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CD4+Foxp3+ regulatory T-cells (Tregs) are a unique subset of helper T-cells, which reg-
ulate immune response and establish peripheral tolerance. Tregs not only maintain the 
tone and tenor of an immune response by dominant tolerance but, in recent years, have 
also been identified as key players in resolving tissue inflammation and as mediators 
of tissue healing. Apart from being diverse in their origin (thymic and peripheral) and 
location (lymphoid and tissue resident), Tregs are also phenotypically heterogeneous as 
per the orientation of ongoing immune response. In this review, we discuss the recent 
advances in the field of Treg biology in general, and non-lymphoid and tissue-resident 
Tregs in particular. We elaborate upon well-known visceral adipose tissue, colon, skin, 
and tumor-infiltrating Tregs and newly identified tissue Treg populations as in lungs, skel-
etal muscle, placenta, and other tissues. Our attempt is to differentiate Tregs based on 
distinctive properties of their location, origin, ligand specificity, chemotaxis, and specific 
suppressive mechanisms. Despite ever expanding roles in maintaining systemic homeo-
stasis, Tregs are employed by large varieties of tumors to dampen antitumor immunity. 
Thus, a comprehensive understanding of Treg biology in the context of inflammation 
can be instrumental in effectively managing tissue transplantation, autoimmunity, and 
antitumor immune responses.

Keywords: immune tolerance, autoimmunity, regulatory T cells, regulatory T-cells, Foxp3, tissue Treg, tumor Treg, 
regeneration

iNTRODUCTiON

Vertebrate immune and nervous system are two systems which are cognitive and under continu-
ous interaction with the environment. This probably explains why both share common paradigms 
like recognition, learning or modulation, and memory. For long, immunology has been defined 
as a science of “self/non-self ” discrimination (1). However, overtime, the immunological concept 
of “self ” has evolved, where the very definition of an individual with defined anatomic borders, 
compatible balance between its parts, physiological autonomy, and ability to replicate as a unit is 
rapidly challenged by symbionts. Immune identity is now considered more fluid than restricted in 
strict borders (2). Hence, apart from generating a protective and offensive backdrop, the immune 
system must work to maintain an organismal identity by mediating dynamic exchange processes 
with the environment. This not only entails to generate robust defense against pathogens and 
toxins but also makes it rather paramount to suppress an overzealous immune response, curb auto-
immune reactions, and maintain equilibrium toward commensals and food. Several mechanisms 
like clonal deletion, editing, anergy, ignorance, and immune deviation have evolved to safeguard 
against self-directed immunity (3). Specialized cells with immunosuppressive capabilities like 
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tolerogenic dendritic cells (DCs) (4–6), regulatory B  cells  
(7, 8), regulatory innate lymphoid cells (9), type 1 regulatory 
(Tr1) T-cells (10), and Foxp3+ regulatory T-cells (Tregs) (11–13) 
have also evolved.

Regulatory T-cells are arguably the most versatile immuno-
suppressive cells and work like immunological sentinels across 
various tissues. Both in mice and men, loss of these cells essen-
tially results in breakdown of tolerance and multi-organ autoim-
munity. Since their discovery, biology of Tregs has been a most 
dynamic field of immunological research and as a result, Tregs, 
which were once considered as a homogenous immunosuppres-
sive population, have been found to be highly adaptable and 
diversified cell type. Their heterogeneity is now appreciated in the 
context of origin, localization, differentiation, and mechanisms 
of immunosuppression. In the first part of this review, we will 
briefly discuss the events which put Tregs to the center stage of 
immune research, following which we will attempt to elaborate 
on the various layers of Treg heterogeneity especially pertaining 
to non-lymphoid and tissue-resident Tregs.

CONCePT OF “DOMiNANT” TOLeRANCe 
AND THe eMeRGeNCe OF ReGULATORY 
T-CeLL ReSeARCH

T-cell tolerance is pivotal for regulating adaptive immune 
responses as T-cell help is essential for mounting an antibody 
response via B cells (14). T-cell tolerance for long, was studied 
in light of “recessive tolerance,” wherein T-cells with high affinity 
TCRs toward self-antigens are clonally deleted (15), or undergo 
“receptor editing” in thymus (16, 17). The runaway cells which 
escape these central processes encounter anergy or activation 
induced cell death in the periphery (15, 18). However, studies 
on tolerance ushered into an “active” or “dominant” era with the 
seminal discovery of suppressive CD4+ T-cells expressing high 
levels of high efficiency α-chain receptor of IL2 (CD25) (19).

