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Background: Allogeneic hematopoietic stem cell transplantation is associated with a 
high risk of immune-mediated post-transplant complications. Graft depletion of immu-
nocompetent cell subsets is regarded as a possible strategy to reduce this risk without 
reducing antileukemic immune reactivity.

study design and methods: We investigated the effect of hematopoietic stem cell 
mobilization with granulocyte colony-stimulating factor (G-CSF) on peripheral blood and 
stem cell graft levels of various T, B, and NK cell subsets in healthy donors. The results 
from flow cytometric cell quantification were examined by bioinformatics analyses.

results: The G-CSF-induced mobilization of lymphocytes was a non-random process 
with preferential mobilization of naïve CD4+ and CD8+ T cells together with T cell recep-
tor αβ+ T cells, naïve T regulatory cells, type 1 T regulatory cells, mature and memory 
B cells, and cytokine-producing NK cells. Analysis of circulating lymphoid cell capacity 
to release various cytokines (IFNγ, IL10, TGFβ, IL4, IL9, IL17, and IL22) showed pref-
erential mobilization of IL10 releasing CD4+ T cells and CD3−19− cells. During G-CSF 
treatment, the healthy donors formed two subsets with generally strong and weaker 
mobilization of immunocompetent cells, respectively; hence the donors differed in their 
G-CSF responsiveness with regard to mobilization of immunocompetent cells. The diff-
erent responsiveness was not reflected in the graft levels of various immunocompetent 
cell subsets. Furthermore, differences in donor G-CSF responsiveness were associated 
with time until platelet engraftment. Finally, strong G-CSF-induced mobilization of various 
T cell subsets seemed to increase the risk of recipient acute graft versus host disease, 
and this was independent of the graft T cell levels.

conclusion: Healthy donors differ in their G-CSF responsiveness and preferential mobi-
lization of immunocompetent cells. This difference seems to influence post-transplant 
recipient outcomes.

Keywords: apheresis, graft versus host disease, granulocyte colony-stimulating factor, hematopoietic stem cell 
mobilization, hematopoietic stem cell transplantation, immune reconstitution, living donors, peripheral blood 
stem cells
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inTrODUcTiOn

Allogeneic hematopoietic stem cell transplantation is increas-
ingly used in the treatment of several diseases, especially 
hematological malignancies and disorders characterized by 
severe bone marrow failure (1–4). The treatment is associated 
with a risk of early death mainly due to treatment toxicity, severe 
early immunological complications [i.e., acute graft versus host 
disease (aGVHD)], and a risk of long-term morbidity mainly 
caused by chronic GVHD (5). Various strategies of graft 
manipulation have been tried to reduce the frequencies of these 
immunological complications, including CD34 enrichment by 
positive or negative selection, general T cell depletion, depletion 
of T cell subsets, or combined B/T cell depletion (5). The early 
studies showed that general T cell depletion was associated with 
a reduced risk of severe GVHD but an increased risk of leukemia 
relapse and graft failure (5), whereas more recent studies based on 
depletion of immunocompetent cell subsets are more promising 
(6–10). However, the effects of depleting subsets of immuno-
competent cells from the graft will probably be influenced by the 
frequencies of various remaining subsets of immunocompetent  
cells.

Treatment with granulocyte colony-stimulating factor (G-CSF) 
is commonly used for mobilization of peripheral blood stem cells 
in healthy donors (11, 12). G-CSF has several immunomodula-
tory effects, and for a detailed discussion and additional refer-
ences we refer to a recent review (13). First, among the important 
effects on T cells are G-CSF-induced preferential mobilization of 
naïve T cells, decreased expression of T cell activation markers 
as well as adhesion molecules and chemokine receptors, and  
finally Th2 polarization with reduced production of Th1 cyto-
kines. The levels of regulatory T  cells are increased. Second, 
effects on NK cells and NK cell subsets are less well characterized, 
but there seems to be a decreased release of pro-inflammatory 
cytokines. Third, the differentiation status of monocytes is 
altered with reduced production of pro-inflammatory cytokines 
and increased release of immunosuppressive IL-10. These effects 
seem to favor an immunosuppressive effect of G-CSF administra-
tion to healthy stem cell donors, but it should be emphasized that 
the question of donor heterogeneity has not been investigated in  
detail previously.

The aim of this study was to characterize more in detail the 
effects of G-CSF on the mobilization of various subsets of immu-
nocompetent cells and to have a focus on donor heterogeneity 
and differences in donor response to G-CSF. Hereafter, we will use 
the term “G-CSF responsiveness” to express the heterogeneous 
changes in donor peripheral blood levels of various lymphoid 
cell subsets during G-CSF treatment. We have characterized in 
detail the peripheral blood levels of various T, B, and NK  cell 
subsets after G-CSF stem cell mobilization for an unselected 
group of healthy stem cell donors. Our results showed that G-CSF 
treatment of healthy donors caused a preferential mobilization 
of immunocompetent cell subsets, donors could be classified 
as either strong or weak mobilizers of immunocompetent cells, 
and this difference in G-CSF responsiveness seemed to affect the 
post-transplant recipient outcomes.

MaTerials anD MeThODs

stem cell Donors and allotransplant 
recipients
The following participants were included: (i) 22 consecutive 
healthy HLA-matched related allogeneic stem cell donors, 14 
males and 8 females, median age 52.5 years (25–73) and (ii) 13 male 
and 7 female allogeneic stem cell recipients with hematological 
diseases, median age 47 years (35–69). 11 patients were diagnosed 
with acute myeloid leukemia (AML), 4 with aplastic anemia, 2 
with chronic myeloid leukemia, 2 with myelofibrosis, and 1 with 
chronic lymphatic leukemia. A more detailed characterization of 
the allotransplant recipients is given in Table S1 in Supplementary 
Material. The patients represent all allotransplanted patients from 
a defined area in Norway (the Western, Middle, and Northern 
Regions) during a defined time period and receiving stem cell 
grafts from matched family donors; i.e., this study should be 
regarded as a population-based study.

stem cell Mobilization and apheresis
The donors received stem cell mobilization with the human 
non-glycosylated G-CSF analog Filgrastim (Neupogen; Amgen, 
Thousand Oaks, CA, USA) or Tevagrastim (biosimilar Filgrastim; 
Petah Tiqwa, Israel). The donors received a median dose of 
5.4 µg/kg (range 4.1–6.7 µg/kg) twice daily. Stem cell harvest was 
performed when the peripheral blood stem cell count exceeded 
15–20 × 103/mL after 4 or 5 days with either large volume apher-
esis using Cobe Spectra cell separator version 7 (Terumo BCT 
Inc., Lakewood, CO, USA; 8 donors) or automated large volume 
MNC procedure using Spectra Optia cell separator version 9 
(Terumo BCT Inc., Lakewood, CO, USA; 14 donors).

allogeneic stem cell Transplantation
At the time of transplantation 11 patients were in their first com-
plete hematological remission, 2 patients were in their second 
complete remission and 7 patients had detectable disease (Table S1 
in Supplementary Material). 10 patients received myeloablative 
conditioning with intravenous busulfan plus cyclophosphamide 
(i) and 10 patients received reduced intensity conditioning with 
intravenous fludarabine plus busulfan (ii). After transplantation, 
all patients rece ived GVHD prophylaxis with cyclosporine A plus 
methotrexate.

