  
A detailed understanding of mechanisms that regulate this 
pathway, and the ways in which bacteria modulate Tie2 activ-
ity, may suggest intervention strategies to maintain endothelial 
quiescence and microvascular integrity during severe bacterial 
infections. Preclinical studies of Tie2 directed therapies are 
reviewed in a later section.
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eNDOTHeLiAL DYSFUNCTiON iN 
MALARiA iNFeCTiON

Malaria is an acute infectious disease caused by parasitic protozoa 
of the genus Plasmodium. Severe malaria is a sepsis syndrome 
that was responsible for an estimated 429,000 deaths in 2016 
(109). It is typically caused by Plasmodium falciparum and is a 
complex multisystem disease with cerebral involvement (CM) 
being the most severe manifestation. Despite treatment with 
intravenous artesunate, CM has a reported case fatality rate of 
30% in adults and 18% in children, with approximately one-third 
of survivors left with long-term neurological and neurocognitive 
deficits (110–114). While the pathophysiology of severe malaria 
is incompletely understood, it is characterized by marked inflam-
mation, oxidative stress, and endothelial dysfunction and micro-
vascular leak associated with disruption of the Ang/Tie2 axis.

The interaction between parasitized red blood cells (RBCs) and 
the host endothelium is central to the pathobiology of malaria  
infection and the development of severe disease. P. falciparum-
infected RBCs (iRBCs) express the P. falciparum erythrocyte 
membrane protein 1 (PfEMP-1) on their cell surface, which medi-
ates binding of the iRBCs to host EC receptors, including intracel-
lular adhesion molecule-1 (ICAM-1), cluster of differentiation 
36 (CD36), endothelial protein C receptor (EPCR), and gC1qR 
(115–118). This cytoadhesion leads to organ-specific sequestra-
tion of iRBCs, resulting in microvascular obstruction, impaired 
perfusion, hypoxia and metabolic derangements (119), all of 
which can contribute to endothelial activation (37, 63, 120, 121).

Endothelial stability is mediated in large part by two distinct 
but inter-related pathways, the Ang/Tie2 axis and the NO bio-
synthetic pathway (discussed below). Similar to bacterial sepsis, 
Ang1 has been shown to play a protective role in the severe 
malaria models (45), while several human studies have demon-
strated a positive correlation between increased circulating Ang2 
levels and poor clinical outcomes in pediatric and adult malaria 
infections (49, 52, 61, 122–124). Increased levels of Ang2 have 
also been implicated in the pathogenesis of placental malaria and 
its associated adverse birth outcomes, including stillbirth and 
fetal growth restriction (125–127).

The murine model of experimental CM (ECM) recapitulates 
several features of human severe and CM (128–132), includ-
ing Ang dysregulation (45, 133). Deletion of the Ang1 locus 
increased susceptibility to ECM, while restoring circulating 
Ang1 levels maintained blood–brain barrier (BBB) integrity 
and enhanced survival, demonstrating that Ang1 is required to 
stabilize the microvasculature and improve outcome (45). The 
pathophysiology of human CM is debated, but likely results from 
both parasite and host determinants (134–138). Similar to ECM, 
recent human MRI data has provided evidence that BBB dysfunc-
tion and microvascular leak may contribute to BBB breakdown 
and cerebral edema in both adult and pediatric patients with CM 
(139, 140). In both pre-clinical and clinical studies, higher levels 
of Ang1 are associated with better outcomes, whereas higher 
levels of Ang2 correlate with disease severity and mortality. 
Thus, interventions that enhance Ang1 and/or Tie2 expression 
and activation may be beneficial in reducing malaria-associated 
adverse outcomes.