The Outset of Treg Research
Preliminary evidences of suppressive cells maintained in thymus 
started emerging when several investigators reported that neo-
natal thymectomy (3 day postnatal, 3dTx) could induce various 
autoimmune diseases in suitable mouse strains (20–25). Even 
more astonishing was the fact that similarly induced disease 
processes in rats could be reversed by reconstitution with normal 
lymphoid cells (26). Several groups tried to identify specific 
markers to distinguish suppressive cells from pathogenic T-cells 
in the thymus. It was reported that T-cells depleted of CD4+CD5hi 
cells induced autoimmune phenotype akin to 3dTx in BALB/c 
and C3H mice (27). Two other groups demonstrated the capabil-
ity of CD4+CD45RBhi T-cells in inducing inflammatory bowel 
disease in BALB/c SCID mice (28, 29) and its resolution upon 
reconstitution with total T-cells. While these studies demon-
strated that phenotypically distinct subsets of T-cells are capable 
of mounting discrete immune responses, specific identity of tol-
erance inducing counterparts remained elusive. Sakaguchi et al. 
in 1995 (19) discovered high surface expression of CD25 on about 
8–10% of CD4+ T-cells, which were both CD5hi and CD45RBlo 

in concordance with previous studies. Asano et al. (30) demon-
strated that CD4+CD25+ T-cells appear around day 3 postnatal 
and increase up to the adult levels by day 10. These authors were 
the first to propose the term “regulatory” for this subtype.

Discovery of Foxp3
While subsequent studies involving numerous experimental 
models of autoimmunity established its functional existence (31), 
the usage of CD25 as a marker for Tregs remained controversial 
for a number of years due to its upregulation in all activated 
T-cells. Furthermore, it seemed possible that a subset of the 
activated T-cells, by virtue of marked upregulation of the IL2 
receptor α on their surface, restrained immune response simply 
by competing for IL2.

A mouse line dubbed “scurfy,” with spontaneous autoim-
munity (originally appeared as a spontaneous mutation at 
the Oak ridge national laboratory, USA under the Manhattan 
project), was immunologically characterized in 1991. Scurfy 
mice have an X-linked recessive mutation which leads to 
scaly skin, lymphoproliferation, hypergammaglobulinemia, 
lymphadenomegaly, anemia, runting, and early death (32). 
Thymectomy reduced the severity of the disease but did not 
totally ameliorate it. However, crossing the strain with nu/nu 
mice totally prevented the disease, suggesting thymic origin of 
disease causing cells. Several other studies revealed scurfy to 
be mainly a T-cell dependent disorder (33–35) much similar to 
Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4) (36) and 
Transforming growth factor β1 (TGFβ1) deficient animals (37). 
These similarities instigated investigations to identify the gene 
responsible for scurfy phenotype. In 2001, Brunkow et al. (38) 
identified 20 putative genes in a 500-kb region of X-chromosome 
by sequencing four overlapping bacterial artificial chromosomes. 
Out of these, one possessed an ORF highly homologous with 
DNA-binding domain of the forkhead/HNF3/winged helix fam-
ily of proteins. This gene in scurfy mouse was found to harbor a 
2-bp insertion mutation, resulting in a truncated gene product, 
deleting the C-terminal forkhead domain (38). Investigators 
designated this gene as Foxp3. Functional complementation 
experiments by mating scurfy carrier females with Foxp3 trans-
genic lines resulted in complete rescue of the scurfy phenotype, 
corroborating Foxp3 mutation as the cause (38).