sample collection and Preparation
Blood and Allograft Sampling
Venous blood samples from the allogeneic stem cell donors 
were collected (I) prior to G-CSF treatment at the time of the 
pre-transplant evaluation (median 20.5 days before apheresis). 
Blood samples were also drawn (II) in the morning immedi-
ately before apheresis, (III) immediately after apheresis, and 
(IV) approximately 24  h after start of apheresis. Samples for 
cell preparation were collected into ACD-A tubes with sodium 
citrate and acid-citrate-dextrose solution A as anticoagulants 
(Greiner Bio-One GmbH, Kremsmünster, Austria). Samples 
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TaBle 1 | Effect of granulocyte colony-stimulating factor (G-CSF) on peripheral blood and graft concentrations of various leukocyte subsets (n = 22) presented as 
median levels (×109/L) with variation ranges in parentheses.

leukocyte subset Prior to g-csF During g-csF p stem cell graft R/p

Neutrophils 3.4 (2.4–11.0) 36.8 (21.0–65.5) <0.00005 100.6 (29.6–234.0) 0.182/0.193
Monocytes 0.5 (0.2–0.7) 1.9 (0.9–3.9) <0.00005 35.1 (5.5–75.6) 0.062/0.659
Lymphocytes 1.7 (0.9–2.8) 3.9 (2.4–6.5) <0.00005 78.1 (42.2–182.6) 0.195/0.170
T cells 1.25 (0.60–2.26) 2.92 (1.29–4.17) <0.00005 53.92 (23.72–145.71) 0.316/0.052
B cells 0.15 (0.03–0.33) 0.50 (0.21–1.77) <0.00005 13.50 (3.12–26.46) 0.357/0.033*
NK cells 0.22 (0.05–0.50) 0.25 (0.07–0.68) NS 4.46 (1.74–14.47) 0.421/0.009**

The Wilcoxon’s test for paired samples was used for comparison of pre-treatment and G-CSF-treated concentrations (fourth column). The correlations between pre-apheresis and 
graft concentrations were analyzed with Kendall’s tau-b test and the correlation coefficients (R) and corresponding p-values are presented in the rightmost column.
*p < 0.05 and **p < 0.01.
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from stem cell allografts were transferred to plastic tubes with-
out additives.

Cryopreservation of PBMC Samples
After isolation by density-gradient centrifugation (Lymphoprep, 
AXIS-SHIELD PoC AS, Oslo, Norway; specific density: 1.077 g/
mL), PBMCs were dissolved in RPMI 1640 medium supplemented 
with 2 mmol/L l-glutamine, penicillin 100 IE/mL, streptomycin 
0.1 mg/mL (Sigma-Aldrich, St. Louis, MO, USA), and 20% inac-
tivated fetal bovine serum (Biowest, Nuaillé, France). Dimethyl 
sulfoxide 10% (Sigma-Aldrich, St. Louis, MO, USA) was used as 
a cryoprotectant, and the vials were stored in liquid nitrogen at 
−150°C after gradual cooling to −80°C in a Mr. Frosty Freezing 
Container (Thermo Fisher Scientific, Waltham, MA, USA).

Preparation and Flow cytometry analyses 
of Peripheral Blood Mononuclear cells
(a)  All PBMC samples were thawed in a 37°C water bath, dis-

solved in supplemented RPMI 1640 medium and incubated 
for 1  h (37°C, a humidified atmosphere of 5% CO2) before 
incubation with Near-IR fluorescent reactive dye (LIVE/
DEAD Fixable Dead Cell Stain Kit, Molecular Probes, 
Eugene, OR, USA) for 30 min. After washing in phosphate-
buffered saline with 1% bovine serum albumin fraction V 
(Roche Diagnostics GmbH, Mannheim, Germany), the 
cells were incubated for 20  min with the following mouse 
anti-human monoclonal antibodies: CD3-PE-Cy7 (SK7), CD3- 
V450 (UCHT1), CD4-PerCP-Cy5.5 (RPA-T4), CD8-V500 
(RPA-T8), CD16-Ax647 (3G8), CD19-PerCP-Cy5.5 (SJ25C1),  
CD24-PE-Cy7 (ML5), CD25-PE (M-A251), CD26-FITC 
(M-A261), CD27-FITC (M-T271), CD45-RA-V450 (HI100), 
CD56-PE (B159), CD45-RO-PE (UCHL), CD197/CCR7-
FITC (150503), CD197/CCR7-Ax647 (150503), T cell recep-
tor (TCR)αβ-BV510 (T10B91.A), TCRγδ-PE-Cy7 (11F2), 
iNKT(Vα24)-FITC (6b11) (all from Becton Dickinson 
Biosciences; BD Pharmingen, San Diego, CA, USA), CD49b- 
FITC (AK7; BioLegend, San Diego, CA, USA), LAG-3-PE 
(FAB2319P; R&D systems, Minneapolis, MN, USA), and 
mouse anti-human CD38-PB (HIT2; EXBIO, Prague, the 
Czech republic).

(b)  Samples for quantification of Treg cells were thawed and sur-
face stained as described earlier before fixation and permea-
bilization using eBioscience Staining Buffer Set (00-5523) as 

recommended by the manufacturer (eBioscience, San Diego, 
CA, USA). Intracellular staining was performed by incubat-
ing the cells for 30 min with mouse anti-human FoxP3-Ax647 
(236A/E7; Becton Dickinson Biosciences).

(c)  Samples for intracellular cytokine analyses were thawed as 
described in (a). The cell concentration was adjusted to 106 
cells/mL before stimulation for 5 h with leukocyte activation 
cocktail with BD GolgiPlug 2 μL/mL (PMA, Ionomycin and 
Brefeldin A) from Becton Dickinson Biosciences at 37°C in 
a humified atmosphere of 5% CO2. The cells were surface 
stained as described in (a) before fixation and permeabili-
zation as described in (b) and finally incubated for 30 min 
with the following mouse anti-human monoclonal antibod-
ies: IL4-Ax488 (8D4-8), IL9-Ax647 (MH9A3), IL10-APC 
(JES3-19F), IL17-A Ax488 (N49-653), IFNγ-V450 (B27), 
TGFβ (LAP)-PE (TW4-2F8) (all from Becton Dickinson 
Biosciences), and mouse anti-human monoclonal IL22-PE 
(142928) from R&D Systems (Abingdon, UK).

Flow cytometry analysis was performed using a FACS Canto II 
flow cytometer (Immunocytometry Systems; Becton Dickinson 
Biosciences, San Jose, CA, USA). Acquisition of 30,000 CD3+ 
T cells or 10,000 CD19+ B cells per sample was endeavored, and 
cytometer performance was monitored daily with Cytometer 
Setup and Tracking Beads (Becton Dickinson Biosciences). The 
data were analyzed with FlowJo software version 10.2 (FlowJo 
LLC, Ashland, OR, USA). The detailed gating strategy is shown 
in Figure S1 in Supplementary Material, and the main lymphoid 
cell subsets identified are presented in Table S2 in Supplementary 
Material together with detailed description of monoclonal anti-
bodies. The identification of various cell subsets are also shown 
in Tables 1 and 2.