Nitric oxide is produced by a family of NO synthases (NOS) 
that use l-arginine as a substrate and the cofactor tetrahydrobi-
opterin. The rupture of iRBCs releases free hemoglobin, arginase, 
and contributes to the generation of asymmetric dimethylargi-
nine (ADMA) in the circulation (Figure 2). These compounds 
collectively limit NO bioavailability via several mechanisms. 
Hemoglobin does so by reacting with NO, converting it to a 
biologically inactive nitrate. Proteolysis of erythrocyte proteins 
releases ADMA (an endogenous inhibitor of NOS) as well as 
arginase and converts arginine to ornithine, limiting the pool of 
arginine available for NO production (62, 141). Reduced levels 
of bioavailable NO lower the threshold for cytokine-induced 
EC activation and exocytosis of vWF and Ang2 from WPBs 
(21). Therefore, malaria infection fosters microenvironment 
conditions that facilitate the release of Ang2 and promote the 
switch from a quiescent to an activated endothelial phenotype. 
Interventions that improve NO bioavailability may be promis-
ing candidates for the treatment of severe malaria [discussed in 
Ref. (142–144)].

Less is known about the role of the Tie2 component of the 
pathway in malaria infection but reduced expression of Tie2 is 
observed in the lungs of malaria-infected mice (54) and increased 
levels of circulating sTie2 are observed in human severe malaria 
(48). These observations support the hypothesis that therapeutics 
that increase Tie2 expression may restore endothelial quies-
cence and reduce the risk of ALI and acute respiratory distress 
syndrome (ARDS) in human malaria infection (145). Ang/Tie2 
targeted therapeutics in the treatment of malaria are discussed 
later in this review.

BeNCH TO BeDSiDe: THe Ang/Tie 
PATHwAY COMPONeNTS AS 
BiOMARKeRS OF LiFe-THReATeNiNg 
iNFeCTiONS

Septic shock is the quintessential state of systemic endothelial 
dysfunction and microvascular leak. Over the last two decades, 
multiple studies of adult and pediatric populations have consist-
ently shown that sepsis is marked by decreased levels of circulating 
Ang1 and increased levels of Ang2 [reviewed in Ref. (146–148)] 
and that the Ang2/Ang1 ratio can risk-stratify patients with criti-
cal illness. Notably, increased levels of Ang2 or a higher Ang2/
Ang1 ratio predict mortality in septic patients (50, 53, 56, 100, 
149–163). Among critically ill patients admitted to ICUs, plasma 
levels of Ang2 or the Ang2/Ang1 ratio increased across the spec-
trum of patients with sepsis and septic shock independent of the 
infecting pathogen (53, 56, 60, 150, 153, 155, 156, 158, 160, 161, 
163–168). Ang2 levels correlated with surrogates of disease sever-
ity, including markers of tissue hypoperfusion, such as serum 
lactate (56, 60, 151, 155, 161), kidney injury (151, 154, 161),  
hepatic dysfunction (151), coagulopathy (151, 152), and mark-
ers of systemic inflammation (56, 60, 167). Ang2 levels were 
also associated with other clinical correlates of disease severity 
including Acute Physiology and Chronic Health Evaluation 
II (APACHE II) scores (56, 155, 161, 167), ICU length of stay 
(60), bacteremia (159), positive fluid balance (151, 162), need 
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for corticosteroid support (151), and measures of organ failure  
(50, 53, 56, 60, 151–155, 160, 161, 164, 167, 169). Importantly, 
Ang2 levels measured early in the course of sepsis, including 
within 24 h of symptoms onset (158, 163, 166, 168), presentation 
to an Emergency Department (56, 150), and admission to ICU 
(50, 53, 60, 155, 157, 159, 160, 162, 164, 165), were associated with 
disease severity and predicted hospital mortality.