At around same time, mutations in FOXP3 gene and its 3′ 
untranslated region were confirmed in human patients of IPEX 
syndrome (39, 40). IPEX syndrome is immunodysregulation 
polyendocrinopathy enteropathy X-linked, originally described 
in 1982 by Powell et al. (41). The striking similarity in autoim-
mune phenotype of IPEX patients, scurfy and 3dTx mice 
led several groups to examine the function of Foxp3 in Tregs. 
Subsequently, in 2003, three studies reported that indeed Foxp3 
is uniquely expressed by CD4+CD8−CD25+ thymocytes and 
CD4+CD25+ peripheral regulatory T-cells (42–44) in mice. 
Retroviral transduction of Foxp3 induced CD25 expression in 
CD4+CD25− T-cells which were functionally suppressive and 
expressed Treg associated molecules CTLA4 and GITR. Deletion 
of Foxp3 in mice resulted in lymphoproliferative disorder identi-
cal to scurfy mice (43, 44). Mixed bone marrow chimera experi-
ments demonstrated that indeed only Foxp3-sufficient bone 
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marrows were capable of generating CD4+CD25+ Tregs (44).  
Conclusive evidence for Foxp3 as lineage specific marker for 
mice Tregs came from Foxp3eGFP reporter mice (45) in which 
GFP expression was found only in TCRβ+ T-cells among all 
hematopoietic cellular compartments. Conditional deletion of 
Foxp3 in CD4+ T-cells led to a lymphoproliferative disorder mir-
roring scurfy phenotype. These series of experiments established 
Foxp3 as the molecular identity responsible for implementing 
Treg transcriptional signature. Further investigations revealed 
that the Foxp3 gene itself is regulated by three conserved non-
coding sequences (CNS) 1–3. Detailed epigenetic analyses 
have identified CNS1 as the TGFβ responsive element which is 
required for peripheral generation of Tregs, CNS2 is involved 
with heritable maintenance of Foxp3 expression while CNS3 
acts as a pioneering element for thymic induction of Foxp3 (46). 
Proteomic analyses demonstrated Foxp3 to be interacting with 
more than 350 proteins in multiprotein complexes, many of 
which are transcription-related factors (47). A detailed review 
on regulation of Foxp3 and Foxp3 mediated regulation of the 
Treg transcriptome can be found in Lu et al. (12).

DeveLOPMeNTAL AND PHeNOTYPiC 
DiveRSiTY iN Tregs

Neonatal thymectomy experiments in mice confirmed beyond 
doubt that early development of Tregs happens in thymus.  
A detailed discussion on thymic development of Tregs can be 
found in Ref. (13, 48, 49). Briefly, cell surface markers indicative 
of strength of TCR interaction (CD25, CD5, etc.) suggested the 
involvement of TCR signaling. TCR repertoires of Tregs have 
limited overlap with that of non-Tregs and are largely self-reactive 
(50). Nur77-GFP reporter mice which express GFP under Nur77 
gene locus, an early gene expressed upon TCR stimulation have 
higher GFP expression in thymic Tregs (tTregs) (51). With regard 
to cytokines, it was reported earlier that mice lacking either IL2 
or CD25 (45) are able to generate Tregs, albeit at a reduced level. 
However, if common γ chain is deleted, Tregs are not formed 
(45). This suggests cooperation among γ chain cytokines in 
Foxp3 expression and maintenance. Thus, the current model of 
Treg generation in thymus gravitates toward an instructive one 
wherein TCR signaling substantially above the strength required 
for positive selection and relatively near the strength that induces 
negative selection initiates specification toward pre-Treg state. 
In the second step, cytokines induce Foxp3 expression. More 
recently, Satb1, a genome organizer and transcription factor was 
shown to at least partially mediate the genomic arrangement of 
super-enhancers responsible for Treg development (52). The Treg 
specific super-enhancer patterns were found “poised” for activa-
tion even in conventional peripheral T-cells.

Though thymic regulatory T-cells are adept at suppressing 
autoimmune responses against self-antigens, a reasonably 
tolerant immune environment cannot be developed if repeated 
immune responses are mounted against beneficial and innocu-
ous microbes as well as food antigens. In part, this is achieved 
by generation of Tregs in the periphery. Indeed, initial evidences 
suggested that Tregs can be generated by oral antigen feeding 

(53, 54) as well as by antigen-specific APCs (55) in the absence 
of functioning thymus. Also, conventional CD4+CD25− naïve 
T-cells could be converted to CD4+CD25+CD45RB−/low suppres-
sor cells by costimulation with TCR and TGFβ. TGFβ activates 
Smad2 and 3 transcription factors (56) which redundantly, help in 
peripheral Treg generation by initiating a cascade of interactions 
with specific enhancer regions within the Foxp3 locus (56–58).