White blood differential counts were performed at Laboratory 
of Clinical Biochemistry, Haukeland University Hospital, Bergen, 
Norway by multi-angle polarized scatter separation optical 
flow cytometry using the Cell-Dyn Sapphire analyzer (Abbot 
Diagnostics, Santa Clara, CA, USA).

statistical and Bioinformatics analyses
Descriptive statistics are given as median and range for non-
normally distributed variables. The Wilcoxon’s test for paired 
samples was used for analyses of paired observations, and the 
independent-samples Mann–Whitney U test and the Chi Square 
test for comparison of unpaired groups. Correlations between 
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TaBle 2 | Effect of granulocyte colony-stimulating factor (G-CSF) on peripheral blood and graft concentrations of T cell subsets (n = 22) presented as median levels 
(×109/L) with variation ranges in parentheses.

T cell subsets Prior to g-csF During g-csF p stem cell graft R/p

T helper cells (TH) (CD4+) 0.83 (0.39–1.37) 2.11 (0.92–3.47) 0.00004 41.10 (17.85–107.76) 0.337/0.038*
Cytotoxic T cells (TC) (CD8+) 0.29 (0.09–0.79) 0.58 (0.14–1.08) 0.0003 10.85 (3.37–33.15) 0.274/0.092
Naïve TH (CD4+45RA+CCR7+) 0.45 (0.13–0.95) 1.21 (0.34–2.05) 0.00004 21.82 (7.30–60.24) 0.474/0.004**
Central memory cells (TCM) (CD4+45RA−CCR7+) 0.20 (0.09–0.39) 0.37 (0.13–0.87) 0.00007 7.38 (2.79–24.35) 0.442/0.006**
Effector memory cells (TEM) (CD4+45RA−CCR7−) 0.14 (0.06–0.28) 0.29 (0.08–0.72) 0.00004 5.44 (4.01–13.36) 0.326/0.044*
Terminally differentiated (TTD) (CD4+45RA+CCR7−) 0.05 (0.02–0.18) 0.11 (0.05–0.38) 0.00008 3.09 (1.12–8.05) 0.463/0.004**
(CD4+45RO+CD26++) 0.02 (0.01–0.07) 0.05 (0.02–0.20) 0.00004 0.82 (0.31–3.25) 0.474/0.004**
Naïve TC (CD8+45RA+CCR7+) 0.13 (0.04–0.36) 0.24 (0.06–0.66) 0.0002 5.77 (1.63–12.46) 0.316/0.052
Central memory (CD8+45RA−CCR7+) 0.023 (0.003–0.080) 0.030 (0.007–0.137) 0.004 0.67 (0.08–3.03) 0.567/0.001**
Effector memory (CD8+45RA−CCR7−) 0.03 (0.01–0.10) 0.06 (0.01–0.17) 0.0002 1.05 (0.52–3.85) 0.442/0.006**
Effector (TEMRA) (CD8+45RA+CCR7−) 0.08 (0.02–0.41) 0.12 (0.02–0.36) 0.036 2.93 (0.88–14.35) 0.537/0.001**
(CD8+45RO+CD26++) 0.011 (0.001–0.088) 0.016 (0.002–0.101) NS 0.24 (0.02–1.83) 0.637/0.0001***
𝜶β T cells (CD3+T cell receptor (TCR)𝜶β+) 1.18 (0.58–2.14) 2.76 (1.21–4.04) 0.00005 52.60 (20.63–140.47) 0.316/0.052
γδ T cells (CD3+4−8−TCRγδ+) 0.048 (0.004–0.118) 0.046 (0.009–0.178) 0.017 1.15 (0.30–4.20) 0.484/0.003**
Naïve T regulatory cells (CD4+25+45RA+FOXP3+) 0.010 (0.003–0.042) 0.019 (0.007–0.124) 0.00008 0.457 (0.165–1.817) 0.453/0.005**
Effector T regulatory cells (CD4+25+45RA−FOXP3+) 0.030 (0.016–0.068) 0.071 (0.027–0.178) 0.00004 1.268 (0.541–4.207) 0.453/0.005**
Type 1 regulatory (Tr1) (CD4+45RA−49b+LAG3+) 0.006 (0.002–0.018) 0.011 (0.004–0.064) 0.003 0.217 (<0.001–0.920) 0.211/0.194

The Wilcoxon’s test for paired samples was used for comparison of pre-treatment and G-CSF-treated concentrations (fourth column). The correlations between pre-apheresis and 
graft concentrations were analyzed with Kendall’s tau-b test and the correlation coefficients (R) and corresponding p-values are presented in the rightmost column.
*p < 0.05, **p < 0.01, and ***p < 0.001.
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continuous variables are given as the Kendall’s tau-b coefficient 
with corresponding p-value. J-Express (MolMine AS, Bergen, 
Norway) was applied for bioinformatics analyses (14). Time to 
reconstitution was analyzed with the Kaplan–Meier survival 
method with the log-rank test, Cox regression with backward 
selection, and competing risks analysis. All statistical analyses were 
performed in the standard computer software package IBM SPSS 
Statistics 22 (IBM Corporate, New York, NY, USA) except for the 
competing risks analyses that were done using Stata (StataCorp, 
Lakeway Drive College Station, Texas, USA).

resUlTs

g-csF Treatment of healthy stem cell 
Donors increased Peripheral Blood levels 
especially of neutrophils but also 
Monocytes and Total lymphocytes
Granulocyte colony-stimulating factor treatment induced 
a five- to tenfold increase in the total peripheral blood 
leukocyte counts from a median level of 6.0  ×  109/L (range 
4.4–13.4  ×  109/L) to 44.9  ×  109/L (range 26.0–71.2  ×  109/L). 
The absolute levels of virtually all leukocyte subpopulations 
increased (see below, Table  1; Figure  1). The increase in the 
proportion of neutrophils corresponded to a median fold 
change of 8.6, whereas the median fold change for monocytes 
was 5.0 and for total lymphocytes 2.1 (Figure  2; Table S3 in 
Supplementary Material).

g-csF Treatment resulted in an increased 
B cell Fraction and Decreased nK cell 
Fraction Whereas the T cell Fraction Was 
not altered
As can be seen from Table 1 and Figures 1 and 2, there was a 
twofold rise in median peripheral blood T  cell concentration 

and a threefold increase in median B cell concentration during 
G-CSF administration. However, the median NK cell concen-
tration was not significantly affected by G-CSF. Consequently, 
there was a significant decrease in the NK  cell percentage 
among lymphoid cells during G-CSF treatment from median 
11.7 to 6.4% (p = 0.00006) and an increase in lymphocyte B cell 
percentage from median 8.4 to 10.8% (p = 0.0001). The change 
in T cell percentage from a median value of 73.3 to 69.4% was 
not statistically significant (Table S3 in Supplementary Material; 
Figure 1).

g-csF increased the cD4/cD8 ratio and 
the Proportion of naïve T regulatory cells 
but reduced the Fraction of cytotoxic 
Terminally Differentiated effector T cells 
and Tcrγδ+ T cells
There was a significant increase in the fraction of CD4+ T helper 
cells (TH) in peripheral blood and an equivalent decrease in CD8+ 
T cytotoxic cells (TC) during G-CSF therapy (Table 2; Figure 1). 
The median CD4/CD8 ratio thereby increased from 2.6 (range 
1.1–7.3) to 2.9 (range 1.3–7.4, p = 0.001) during treatment. The 
increased fraction of CD4+ cells was mainly due to an increased 
mobilization of naïve CD4+ T  cells (TN) with a significantly 
reduced fraction of central memory cells.