The circulating mediators of Tie2 signaling are particularly 
valuable in predicting outcomes of lung injury, likely owing to 
the high level of Tie2 expression in pulmonary vascular endothe-
lium (147). In the lungs, Ang2 contributes to microvascular leak 
leading to pulmonary edema, ALI, and ARDS (55, 163, 168–173) 
[reviewed in Ref. (174)]. Elevated levels of circulating Ang2 not 
only correlate with disease severity, but also predict the degree of 
pulmonary microvascular leak (100, 163), duration of mechani-
cal ventilation (163, 175), the partial pressure arterial oxygen to 
fraction of inspired oxygen (PaO2/FiO2) ratio (161–163, 168), 
and mortality (163, 169, 172, 173, 176, 177). Ang2 levels were 
a strong predictor of death in infection-mediated ARDS (149), 
an association that holds regardless of the inflammatory trigger.

Ang1 and Ang2 proteins have been evaluated as potential bio-
markers of malaria disease severity and mortality, with Ang2 levels 
predicting not only in-hospital but also post-discharge mortality 
in children with severe malaria (46). Increased circulating levels 
of circulating Ang2 and decreased levels of Ang1 are associated 
with both severe P. falciparum (48, 49, 52, 122–124, 141, 178–183) 
and severe Plasmodium vivax infections (184–186) [reviewed in 
Ref. (187)]. Furthermore, the degree of Ang derangement cor-
relates with the severity and outcome of P. falciparum infection 
(48, 49, 61, 122, 141, 181–184, 188), including anemia, jaundice, 
hypoglycemia (180), kidney injury (178, 180, 182), respira-
tory distress (181), CM (48, 52, 122, 178, 180, 189), and death  
(48, 49, 52, 61, 141, 180, 182, 189–191). Incorporating Ang2 con-
centrations into clinical scoring tools significantly improved the 
prediction accuracy of the models for mortality (48). Moreover, 
circulating Ang2 levels were informative in monitoring response 
to therapy and were predictive of short and long-term mortality 
(61, 122, 192).

THeRAPeUTiC iNTeRveNTiONS 
TARgeTiNg THe Ang/Tie AXiS

The observation that the Ang/Tie2 pathway contributes to disease 
pathobiology and that circulating ligands of Tie2, Ang1, and Ang2 
can risk-stratify critically ill patients suggests that this pathway 
is a therapeutic target to prevent microvascular leak associated 
with sepsis. Off target effects of corticosteroids and HMG-CoA 
reductase inhibitors, both of which can reduce the severity of 
critical illness (193–198), have been shown to modulate Ang1 and 
Ang2 levels (199, 200) [reviewed in Ref. (36, 201, 202)]. Ang/
Tie2-directed anti-angiogenic pharmacotherapies are in preclini-
cal and clinical trials for the treatment of several malignancies 
and neovascular eye diseases [reviewed in Ref. (203)]; however, 
the development of adjunctive therapies for the management of 
sepsis and other critical illnesses associated with microvascular 
dysfunction have lagged behind. To date, pre-clinical studies with 

interventions that have stabilized the Tie2 receptor provide evi-
dence that targeting this pathway may enable precision medicine 
approaches to improve outcomes of severe infections in humans 
[Table 1; reviewed in Ref. (146, 148)].

Studies using murine models of sepsis have demonstrated 
that therapeutic compounds that augment Ang1 expression can 
attenuate many of the adverse outcomes associated with endotox-
emia. Increased Ang1, driven by adenovirus-mediated rh gene 
delivery prior to an LPS challenge, preserved eNOS activity in 
lung tissue and reduced lung injury, prevented up-regulation 
of cellular adhesion molecules, improved hemodynamics, and 
reduced mortality (106, 204). A more potent and stable Tie2 phos-
phorylating molecule, cartilage oligomatrix protein (COMP)- 
Ang1 (215) similarly prevented adhesion molecule expression and 
conferred renal protection in the sepsis model (107). Although 
these findings establish the protective benefit of sustaining Tie2 
phosphorylation through Ang1 treatment in sepsis, the use of an 
adenoviral delivery vector is problematic for translation to human 
therapy. Subsequent studies demonstrated that rh Ang1 (rh-
Ang1) delivered systemically to mice undergoing cecal ligation 
and perforation (CLP) stabilized endothelial barrier function, 
preventing pulmonary capillary leak, and decreased leukocyte 
infiltration into both lungs and kidneys by suppressing ICAM-1 
expression (35). Despite the short half-life of rh-Ang1 (216), treat-
ment was able to avert multi-organ dysfunction and increased 
survival following CLP (59). Matrilin-1-Ang1 (MAT.Ang1)  
was developed as a stable Ang1 variant amenable to direct intra-
venous administration; it too stabilized the endothelium in the 
setting of LPS-induced endotoxemia (58).