Contrary to initial interpretations of Tregs being a universal 
immunosuppressive population, diligent interrogations led 
to identification of a rather diverse and distinct pool of heter-
ogenous subsets. Other than the site of induction, Tregs were 
classified into two separate populations: central Tregs (cTregs) 
and effector Tregs (eTregs) (59, 60). cTregs are comparatively 
quiescent Tregs in the lymphoid tissues. They express the lym-
phoid homing molecules CD62L and CCR7 and are dependent 
on IL2 secreted by Tconv in T-cell zones of lymphoid tissues 
(60). On the other hand, eTregs are primarily non-lymphoid 
Tregs which downregulate lymphoid homing molecules and 
upregulate CD44, ICOS, GITR, and other activation-induced 
markers. For maintenance, they are dependent on sustained 
ICOS signaling (60). Most of these cells express transcription 
factor BLIMP1 and produce high IL10, akin to a population of 
ICOS+IL10+ Tregs in humans (61).

Investigations into Treg mediated suppression of distinct 
helper T-cell immune responses imply a contextual T helper–Treg 
coupled viewpoint of Treg heterogeneity. It was reported that 
Tregs express high amount of the interferon (IFN) regulatory 
factor IRF4, Treg specific ablation of which resulted in selective 
Th2 related pathologies (62). These findings initiated similar 
investigations in other helper T-cell contexts and indeed, now a 
well-established paradigm exists wherein, in a Th1 inflammatory 
context Tregs express transcription factor Tbet, responsible for 
Th1 speciation, and express CXCR3 to accumulate at such sites 
(63). Transcription factor STAT3 is expressed in Tregs in a Th17 
context (64) which helps in upregulation of CCR6 to migrate to 
intestine and production of IL10 (65). Similarly, Bcl6 expression 
in Tregs was shown to be important for regulating Tfh cells and 
expression of CXCR5 (66, 67).

Moving a step further and increasing complexity and diver-
sity among Tregs, several Treg subpopulations are discovered 
in non-lymphoid tissues. These Tregs are not only found to be 
instrumental in suppression of inflammatory responses but 
also integrate into a larger biological paradigm for the benefit 
of organ and organismal homeostasis. In the following sections, 
we will review the characteristics of non-lymphoid Tregs, how 
they originate and function in maintaining homeostasis of tis-
sues. We will attempt to elucidate if, apart from location, these 
cell types can be further identified by virtue of tissue-specific 
phenotypic and functional characteristics. We will elaborately 
discuss the well-characterized Treg populations in adipose tis-
sues (AT), intestines, and skin, as well as attempt to highlight 
upon some of the recently identified ones in other tissues 
like muscles, lungs, and placenta. While overzealous Tregs in 
malignancies not necessarily can be clubbed with normal tissue 
Tregs, but at certain level, as Tregs perceive the context of the 
environment they reside in and are hijacked by tumors for their 
benefit, we will also discuss tumor infiltrated Tregs in order to 
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FiGURe 1 | Visceral white adipose tissue (WAT) regulatory T-cells (Tregs) are involved in metabolic homeostasis. WAT Tregs adapt to adipose environment  
by expression of PPARγ that regulates genes involved in lipid metabolism. These Tregs also express alarmin IL33 receptor ST2 and adipose chemokine receptor 
CCR2. Tregs are abundant in lean adipose tissue of adult mouse; however, if there is a sustained positive energy balance as in high-fat diet-induced obesity animal 
model, then the Treg numbers decrease drastically. This is concomitant to a change in macrophage phenotype from anti-inflammatory M2 to inflammatory M1 
macrophages and unhealthy hypertrophy of adipocytes. Sustained hypertrophy leads to adipocyte apoptosis and exacerbated inflammation. Overall, decrease  
in adipose Tregs is accompanied by obesity, insulin resistance, dyslipidemia, and chronic low-grade inflammation.
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elucidate on the general principles that might integrate such 
heterogeneity.