Cytotoxic CD8+ T cells can be divided into at least four subsets 
(15, 16). G-CSF caused a preferential mobilization of naïve CD8+ 
cytotoxic T  cells, and we now observed significantly reduced 
fractions of terminally differentiated cytotoxic CD45RA+ effec-
tor cell (TEMRA) and cytotoxic CD45RA−RO+ CD26hi cells 
with unchanged central and effector memory TC levels (Table 2; 
Figure 1; Table S4 in Supplementary Material).

Granulocyte colony-stimulating factor therapy preferentially 
increased the levels of circulating TCR𝜶β+ T  cells, leading to 
significantly reduced proportion of TCRγδ+ T  cells. Finally, 
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FigUre 1 | Untreated healthy donor peripheral blood immune cell concentrations (black columns) are compared to levels after granulocyte colony-stimulating  
factor (G-CSF) treatment (white columns). Subsets with significantly changed concentrations during G-CSF treatment are indicated with bold fonts. The peripheral 
blood concentrations (×109/L) are given on the x-axes. The following subpopulations are presented: neutrophils, monocytes, and lymphocytes (CD4+ T helper cells, 
CD8+ T cytotoxic cells, CD19+ B cells, and CD56+ NK cells), NK cells [CD56+16++ cytolytic NK cells, CD56++ 16+ cytokine producing NK cells, and CD3+Vα24+ 
invariant NKT (iNKT) cells], B cells [CD19+24++38++ transitional B cells, CD19+24+38+ mature B cells, CD19+24++38−, and CD19+27+ memory B cells and B cell  
IL-2 receptor (CD25) expression], CD3+ T cell expression of T cell receptor 𝜶β and γδ, CD4+ and CD8+ memory subsets (naïve CD45RA+ CCR7+, central memory 
CD45RA−CCR7+, effector memory CD45RA−CCR7−, and terminally differentiated CD45RA+CCR7−), and T regulatory cells [naïve CD4+25+45RA+FOXP3+ 
T regulatory cells, effector CD4+25+45RA−FOXP3+ T regulatory cells, and CD4+45RA−49b+LAG3+ type 1 T regulatory cells (Tr1)]. All immune subsets with 
corresponding immunophenotypes and concentrations before and after G-CSF treatment are also listed in Table 2 and in Table S4 in Supplementary Material.  
The percentages from all flow cytometry analyses are presented in Table S4 in Supplementary Material.

5

Melve et al. Blood Lymphocytes During G-CSF Treatment

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 845

especially the levels of circulating naïve but also effector T regula-
tory cells and type 1 T  regulatory cells (Tr1) increased during 
G-CSF therapy (Table 2; Figures 1 and 2).

Taken together, these observations demonstrate that G-CSF-
induced T cell mobilization is not a random process with a similar 
effect on all T  cell subsets, but rather a more selective process 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 2 | Comparison of granulocyte colony-stimulating factor (G-CSF) induced peripheral blood increments of different immune cell populations and blood 
platelets. T, B, and NK cell subsets are presented with different colors. The peripheral blood concentration of each subset was calculated before and after G-CSF 
treatment and relative change calculated. Please see Table 2 and Table S2 in Supplementary Material for classification of all immunophenotypes presented.

6

Melve et al. Blood Lymphocytes During G-CSF Treatment

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 845

with preferential mobilization of naïve CD4+ and CD8+ T cells 
together with TCR𝜶β+ T cells and various subsets of regulatory 
T cells.

g-csF Therapy caused a strong 
Mobilization of Mature and Memory  
B cells and Decreased B cell expression 
of the il-2 receptor
Peripheral blood CD19+ B  cells can be divided into the three 
subsets transitional, mature, and memory B  cells based on the 

coexpression of CD24 and CD38 (17). Mature and memory 
B cells showed the highest fold change during G-CSF treatment 
of all lymphoid cell subsets examined (Figure  2). Thus, B  cell 
mobilization is not a random process either but represents a 
preferential increase of certain subsets similar to the T cell mobi-
lization. Finally, the expression of IL2 receptor on human B cells is 
reported to be important for their antigen presentation and T cell 
activation (18). During G-CSF treatment, the B cell expression 
of the IL2 receptor decreased, and particularly the fraction of 
B cells with high IL2-R expression was reduced (Figures 1 and 2; 
Table 3; Table S4 in Supplementary Material).
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TaBle 3 | Effect of granulocyte colony-stimulating factor (G-CSF) on peripheral blood and graft concentrations of B and NK cell subsets (n = 22) presented as median 
levels (×109/L) with variation ranges in parentheses.

lymphoid cell subsets Prior to g-csF During g-csF p stem cell graft R/p

Transitional B (CD19+24++38++) 0.005 (0.001–0.021) 0.013 (0.005–0.034) 0.00004 0.311 (0.087–1.045) 0.310/0.064
Mature B (CD19+24+38+) 0.094 (0.022–0.274) 0.352 (0.147–1.471) 0.00004 7.61 (1.52–19.09) 0.462/0.006**
Memory B (CD19+24++38−) 0.023 (0.002–0.097) 0.059 (0.016–0.295) 0.00004 1.898 (0.319–9.011) 0.427/0.011*
(CD19+27+) 0.027 (0.003–0.131) 0.067 (0.018–0.459) 0.00004 1.055 (0.535–13.742) 0.462/0.006**
IL-2R+ B (CD19+25+) 0.002 (<0.001–0.017) 0.002 (0.001–0.043) NS 0.065 (0.012–1.028) 0.661/0.00008****
IL-2Rdull B (CD19+25dull) 0.017 (0.002–0.070) 0.031 (0.007–0.228) 0.0001 0.671 (0.196–6.422) 0.322/0.054
Cytolytic NK (CD56+16++) 0.191 (0.025–0.447) 0.201 (0.025–0.521) NS 3.901 (0.882–11.986) 0.379/0.019*
Cytokine producing NK (CD56++16+) 0.018 (0.006–0.038) 0.029 (0.005–0.230) 0.001 0.619 (0.261–2.117) 0.200/0.218
Invariant NKT (CD3+Vα24+.) 0.003 (0.001–0.022) 0.003 (0.001–0.023) NS 0.089 (0.006–2.147) 0.295/0.069

The Wilcoxon’s test for paired samples was used for comparison of pre-treatment and G-CSF-treated concentrations (fourth column). The correlations between pre-apheresis and 
graft concentrations were analyzed with Kendall’s tau-b test, and the correlation coefficients (R) and corresponding p-values are presented in the rightmost column.
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

7

Melve et al. Blood Lymphocytes During G-CSF Treatment

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 845

Only cytokine-Producing nK cells 
increased During g-csF Therapy  
Whereas the levels of Other circulating 
nK cell subsets Were not altered
The peripheral blood concentrations of cytokine-producing 
CD56++CD16+ NK cells increased only weakly (Table 2, p = 0.001)  
during G-CSF treatment, whereas neither the level of cytolytic 
CD56+CD16++ NK cells nor invariant NKT (iNKT) cells showed 
any significant changes. Consequently, the fractions of these 
subsets were decreased during G-CSF therapy [i.e., immediately 
before stem cell apheresis (Table 3; Figure 1 and 2; Table S4 in 
Supplementary Material)].

g-csF Treatment of healthy Donors 
caused Preferential Mobilization of 
certain cytokine-Producing lymphoid  
cell subsets
We investigated the intracellular levels of IFNγ, IL10, TGFβ, IL4, 
IL9, IL17, and IL22 in circulating main lymphoid subsets, and 
generally we found increased levels of cytokine-producing cells 
during mobilization with G-CSF (Figure 3; Tables 4 and 5). In 
addition to CD3+, CD4+, and CD8+ T cells and CD19+ B cells, 
we analyzed the cytokine production in the PB CD3−19− and 
CD3+4−8− populations. The CD3−19− compartment is mainly 
composed of NK cells and innate lymphoid cells and the CD3+4−8− 
subset primarily contains γδ T cells in addition to NKT cells. As 
shown in Table S5 in Supplementary Material, the percentage 
distribution of various cytokines was characteristic of each lym-
phoid subset, and the essential cytokine profile of each subset was 
conserved during G-CSF treatment. The fractions of IFNγ- and 
TGFβ-producing cells were high in all subsets except B  cells, 
which showed low IFNγ and high IL10 production, and CD3−19− 
cells with low TGFβ-production and high IL9 expression.