Ang1 therapy has also been shown to mitigate the adverse 
sequelae of severe malaria infection. Using BowAng1, a rh Ang1  
protein capable of phosphorylating Tie2 (217), it was demon-
strated that its addition to artesunate therapy preserved the inte-  
grity of the BBB and improved survival in a murine model of 
CM, even when administered during the late stage of infection 
(45). Other therapeutic agents that increase Ang1 expression also 
prevent BBB leak and improve survival in ECM. Mice treated with 
the ethyl amide of a synthetic oleanane triterpenoid, 2-cyano-
3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-EA), had 
increased Ang1, reduced Ang2 and Ang2:Ang1 ratio, and this was 
associated with improved BBB integrity (208). Similarly, treat-
ment of malaria infected mice with the PPAR-γ agonist rosiglita-
zone in combination with artesunate at the onset of neurological 
symptoms achieved higher plasma and brain levels of Ang1 and a 
lower Ang2:Ang1 ratio compared to mice treated with artesunate 
alone. Furthermore, these mice had enhanced BBB integrity, 
improved survival and better cognitive and motor outcomes 
than mice treated with anti-malarials alone (133). Rosiglitazone 
has entered human clinical trials. To date, a randomized clinical 
trial of rosiglitazone in young adults with uncomplicated malaria 
showed reduced levels of pro-inflammatory mediators, a lower 
Ang2:Ang1 ratio, and higher levels of brain-derived neurotrophic 
factor, a protein involved in neuronal survival and proliferation 
(133, 218). A phase IIa study has shown rosiglitazone to be safe and 
well tolerated in pediatric patients with uncomplicated malaria 
and is currently being tested in a phase IIb trial in children with 
severe malaria (219).
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TABLe 1 | Ang/Tie2-targeted therapies in pre-clinical studies of sepsis.

Compound(s) Description Pre-clinical studies/model

AdhAng1/rAAV.ANG1/AdAng1 Adenovirus construct expressing rh Ang1 Mouse—endotoxemia (106, 204)
Mouse—ECM (45)

rh-Ang1 Commercial rh Ang1 protein (R&D Systems) Mouse—endotoxemia (35)
Mouse—Gram-negative sepsis (205)

COMP-Ang1 Adenovirus expressing rh-Ang1 variant: N-terminal is replaced 
with short coiled-coil domain of COMP for increased stability, 
solubility and Tie2 activating potency over rh-Ang1

Mouse—endotoxemia (107)

MAT.Ang1 rh-Ang1 variant: central coiled-coil N-terminal of Ang1 is 
replaced with short coiled-coil domain of matrilin for increased 
stability and solubility over rh-Ang1

Mouse—sepsis (58)

BOWAng1 rhAng1 variant: C-terminal fibrinogen-like domain of Ang1 
protein fused to human IgG Fc fragment, engineered to tetramer 
conformation for optimal Tie2 phosphorylation

Mouse—ECM (45)

ANGPT1 Human Ang1 gene plasmid transfected into syngeneic MSCs for 
engraftment into injured pulmonary vasculature

Mouse—endotoxemia (206, 207)

CDDO-EA Synthetic oleanane triterpenoid, activator of Nrf2. Increased 
Ang1 and decreased Ang2 levels in plasma, and reduced 
cerebrovascular leak in ECM model

Mouse—ECM (208) 

Rosiglitazone PPAR-γ agonist increased Ang1 levels in brains of ECM models Mouse—ECM (133)