FAT Tregs: iMMUNOSUPPReSSiON  
FOR MeTABOLiC HOMeOSTASiS

Adipose tissue is natural calorie reservoir of the body. Overall, 
the tissue is classified as two somewhat functionally antagonistic 
tissue types: white adipose tissue (WAT) and brown adipose 
tissue (BAT). WAT stores the excessive nutrients in the form of 
fat droplets during over-nutrition and releases it under energy 
deficit conditions. BAT, by virtue of higher expression of the 
uncoupling protein 1 (UCP1) protein, enhances energy utiliza-
tion by non-shivering thermogenesis (68). WAT is abundantly 
available and found mainly in subcutaneous tissue, omenta, 
mesenteries, perirenal tissues, and bone marrow, while BAT has 
a restricted distribution occurring mainly in interscapular and 
inguinal regions.

AT Architecture
Structurally, AT is a loose connective tissue comprising mainly 
of fat cells (adipocytes), each surrounded by its own basal lamina 
and separated by a thin layer of extracellular matrix composed of 
reticular and collagen fibers and supplied with numerous capil-
laries. Several other resident as well as transient cells are strewn 
around in AT namely fibroblasts, myofibroblasts, and immune 
cells like macrophages, mast cells, eosinophils, neutrophils, and 
T-cells. WAT are the professional fat depots (69) which store 

excess energy as triglycerides without the common lipotoxic-
ity experienced by other cell types (70). WAT adipocytes are 
usually spherical with a single fat droplet occupying 90% cell 
volume and a thin elongated mitochondrion on one side. On the 
other hand, BAT integrates environmental conditions via brain 
adrenergic responses toward cold temperatures. Adipocytes  
in BAT are typically polygonal, containing triglycerides in mul-
tiple small vacuoles, and are characterized by numerous large, 
spherical mitochondria.

Fat Treg Origin and Accumulating Factors
The plethora of adipokines and cross-talk with nervous as well 
as immune system has underscored the importance of AT as 
an endocrine organ with profound effects on body’s metabolic 
homeostasis. However, as adipocyte increase in size due to excess 
calories, hypoxia sets in leading to accumulation of inflamma-
tory macrophages (Figure 1) in obese adipose (71). Subsequent 
upregulation of several inflammatory adipokines (72) can acti-
vate CD4+ T-cells independent of macrophages. Any immune 
response shall be regulated so that it does not outlive its utility;  
a task largely achieved by several anti-inflammatory immune cell 
types already resident in the adipose (73–77).

In a seminal study, Feuerer et al. (76) identified unique fat-
residing Tregs in mouse and human ATs. Surprisingly, unlike 
peripheral lymphoid compartment where normally 10–15% of 
CD4+ T-cells are Foxp3+ Tregs, almost half of the fat CD4+ T-cells 
are Foxp3+ Tregs, which were found to accumulate primarily in 
visceral fat over a period of time since birth, peaking at around 
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FiGURe 2 | Two contrasting scenarios of regulatory T-cells (Treg) numbers and their outcome in aged white adipose tissue (WAT). WAT Tregs increase with age 
reaching a plateau and then decrease abruptly in aged (~45 weeks) mouse (top). Whether this results in inflammation leading to age-associated insulin resistance  
is not explored; however, (bottom part) contrasting evidence suggest that white adipose Tregs keep on increasing even in the aged adipose tissue, which in 
concordance with “adipose tissue expandability hypothesis” (see text) results in suppression of healthy inflammation required for remodeling of adipose. This  
results in a storage space problem leading to ectopic deposition of fat in visceral organs, like liver and pericardium. This is accompanied by free fatty acid  
induced lipotoxicity and age-associated insulin resistance.
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25 weeks of age. In one study, this characteristic accumulation 
of Tregs was found to be accompanied by a sudden drop to fifth 
week levels (78) in mice aged further, suggesting a negative cor-
relation between the frequency of visceral WAT resident Tregs 
and age-related metabolic inflammation (Figure 2). In contrast 
to this finding, a recent study, reported even greater accumula-
tion of Tregs in older mice, implicating an alternative viewpoint 
instead (79) (Figure 2). The cause of this discrepancy might be 
different colonies, husbandry practices, as well as microbial and 
dietary composition. Nonetheless, the aged visceral WAT Tregs 
were found to be functional (79).