Both prior to and during G-CSF administration, the highest 
fractions of IFNγ expressing cells were observed for TC. G-CSF 
treatment led to reduced IFNγ+ fractions for TC cells, CD4−CD8− 
T cells, and CD3−19− cells. Furthermore, G-CSF increased the frac-
tions of IL10 expressing TH, TC, and CD3−19− cells. Finally, TGFβ 
was expressed in a large fraction of most investigated lymphoid  

subsets before and during mobilization, but only B  cells and 
CD3−19− cells showed significantly reduced TGFβ+ fractions 
during G-CSF therapy. There were generally low fractions of IL4, 
IL17, and IL22 expressing cells for all lymphoid subsets and these 
fractions remained small after G-CSF therapy, whereas for IL9 
we noticed relatively large fractions within CD4−8− T cells and 
especially CD3−19− cells (Figure 3; Table S5 in Supplementary 
Material).

Taken together, these observations suggest that the preferen-
tial mobilization alters the overall cytokine release capacity of 
circulating immunocompetent cells.

graft levels of lymphoid cell  
subsets Were increased but reflected  
the Peripheral Blood levels of 
immunocompetent cells immediately 
Before harvesting
As expected, the graft concentrations of various lymphoid cell 
subpopulations were generally higher than the peripheral blood 
levels tested immediately before apheresis, and for most lymphoid 
cell subsets the graft concentration represents at least a 20-fold 
enrichment (Figure  2; Tables  1–3). The median lymphocyte 
percentage corresponded to only 9.3% of circulating viable white 
blood cells immediately before stem cell apheresis, but increased 
to 36.6% in the stem cell graft. The median monocyte percentage 
increased to 16.2%, whereas the neutrophil percentage decreased 
to 42.4% (Figure 2; Table 1; Table S3 in Supplementary Material).

The fractions of B  cells and monocytes among total PB 
leukocytes increased during G-CSF treatment, and there was 
an up-concentration of these two cell subsets in the grafts (cor-
responding to 90-fold and almost 60-fold, respectively) compared 
to the blood level before G-CSF administration. The T cell and 
especially neutrophil fractions also increased during mobiliza-
tion, and the up-concentration in the graft corresponded to 
45-fold and 30-fold increments compared with the pre-treatment 
levels. The NK cell fraction was reduced during mobilization and 
the graft levels of NK cells corresponded to a 20-fold increment 
compared to pre-treatment PB level (Figure 2; Table 1; Table S3 
in Supplementary Material).

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


TaBle 5 | Effect of stem cell mobilization with granulocyte colony-stimulating 
factor (G-CSF) on healthy donor B and CD3−19− cell intracellular cytokine 
production (n = 22).

B cells cD3−19− cells

cytokine Prior to/during 
g-csF

p Prior to/during 
g-csF

p

IFNγ 0.0013/0.0036 0.002 (↑) 0.0789/0.0776 NS
IL10 0.0012/0.0041 0.001 (↑) 0.0005/0.0010 0.005 (↑)
IL17 0.0001/0.0003 0.001 (↑) 0.0001/0.0004 NS
TGFβ 0.0130/0.0249 0.000295 (↑) 0.0043/0.0033 0.022 (↓)
IL4 0.0013/0.0049 0.000069 (↑) 0.0039/0.0078 0.003 (↑)
IL9 0.0011/0.0012 NS 0.0925/0.1086 NS
IL22 0.0010/0.0030 0.000187 (↑) 0.0006/0.0006 NS

For each cytokine, the pre-treatment concentrations (×109/L) of positive cells are 
shown together with the concentrations after G-CSF treatment on the line below  
(prior to/during G-CSF), see also Figure 3. The Wilcoxon’s test for paired samples  
was used for comparison of pre-treatment and G-CSF-treated concentrations.
(↑), significant increased concentration; (↓), significant decreased concentration; NS, 
non-significant; p = p-value.

TaBle 4 | Effect of stem cell mobilization with granulocyte colony-stimulating factor (G-CSF) on healthy donor T cell intracellular cytokine production (n = 22).

Th cells Tc cells cD3+4−8− T cells

cytokine Prior to/during g-csF p Prior to/during g-csF p Prior to/during g-csF p

IFNγ 0.157/0.374 0.00004 (↑) 0.154/0.302 0.001 (↑) 0.030/0.040 0.022 (↑)
IL10 0.0042/0.0100 0.00004 (↑) 0.0010/0.0019 0.000061 (↑) 0.0001/0.0003 0.001 (↑)
IL17 0.0091/0.0152 0.000046 (↑) 0.0008/0.0014 0.005 (↑) 0.0001/0.0004 0.007 (↑)
TGFβ 0.178/0.367 0.000061 (↑) 0.112/0.231 0.004 (↑) 0.0150/0.0297 0.024 (↑)
IL4 0.0175/0.0322 0.000367 (↑) 0.0053/0.0070 NS 0.0002/0.0002 NS
IL9 0.0048/0.0152 0.001 (↑) 0.0112/0.0107 0.011 (↓) 0.0025/0.0055 NS
IL22 0.0153/0.0211 NS 0.0033/0.0034 NS 0.0001/0.0001 NS

From left to right, the results for T helper cells (TH), T cytotoxic cells (TC), and CD3+4−8− T cells are presented. For each cytokine, the untreated concentrations (×109/L) of positive 
cells are shown together with the concentrations during G-CSF treatment on the line below (prior to/during G-CSF), see also Figure 3. The Wilcoxon’s test for paired samples was 
used for comparison of pre-treatment and G-CSF-treated concentrations.
(↑), significant increased concentration; (↓), significant decreased concentration; NS, non-significant; p = p-value.