LC10, LOC06, ABA Selective anti-Ang2 antibodies inhibit Ang2 binding to Tie2 Mouse—polymicrobial sepsis (24, 204)

ABTAA Ang2 clustering converts antibody into Tie2 activating ligand Mouse—endotoxemia, Gram-positive bacteremia,  
polymicrobial sepsis (24)

Angpt-2 siRNA Ang2 siRNA highly specific for pulmonary endothelium, reduced 
Ang2 expression in murine lung tissue and resulted in increased 
Tie2 phosphorylation

Mouse—endotoxemia, polymicrobial sepsis (209)

rh-Ang2 Commercial rh Ang2 protein (R&D Systems) Mouse—Gram-negative sepsis (205)
Rabbit—Gram-negative sepsis (210)

AKB-9778 Small molecule inhibitor of VE-PTP; promotes Tie2 activation Mouse—endotoxemia (33)
Mouse—stroke/BBB permeability (211)
Mouse—choroidal neovascularization and ischemic  
retinopathy (43, 212)

Vasculotide Synthetic tetrameric polyethylene glycol-clustered Tie2 agonist Mouse—polymicrobial sepsis (213)
Mouse—influenza infection (214)

Therapeutic agents that target Tie2 by augmenting Ang1 levels, inhibiting Ang2, or promoting Tie2.
Abbreviations: ABA, Ang2-blocking antibody; ABTAA, Ang2-binding and Tie2 agonist antibody; Angiopoietin (Ang), CDDO-EA, 2-cyano-3,12-dioxooleana- 1,9(11)-dien-28-oic 
acid ethyl amide; COMP, cartilage oligomeric matrix protein; ECM, experimental cerebral malaria; Fc, IgG, immunoglobulin; MAT, matrilin; nrf2, nuclear factor-like 2; siRNA, small 
interfering RNA; rh, recombinant human; VE-PTP, vascular endothelial protein tyrosine phosphatase.
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Furthermore, the novel Ang2-binding and Tie2-activating 
antibody (ABTAA) utilizes a mechanism through which Ang2 
clustering converts the antibody-antigen cluster into a Tie2 acti-
vating ligand, thus allowing simultaneous Ang2 inhibition and 
Tie2 activation (24). When compared to the conventional anti-
Ang2 antibody, ABTAA conferred increased protection against 
microvascular dysfunction, end-organ damage, and mortality in 
CLP, endotoxemia, and Staphylococcus aureus models of sepsis 
(24). In combination with broad-spectrum antibiotics (imipe-
nem/cilastatin), ABTAA improved survival to 70%, compared to 
20% survival in animals treated with antibiotics alone in the CLP 
model (24). Seemingly paradoxically, studies in murine and rabbit 
models of pyelonephritis and sepsis found that rh-Ang2 admin-
istration prolonged survival in Gram-negative sepsis (205, 210).  
Notably, these studies did not assess Tie2 phosphorylation status, 
leaving the mechanism of Ang2-mediated survival in these models  
unclear.

Other novel modes of augmenting Ang1 expression are cur-
rently in preclinical trials. Preliminary work utilizing cell-based 
therapy has demonstrated that mesenchymal stem cells (MSCs) 
transfected with Ang1 are able to engraft the pulmonary endothe-
lium damaged during sepsis, preserve pulmonary endothelial 
integrity, and ameliorate ALI/ARDS (206, 207).