As far as origin of AT Tregs are concerned, visceral WAT Tregs 
appear to be largely of thymic origin. A thymectomy beyond 
3  weeks of life does not affect visceral WAT Tregs population 
in mice (80). TCRα sequencing experiments from “Limited” 
mice [mice with limited focused diversity restricted to CDR3α 
(81)] showed that TCR repertoire of fat Tregs are different from 
conventional fat T-cells. Furthermore, visceral fat Treg repertoire 
was only a restricted subset of lymph node (LN) Tregs TCR 
repertoire (76), suggestive of an abdominal WAT specific distinct 
TCR repertoire of Tregs. This indicates either a continuous sup-
ply of Tregs from peripheral LNs or an initial seeding of tTregs 
followed by selected clonal expansion in AT. Adoptive transfer of 
congenically marked Tregs confirmed that visceral WAT Tregs 

are not significantly derived from circulating Tregs (80). Also, 
very high expression of both Helios and Neuropilin1 (Nrp1) as 
well as transcriptomic analysis of visceral WAT Tregs suggest 
their thymic origin and little to no conversion of naïve T-cells 
into visceral WAT Tregs (80).

Origin of subcutaneous WAT Tregs and BAT Tregs have not 
been studied in much detail. Naïve T-cells isolated from both these 
tissues, however, produce significantly high number of induced 
Tregs than visceral WAT in in vitro conversion assays (82).

Tissue Adaptation and Phenotype
That extralymphoid Tregs adapt to the context and microenvi-
ronment is best explained by higher expression of transcription 
factor PPARγ in fat Tregs (83, 84). Co-immunoprecipitation 
studies confirmed PPARγ interaction with Foxp3, suggesting a 
visceral WAT-specific Foxp3-PPARγ-mediated gene expression 
axis (83). Using a Blimp1-GFP reporter mouse, Vasanthkumar 
et al. (84) showed that most of the visceral WAT Tregs fall in the 
category of eTregs. For identifying the survival factors for eTregs, 
they reported that visceral WAT Tregs specifically express Il1rl1, 
which encodes alarmin IL33 receptor ST2. Both IL33 deficiency 
in general, as well as T-cell intrinsic ST2 deficiency resulted in 
specific reduction in number and percentage of visceral WAT 
Treg compartment (84). In in vitro settings, both IL2 and IL33 
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were able to induce proliferation and ST2 upregulation in a 
fraction of T-cells upon TCR stimulation which was depend-
ent on MyD88 (84). Development and proliferation of visceral 
WAT Tregs appears to be dependent on two signals: (1) TCR 
crosslinking which induces PPARγ and ST2 expression via 
BATF and IRF4, both of which bind to the intronic regions of 
Pparg and Il1rl1 genes (84) and (2) IL33 which via MyD88 feeds 
forward the expression of ST2 (84). In accordance to the concept 
of local adaptation, PPARγ in visceral WAT Tregs upregulates  
the expression of lipid metabolism genes like Dgat1 (diacyl-
glycerol O-acyltransferase 1), coding for an enzyme which 
catalyzes the terminal step in triacylglycerol synthesis by using 
diacylglycerol and fatty acyl CoA as substrates; and Pcyt1a 
(choline-phosphate cytidylyl transferase A), an enzyme involved 
in regulation of phosphatidylcholine biosynthesis (83). It is 
possible that these gene products enable visceral WAT Tregs to 
survive in a lipotoxic environment and/or enable the utilization 
of fatty acids as metabolic fuel. Other than these essential factors, 
visceral WAT Tregs also express high levels of GATA3, Klrg1, 
early activation marker CD69, and adipose signature chemokine 
receptor CCR2. BAT Tregs are found to be very similar to WAT 
Tregs at transcriptional level with higher expressions of PPARγ, 
IL10 and chemokine X ligands 1 and 2 (85). The under-expressed 
transcripts were those encoding for TCR signaling specific  
T Cell Factor 7 and cytokine IFNγ (85).