FigUre 3 | Intracellular concentrations of immunoregulatory cytokines prior to stem cell mobilization (black columns) are compared to levels after granulocyte 
colony-stimulating factor (G-CSF) treatment (white columns). Subsets with significantly changed concentrations during G-CSF treatment are indicated with bold 
fonts. The peripheral blood concentrations (×109/L) are given on the x-axes. From left to right, results for CD4+ T helper cells, CD8+ T cytotoxic cells, CD4−8− T cells, 
CD19+ B cells, and CD3−19− cells are presented. The concentrations of all subsets prior to and during G-CSF treatment are also listed in Tables 4 and 5 and Table 
S5 in Supplementary Material. The percentages from all flow cytometry analyses are presented in Table S5 in Supplementary Material.
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Finally, we investigated whether the PB  cell subset levels 
immediately before apheresis showed any correlations with the 
corresponding graft levels (Tables 1–3). Significant correlations 
were detected for most cell subsets. Thus, the graft levels of 
immunocompetent cells in general reflected the corresponding 
peripheral blood levels at the time of harvesting.

healthy Donors could Be sub-classified 
Based on Both the Pre-Treatment levels 
and the increase in circulating lymphoid 
cell subsets in response to g-csF 
Treatment
We observed a considerable variation between stem cell donors 
in leukocyte subset levels in peripheral blood both prior to and 
during G-CSF therapy. An unsupervised hierarchical clustering 
analysis based on untreated B, T, and NK  cell concentrations 
identified two donor clusters (Figure S2A in Supplementary 
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FigUre 4 | Unsupervised hierarchical cluster analyses based on healthy donor lymphocyte subset concentration changes during granulocyte colony-stimulating 
factor (G-CSF) treatment. All values were median normalized and log-2 transformed before performing the unsupervised hierarchical clustering analysis, and 
complete linkage was used as a linkage method. Euclidian distance metrics was used for distance measure. The heat map with the corresponding dendrograms  
is presented. Red color indicates concentration change higher than the median, whereas blue color indicates concentration change lower than the median. The 
vertical donor clustering into two main clusters is presented to the left of the heat map, whereas the rightmost column presents the donor identification numbers of 
the two clusters marked with different colors. The prevalence of acute graft versus host disease (GVHD) grades II–IV in the recipients of the donor cells is presented 
in a separate column to the right of the heat map. The six donors to the recipients diagnosed with this complication are marked with purple color.
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Material) characterized by significant and inverse differences in 
NK cell and B cell concentrations (p = 0.0001 and 0.0004, Mann–
Whitney U test). Differences between donors with regard to the 
B/NK cell levels were maintained during G-CSF therapy (Figure 
S2B in Supplementary Material).

We also performed unsupervised hierarchical clustering based 
on concentration changes in immunocompetent cells during 
G-CSF therapy (i.e., the ratio between pre-harvest PB concentra-
tions and the concentrations prior to G-CSF administration for 
each immune cell subset), and again we identified two main donor 
subsets characterized by a generally strong or weak immune cell 
mobilizing effect of G-CSF (Figure 4). The donors in the upper 
cluster had significantly stronger effects of G-CSF compared 
to the donors in the lower cluster, and a greater increase in the 
peripheral blood cell concentration than in the lower cluster 
was seen for all lymphoid cell subsets except Tr1, iNKT  cells, 
and CD25+ B  cells. The most significant differences in G-CSF-
induced concentration alterations were seen for TCR𝜶β+ T cells 
and T cytotoxic effector memory cells (Mann–Whitney U test; 
p = 0.000006), T helper effector memory cells and CD3+4−8− cells 
(p = 0.00002), and T helper central memory cells (p = 0.00004).

We investigated whether the main clusters identified in these 
two analyses (i.e., pre G-CSF lymphocyte concentration and 

G-CSF responsiveness) differed with regard to donor age, gender, 
ethnicity, previous diseases (especially autoimmune diseases), 
G-CSF dose, peripheral blood and graft CD34+ cell concentra-
tion, donor yield, infused dose of CD34+ cells per kilogram to the 
patients and graft content of all identified cell subsets. However, 
no significant differences were then observed for any of these 
variables when comparing the two main clusters in each of the 
two hierarchical clustering analyses (data not shown).

graft levels of immunocompetent cell 
subsets Did not reflect the corresponding 
alterations in circulating lymphoid cell 
subsets During g-csF Mobilization
We investigated whether the G-CSF-induced alteration in 
PB concentrations of various immunocompetent cell subsets  
(i.e., their cell concentration increments or G-CSF responsiveness) 
showed any correlations with the corresponding graft concentra-
tions. However, these analyses did not show significant correla-
tions for any of the cell subsets. Thus, the graft concentrations of 
immunocompetent cell subsets do not reflect the pre-apheresis  
donor responsiveness to G-CSF immune cell mobilization. Fur-
thermore, we also compared the two donor subsets identified in 
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the clustering analysis of G-CSF responsiveness (Figure  4), and 
these two donor subsets did not differ significantly with regard to 
graft concentrations or infused cell doses of CD34+ cells or of any 
immunocompetent cell subset or with regard to any of the donor 
characteristics mentioned above. Both these analyses suggest that 
the differences in donor responsiveness to G-CSF treatment (i.e., 
qualitative characteristics) are not reflected in the graft concen-
trations (i.e., quantitative characteristics) of immunocompetent 
cell subsets.

g-csF responsiveness in Mobilization of 
Various immunocompetent cell subsets 
Was associated With Time Until Post-
Transplant hematopoietic reconstitution
During the first day of apheresis, the median yield of CD34+ 
hematopoietic stem cells corresponded to 5.1  ×  106  per kg 
donor weight (range 0.8–22.4 × 106/kg) and showed a negative 
correlation to donor weight (R = −0.481, p = 0.001). The stem 
cell products from 20 of the 22 healthy donors were transplanted 
to the recipients as planned, whereas the two last transplanta-
tions were canceled due to disease progression. The median total 
stem cell dose infused was 5.6 × 106 per kg patient’s body weight 
(range 3.9–8.2 ×  106/kg). Neutrophil reconstitution with stable 
peripheral blood neutrophils >0.5 ×  109/L was achieved by 18 
of the 20 recipients after a mean of 17 days (range 8–26 days). 
Furthermore, stable platelet reconstitution with peripheral blood 
levels exceeding 50 × 109/L was achieved by 15 recipients after a 
mean of 18 days (range 12–39 days).

We investigated whether the donor subsets identified based 
on the pre-treatment levels of lymphocytes (Figure S2A in 
Supplementary Material) or the G-CSF induced concentration 
increase in various lymphocyte subsets (Figure  4) differed 
with respect to recipient neutrophil and platelet reconstitution. 
The recipients corresponding to donors in the upper cluster in 
Figure S2A in Supplementary Material (n = 9) had mean time 
to neutrophil reconstitution of 20  days (range 17–26  days), 
whereas the recipients corresponding to the lower cluster (n = 9) 
achieved neutrophil reconstitution after mean 16  days (range 
8–18). Two patients died early before reconstitution. We did a 
multivariate analysis of predictors potentially influencing time to 
neutrophil reconstitution using Cox regression and including all 
20 patients. Patients that died and patients without reconstitution 
were treated as censored observations. The potential predictors 
included patient age and gender, female to male transplanta-
tion, myeloablative versus reduced intensity conditioning, acute 
GVHD prophylaxis (completed methotrexate prophylaxis versus 
reduced methotrexate dose), infused stem cell dose, infused total 
leukocyte dose, ABO incompatibility, disease diagnosis, disease 
stage according to the EBMT index (19), and patient classification 
based on the donor clustering in Figure S2A in Supplementary 
Material. In the Cox regression of time to neutrophil recon-
stitution, the following four variables remained significant 
predictors after backward selection at significance level 0.05 in 
the likelihood ratio test: ABO incompatibility [HR = 11.74, 95% 
CI: (1.84, 75.70), p  =  0.004], patient age [HR  =  1.12, 95% CI: 
(0.99,1.26), p = 0.037], conditioning regimen [myeloablative or 

reduced intensity conditioning, HR = 7.48, 95% CI: (0.78,71.20), 
p  =  0.045] and pre-transplant remission status [first complete 
remission, second complete remission or detectable disease 
[HR1 = 9.45:95% CI: (0.96,92.71), HR2 = 4.81; 95% CI: (0.46, 
50.45), p = 0.050].