In contrast to the constitutive expression of Ang1, Ang2 is relea-  
sed in response to infectious triggers with considerable dyna mic 
range (56, 168), making this molecule an appealing target for phar-
macologic inhibition in sepsis. In preclinical trials, lung-targeted 
small interfering RNA (siRNA) against Ang2 delivered both 
pre- and post-sepsis induction reduced pulmonary inflammatory 
cytokine levels, ICAM-1 expression, neutrophil organ infiltra-
tion, and overall disease severity while improving survival (209).  
Functional inhibition of Ang2/Tie2 binding using anti-Ang2 
antibodies decreased rates of hemodynamic shock and mortality 
in murine sepsis and ARDS models (24, 204).
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In light of these findings, further analyses have been per-
formed examining the role of simultaneous Ang2 inhibition and 
Tie2 activation in vascular protection during sepsis (24). When 
treated with the antibody ABTAA, mice with high-grade CLP 
had significantly improved survival rates (40%) compared to the 
conventional Ang2-blocking antibody (ABA; 13%). These find-
ings were further extended to two other sepsis models used in 
this study: endotoxemia (rate of survival increase: 63% ABTAA 
vs 33% ABA) and S. aureus bacteremia (rate of survival increase: 
55% ABTAA vs. 9% ABA). In these models, it was observed that 
ABTAA ameliorated endotoxemic and CLP-induced sepsis by 
preserving endothelial glycocalyx and microvascular integrity of 
major organs (24). Taken together, these studies underline the 
importance of Tie2 activation in ameliorating the progression of 
sepsis and demonstrate that solely blocking Ang2 is insufficient 
for preserving endothelial integrity during severe bacterial 
sepsis.

In addition to targeting the Tie2 receptor through Ang1 and  
Ang2, several other agents have been used to maintain Tie2 
phos phorylation in animal models of sepsis. For example, 
pharmacologic inhibition of the Tie2 phosphatase, VE-PTP, with 
AKB-9778 stabilized the pulmonary endothelium following LPS 
administration in mice (33), offering another potential mecha-
nism to modulate the activity of Tie2 in sepsis. This compound 
has already been used in human trials to treat diabetic macular 
edema and ocular neovascularization (43, 212). Alternatively, 
Vasculotide, a synthetic polyethylene glycol-clustered Tie2 ago-
nist, has been shown to sustain Tie2 activation in vivo. Its admin-
istration both pre- and post-CLP reduced end-organ dysfunction 
and mortality in the murine abdominal sepsis model (155). 
Vasculotide administration also preserved pulmonary endo-
thelial barrier function and survival following murine infection 
with several strains of influenza. Importantly, the protective effect 
was realized even with therapy delayed up to 72  h after infec-  
tion, conditions similar to typical septic patient presentations (214). 
Unlike interventions that manipulate Ang1 or Ang2 expression, 
Vasculotide is highly specific for the Tie2 receptor and does not 
displace Ang1 or Ang2. As such, Vasculotide may avoid interfer-
ing with off-target effects of Ang1 during the dynamic host sepsis  
response.

Although the pathophysiology Tie2-mediated vascular dys-
function in sepsis remains incompletely understood, the effects 
of these therapies in preclinical sepsis models warrant further 
investigation to develop human Tie2-directed therapies.

CONCLUSiON

The Ang/Tie2 axis plays an essential role in maintaining 
endothelial barrier stability and its disruption during systemic 
infection contributes to the pathologic cascade that culminates in 
end-organ failure and death. In addition to its mechanistic role in 
the pathobiology of sepsis, components of the Ang/Tie2 system 
can function as prognostic biomarkers of disease severity and 
outcomes, and potentially serve as important therapeutic targets 
in the management of sepsis.

The dysregulation of Ang/Tie2 signaling is “pathogen agnos-
tic” and appears to represent a final common pathway in many 
different types of microbial infections, including bacterial and 
parasitic processes described in this review. As such, therapeutic 
interventions to restore Tie2 activity may be useful in the early 
management of serious infections where there is a high degree of 
diagnostic uncertainty. Furthermore, use of Ang/Tie2 adjunctive 
therapy in sepsis may confer protection against the collateral sys-
temic damage that results in significant morbidity and mortality. 
The pathophysiology Tie2-mediated microvascular dysfunction 
in sepsis remains incompletely understood, but the findings from 
preclinical sepsis models warrant further investigation with the 
aim of developing human Tie2-directed therapies to improve 
outcomes of life-threatening infections.
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