wAT Tregs Are important Players  
in Metabolic Syndrome
Adipose originated pro-inflammatory cytokines, like TNFα, 
IL6, and type1 IFNs, have been suggested as causative of insulin 
resistance and metabolic syndrome (86–88). Also, human obese 
subjects were found to be deficient in circulating Tregs, whose 
levels were inversely correlated with body weight and BMI (89). 
Considering the primarily immunosuppressive phenotype of 
Tregs, it is expected that fat Tregs play a major role in con-
trolling adipose inflammation, and in turn, affect the overall 
metabolic homeostasis of the body. Indeed, in Foxp3DTR mice, 
in which the gene encoding diphtheria toxin receptor (DTR) is 
knocked into the Foxp3 locus (90), Treg depletion upon diph-
theria toxin (DT) administration, leads to visceral WAT tissue 
inflammation (76). However, total Treg deletion also initiates a 
strong systemic inflammatory response (90). Hence, a visceral 
WAT specific model for Treg deletion was required. This was 
achieved by Treg specific deletion of PPARγ, which resulted in 
more than 80% reduction in visceral WAT Tregs, without any 
effect on splenic Treg population (83). This decrease in Treg 
population was accompanied with marked inflammatory cell 
infiltration in visceral WAT (83). In a high-fat diet-induced 
obesity model, WAT Treg numbers are reduced drastically 
(Figure 1), which can be rescued by treatment with a synthetic 
PPAR ligand pioglitazone, which improves insulin sensitivity 
by working on PPARγ1 and 2 and affecting lipid metabolism  
(91). Its administration was able to improve the metabolic para-
meters in wild-type mice but not in mice harboring PPARγ-
deficient Tregs, suggesting a direct role of PPARγ expression in 
visceral WAT Tregs.

Interestingly, the role of visceral WAT Tregs in aging animals 
has been reported to be opposite to what was observed in com-
paratively young animals. Contrary to obese animals, depletion 
of visceral WAT Tregs in aged animals improved the metabolic 
parameters and rescued aging induced insulin resistance (79) 
(Figure 2). Treg specific deletion of PPARγ led to less increase in 
fat and more in lean weight with age (more than 45 weeks). The 
adipocyte size was less and hepatic triglyceridosis was decreased. 
An increase in total Tregs by IL2–IL2 antibody immune complex 
resulted in reduced glucose uptake by aged adipocytes, suggest-
ing compromised storage function (79). Similar results were 
obtained upon external IL33 administration. Overall this study 
reveals an unexpected cooperative role of visceral WAT Tregs in 
age-associated insulin resistance and metabolic inflammation. 
One explanation of this seemingly counter-intuitive finding 
might be extended by the so called “adipose tissue expandability” 
hypothesis. This hypothesis posits that in a state of “positive 
energy balance” metabolic complications arise because WAT is 
not able to expand further and accommodate excess calories, 
essentially propounding that metabolic syndrome coming out 
of excessive nutrition and obesity is actually a storage space 
problem (92). Indeed, animal models where AT inflammation 
is controlled result in decreased AT hyperplasia in a high-fat 
diet-induced mouse model of obesity (93), which causes ectopic 
lipid depositions (hepatic steatosis, dyslipidemia, etc.) and wors-
ened metabolic parameters (93). Also, obese ob/ob mice which 
were made transgenic for full-length adiponectin and thus had 
adiponectin levels equivalent to treatment with a PPARγ agonist, 
showed uninhibited WAT expansion leading to morbid obesity 
but improved insulin sensitivity and other metabolic parameters 
(94) owing to reduced ectopic lipid deposition in liver and mus-
cles (94). Given these observations, whether and how age-related 
accumulation of the visceral WAT Tregs results in compromised 
AT hyperplasia, remains to be seen.

BAT Tregs Help in Thermogenesis
A generalized Treg ablation alters the metabolic profile of mice 
with regard to BAT as well. DT mediated deletion of Tregs in 
Foxp3DTR mice resulted in reduced whole-body oxygen con-
sumption in a short-term cold temperature exposure model 
(85). That the Tregs are at forefront of metabolic homeostasis 
and their interventions are highly context dependent is further 
strengthened by a recent study analyzing BAT Tregs in detail. 
While a short-term (2 weeks) high-fat high-sugar (HFHS) diet, 
promoting thermogenesis (95), increased BAT Tregs, it actually 
decreased visceral WAT Tregs in young adult mice (82). On 
the contrary, a long-term HFHS diet (16  weeks) significantly 
reduced visceral WAT Tregs but made no impact on percent of 
BAT Tregs. This suggests that the tenor of caloric intake can have 
specific effect on tissue Tregs. In accordance to the role of BAT 
Tregs in non-shivering thermogenesis, treatment with ADRB3 
(β-3 adrenergic receptor) agonist increased Tregs in BAT. 
However, “betaless” mice which are deficient in all three (β-1, 2, 
and 3 adrenergic receptors) did not have a reduced percentage of 
BAT Tregs, suggesting a redundant role of adrenergic signaling 
in BAT Treg accumulation per  se. Treg depletion, followed by 
β-3 stimulation on the other hand did result in reduced levels 
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of BAT thermogenic and lipolytic genes (Ucp1, Ppargc1a, Pparg, 
Prdm16, Lpl, etc.) confirming Treg functionality in BAT ther-
mogenesis (82). It will be interesting to know if this results in 
reduced metabolic adaptation in cold exposure. Also, whether 
these effects are intrinsic to Tregs can only be ascertained with 
Treg specific Adrb3 deletion. Thus, these studies confirm a role 
of Tregs in BAT which goes beyond immunosuppression and 
actively associates Tregs with cold adaptations of the body by 
regulating lipolysis and thermogenesis.