We also compared the hematopoietic reconstitution for the 
two donor clusters/subsets identified in Figure 4 (G-CSF induced 
concentration increase in peripheral blood cell levels). These 
donor/patient subsets did not differ with respect to neutrophil 
reconstitution. Of the 15 patients who achieved platelet counts 
above 50 × 109/L during the first 7 weeks seven belonged to the 
upper donor cluster that was characterized by a generally large 
G-CSF induced increase in the peripheral blood levels of all 
immunocompetent cell subsets, and their mean time until plate-
let reconstitution was 21 days (range 15–39 days). Eight of the 15 
patients recipients belonged to the lower donor cluster had a mean 
time until platelet reconstitution of 15 days (range 12–17 days). 
Two patients died early before reconstitution, one patient never 
had platelet counts below 50 × 109/L (registered as missing data), 
and two patients showed delayed platelet reconstitution. Similar 
to our analysis of neutrophil reconstitution (see above), we did 
a multivariate analysis of factors potentially influencing platelet 
reconstitution, including all the variables listed above (patient 
age and gender, female to male transplantation, myeloablative 
versus reduced intensity conditioning, acute GVHD prophylaxis, 
infused stem cell dose, infused total leukocyte dose, ABO incom-
patibility, disease diagnosis, disease stage according to the EBMT 
index (19), and patient classification corresponding to the donor 
clustering presented in Figure 4). In the Cox regression of time 
to platelet reconstitution, the following two variables remained 
significant predictors: ABO incompatibility [HR = 16.0, 95% CI: 
(1.64,156), p = 0.002] and overall donor G-CSF responsiveness 
in terms of G-CSF-induced concentration change [see Figure 4, 
HR  =  4.54, 95% CI: (1.25, 16.5), p  =  0.017]. Thus, the donor 
G-CSF responsiveness seems to be one of the factors important 
for the hematopoietic reconstitution.

Post-Transplant Outcomes Differ for 
Patients receiving allografts From  
Donors With generally strong and  
Weak Mobilization of immunocompetent 
cells in response to g-csF
After allogeneic stem cell infusion, the patients were observed 
until death or study closure; the median observation time was 
701 days (variation range 19–1944 days). All survivors had been 
observed for at least 1160 days. Six recipients were diagnosed with 
acute GVHD grade II–IV, and all their donors belonged to the 
upper cluster in Figure 4 characterized by great G-CSF-induced 
increase, i.e., strong G-CSF responsiveness (p = 0.001, Pearson 
Chi-Square test).

We also compared the recipient mortality for the two donor 
subsets identified in Figure  4 (response to G-CSF) using the 
Kaplan–Meier method. The two recipient subsets corresponding 
to these two donor clusters did not differ significantly in overall 
survival. However, the causes of death differed between the two 
groups. For the donors/patients in the upper cluster, one patient 
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died of relapse but five patients died from other causes, whereas 
for the patients in the lower subset five patients died from relapse 
and one patient died after retransplantation for graft failure. Thus, 
there was a different distribution of relapse and non-relapse mor-
tality for the patients corresponding to these two donor clusters/
subsets. In a competing risk analysis of time to non-relapse or 
relapse death, we found that patients receiving stem cell grafts 
from donors with strong G-CSF responsiveness had a higher risk 
of non-relapse death compared to recipients of grafts from donors 
with weaker G-CSF responsiveness (Figure 5, p = 0.031), but the 
donor G-CSF responsiveness did not have any effect on time to 
death due to relapse (p = 0.121).

DiscUssiOn

In the present study, we describe hematopoietic stem cell mobi-
lization in healthy donors as a heterogeneous process both with  
regard to differences between donors in pre-mobilization levels 
of circulating immunocompetent cell subsets, the general donor 
responsiveness to G-CSF with respect to mobilization of immune 
cell subsets, and differences in mobilization between various 
immune cell subsets (i.e., preferential mobilization). Our obser-
vations suggest that such differences may have an impact on the 
post-transplant outcome of the graft recipients.

We investigated an unselected group of allotransplanted 
patients from a defined geographic area during a defined time 
period and receiving peripheral blood stem cell grafts from 
matched family donors; this study should therefore be regarded as 
population-based and including well-characterized patients with 
a limited heterogeneity with regard to conditioning treatment, 
stem cell donors, graft preparation, and posttransplant handling 
with regard to GVHD and antibiotic prophylaxis. We would 
therefore emphasize that future studies have to clarify whether our 

results are representative also for other allotransplant recipients, 
i.e., patients with matched unrelated donors, other condition-
ing regimens, other GVHD or antibiotic prophylaxis, or other  
diagnoses.

The immune system represents an interactive network of a 
wide range of immunocompetent cell subsets. Clustering analysis 
is a methodological approach to identify such network-mediated 
interactions and correlations/covariations, and these covariations 
can then be a basis for identification of patient or donor subsets 
showing biological similarities. In the present study, clustering 
analyses could be used to identify distinct donor subsets based 
on analysis of their responsiveness to G-CSF.

The preferential G-CSF induced mobilization of several T, B, 
and NK cell subsets is also reflected in the graft. Graft manipu-
lation either as ex vivo positive or negative selection, in  vivo 
depletion of T cells by anti-thymocyte globulin or in vivo donor 
immunomodulation prior to harvesting are now considered 
as possible strategies for graft manipulation of healthy donors 
(5–10, 20–25). This study shows that donors/grafts differ in 
their content of various immunocompetent cell subsets, and a 
detailed characterization of these cells in stem cell allografts will 
probably be a necessary basis for optimally designed allografts. 
Previous studies of immunocompetent cells in G-CSF-mobilized 
grafts (13, 26–28) as well as more recent studies investigating 
associations between graft immunocompetent cells and recipi-
ent outcome have focused on selected immunocompetent cell 
subsets (26, 29–34), whereas we examined a wider profile of 
immunocompetent cells and included a focus on their G-CSF 
responsiveness.

Our results suggest that G-CSF therapy induces a preferen-
tial mobilization of immunocompetent cells. Relatively weak 
mobilizing of certain cell subsets may be important for the post-
transplant clinical course of the allotransplant recipients. First, 
TCRγδ+ T cells and NK cells seem to be important for the risk 
of aGVHD (35–37). Second, high numbers of CD8+ CD45RO+ 
CD26++ cells in autografts are important for the risk of relapse/
progression (38), whereas TEMRA is associated with a risk of 
cGVHD (39). Third, IL-2R-expressing B cells play a role in T cell 
activation and may have a role in the pathogenesis of aGVHD 
(18). Finally, reduced fractions of iNKT  cells and preferential 
mobilization of naïve TH may increase the risk of aGVHD (40, 41), 
but the preferential mobilization of CD4 cells also includes regu-
latory T cell subsets with immunosuppressive effects (42). Thus, 
the final effect of the reduced mobilization of these functionally 
different lymphoid subsets is difficult to predict but may represent 
an immunosuppressive effect. The effect of G-CSF on the cytokine 
release by immunocompetent cells has only been examined in a 
few previous studies (43–47); our present detailed characteriza-
tion suggests that G-CSF therapy also alters the cytokine release 
profile of immunocompetent cells.

We did not find any associations between the infused dose 
of various immune cell subsets and the clinical outcome of the 
recipients, and results from previous studies of associations 
between cell subset dose and outcome are also conflicting 
(29, 30, 33, 48–50). Our present results support previous studies 
suggesting that the balance between different immunocompe-
tent cell subsets is important (31, 32, 37, 51) and in addition 
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our results suggest that the broader immunocompetent cell 
subset profile as well as the dose-independent responsiveness 
to G-CSF (i.e., the increase in the concentrations of various 
subsets, Figure 4) are more important than differences in single 
cell subset levels. Dhedin et al. previously reported that the indi-
vidual donor response to G-CSF with regard to CD34+ stem cell 
mobilization was the best predictor of later aGVHD (52), but 
we could not confirm this. However, we also observed an asso-
ciation between donor responsiveness to G-CSF and aGVHD 
(Figure 4), i.e., a generally strong G-CSF-induced mobilization 
of immunocompetent cells (especially T  cell subsets) in the 
donor was associated with increased risk of aGVHD for the 
recipient. The G-CSF responsiveness showed no association 
with the concentrations of various immunocompetent cells 
in the stem cell grafts, and this last observation suggests that 
the impact of G-CSF responsiveness is not caused simply by 
quantitative differences of reinfused immunocompetent cells to 
the transplant recipients.

The possible importance of the overall CD34+ stem cells 
dose and T cell dose for engraftment, aGVHD, and survival is 
still uncertain, and results from previous studies are conflicting 
(53–57). One possible explanation could be that the described 
impact of donor responsiveness to G-CSF represents an addi-
tional and dose-independent mechanism that differs between 
donors and thereby between recipients. Another explanation 
could be differences in patient inclusion, e.g., one study included 
only AML patients (30), whereas our study was population-based 
but included only patients with family donors.

We identified two main donor clusters based on the respon-
siveness to G-CSF (Figure 4), but at the same time the grafts from 
these two donor subsets did not differ with regard to the amount 
of CD34+ cells or immunocompetent cell subsets. The most likely 
explanation for our observed effects of donor heterogeneity on 
reconstitution/non-relapse mortality in the absence of quantita-
tive differences in the number of reinfused cells is qualitative 
differences between the grafts. One would expect immunocom-
petent graft cells to exert their effects on outcome during the early 
post-transplant period, and several previous studies suggest that 
this is a critical period with regard to later complications. First, the 
clinical experience suggests that GVHD prophylaxis should start 
pre-transplant; this is true both when using prophylaxis based 
on anti-thymocyte globulin and cyclosporine (58). Second, post-
transplant cyclophosphamide as well as methotrexate prophylaxis 
also start early post-transplant (58, 59). Third, the adverse effects 
of G-CSF treatment after allogeneic stem cell transplantation 
seem to depend on the biological context early after graft infusion 
and the use of total body irradiation in the conditioning treat-
ment; this is supported both by clinical and experimental studies 
(60–62). Finally, the adverse effects of post-transplant G-CSF 
therapy was not seen for patients receiving G-CSF mobilized 
stem cell grafts, i.e., graft cells where one would expect the post-
transplant effects of G-CSF to be limited because the cells had 
already been exposed to G-CSF before and during graft prepara-
tion. All these previous observations support our hypothesis that 
activation/qualitative differences between donors with regard to 
infused donor immunocompetent cells (i.e., their responsiveness 
to G-CSF) can influence the posttransplant outcome.

The immunological heterogeneity of the donors is evident 
both prior to and during G-CSF therapy. Platelet engraftment 
seems to be predicted by the intrinsic G-CSF immune cell 
mobilizing effect, and engraftment in the patient is influenced 
by both G-CSF-dependent and G-CSF-independent character-
istics. The time to platelet engraftment was longer in recipients 
of the most G-CSF responsive donors, an apparent paradox 
as T  cell depletion increases the risk of graft failure (63, 64). 
However, experience from autologous transplantation shows 
that T cells are less important for engraftment, when the stem 
cell dose is sufficient (65), and the absolute concentrations or 
infused doses of any immune cell subset did not differ between 
the G-CSF high and low responsive donor groups in this study. 
Furthermore, several immune cell subsets have been shown 
to facilitate engraftment without increasing the risk of acute 
GVHD through mechanisms that are not yet known (66). In 
line with this, intrinsic donor responsiveness to G-CSF may 
represent a separate mechanism that can increase the risk of 
recipient acute GVHD but at the same time tend to prolong 
time to engraftment.

Stem cell harvest by leukapheresis also contributes to the 
immune cell composition and activation status of the stem cell 
graft. Immunomodulatory effects of apheresis procedures are 
taken advantage of in therapeutic apheresis (67–71). Not only 
the mobilization but also the collection of stem cells results in 
a skewed distribution of different immune cell subsets that may 
represent a separate immunomodulatory mechanism.

In addition to detailed characterization of various lymphoid 
subsets, we also detected increased monocyte:lymphocyte ratio 
during G-CSF therapy, and stem cell mobilization with G-CSF 
has been shown to give preferential mobilization of CD34+ regu-
latory monocytes as well as monocytic myeloid-derived suppres-
sor cells (34, 72–76). Monocytic and lymphoid cells are not easily 
separated by leukapheresis, and consequently a large fraction of 
monocytic cells are infused during transplantation and prob-
ably contributes to the immunomodulatory effect the stem cell 
graft. Several studies have demonstrated that the levels of CD34+ 
regulatory monocytes as well as monocytic myeloid-derived 
suppressor cells are associated with the risk of post-transplant 
GVHD (34, 75, 76). However, the immunosuppressive effect of 
monocytic cells is considered to be a double-edged sword (75), 
and in autologous stem cell transplantation high fractions of 
monocytes in the graft have been shown to have a negative effect 
on overall survival (77).

We observed a difference in post-transplant outcomes bet-
ween the two patient clusters/subsets identified by the analysis 
of donor G-CSF responsiveness (Figure 4). First, for neutrophil 
reconstitution ABO incompatibility, patient age, conditioning 
regimen, and pre-transplant remission status were significant 
predictors after multivariate Cox regression analysis, whereas the 
donor differences did not have any influence. Second, for platelet 
reconstitution we observed an independent effect of differences 
in donor G-CSF responsiveness in addition to the effect of ABO 
incompatibility. Finally, the two clusters identified in Figure  4 
showed similar early recipient mortality and no statistically sig-
nificant difference in median overall survival. However, the cause 
of recipient death differed significantly between the two donor 
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clusters; for the upper cluster only one out of six patients died 
from relapse, whereas for the lower cluster five out of six patients 
did so. Our competing risk regression analysis also showed an 
association of borderline significance between high G-CSF 
responsiveness and non-relapse mortality. Taken together, these 
observations suggest that immunological differences between 
donors with regard to G-CSF responsiveness are important for 
recipient outcome after allotransplantation. However, due to our 
low number of donors/recipients, we would emphasize that our 
observations need to be confirmed in larger clinical studies.

In conclusion, our study gives one of the most detailed char-
acterizations of the immunomodulatory effects of stem cell mobi-
lization and apheresis on the distribution of multiple lymphoid 
cell subsets available this far and shows that donor immune 
characteristics may be important for recipient outcome. Both 
G-CSF treatment and apheresis skew the distribution of various 
immune cell subsets and thereby influence graft composition, 
and both G-CSF dependent and independent immunological 
heterogeneity of the donors are reflected in the outcome of the 
patients. The results of our study indicate that the intrinsic effect 
of G-CSF on donor immune cell mobilization is associated with 
the reconstitution of platelets and the prevalence of acute GVHD 
after related HLA-matched stem cell transplantation. As this 
study includes relatively few participants, these results need to be 
confirmed in larger studies.
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