iNTeSTiNAL Tregs: PReSeRviNG  
THe HOLOBiONT

The mammalian digestive system performs two very vital 
functions—digestion and absorption of food and shaping a gut 
microbial ecosystem. According to recent estimates, human 
colon harbors about 4 × 1013 bacteria (96, 97), a density (1011/mL)  
highest among any microbial habitat (98). It has a perplexing 
task to efficiently implement a “goldilocks” balance between two 
seemingly opposite events; permit absorption of nutrients but 
check exposure to harmful substances, guard against invasive 
pathogens but facilitate colonization of commensals and help 
them thrive.

Architecture
Incessant provision of food and microbial antigens has resulted 
in typical structural adaptations in gut (99, 100) and evolu-
tion of specialized gut immune cells for immunosurveillance 
and maintenance of tolerance (101). The small intestine 
(duodenum, jejunum, and ileum) with maximum absorptive 
surface created by large circular folds (plicae) and finger like 
projections (villi and microvilli), has evolved as the primary 
organ for food absorption. The folding results in formation of 
deep invaginations, crypts of Lieberkühn, which house Paneth 
cells that secrete antimicrobial molecules upon exposure to 
bacterial antigens. Several enteroendocrine cells and mucus 
producing Goblet cells are also interspersed among small 
intestinal epithelial cells. The large intestine (cecum, colon, 
and rectum) harbor majority of commensals and perform the 
vital functions of absorbing water and vitamins while convert-
ing the undigested food into feces. The large intestinal walls 
are protected from luminal contents by two layers of mucus, 
the outer (luminal) thin mucus layer which hosts most of the 
bacteria, and the inner thick mucus layer which is largely sterile 
(102, 103).

Histologically, intestinal tract contains four layers—mucosa, 
submucosa, muscularis propria, and adventitia or serosa. The 
mucosa is the layer where most of the immune processes take 
place. It consists of an epithelial layer, which has scattered 
intraepithelial lymphocytes (IELs), underlying lamina propria 
(LP) and a thin muscle layer muscularis mucosa. The LP con-
sist of non-cellular connective tissue, like collagen and elastin, 
blood and lymphatics, myofibroblasts, and nerve endings, and is 
densely packed with immune cells including mononuclear cells, 
plasma cells, B and T lymphocytes including Tregs, eosinophils, 
macrophages, and mast cells (104).

Different parts of intestine drain into separate LNs, like duo-
denum drains into a LN embedded in pancreatic tissue; mesen-
teric LNs drain jejunum, ileum, cecum, and ascending colon;  
two small LNs in pancreatic tissue drain transverse colon and 
descending colon and rectum primarily drains to caudal LNs 
(101). Anatomic variations largely define the antigenic variations 
of intestine as well. While small intestine grapples for equilibrium 
against food antigens, large intestines have an overwhelming load 
of microbial antigens. As much as these are foreign to the body, 
they are equally essential. Thus, for the economy of immune 
response it is highly desirable to assimilate those in the immu-
nological self. The intestinal population of Tregs is arguably the 
most important cell type to contain the immune response against 
both food and innocuous microbial antigens and maintenance of 
intestinal homeostasis (105, 106).

Origin of intestinal Tregs
Like other non-lymphoid tissues, Tregs are also enriched in 
intestinal LP with colon harboring 25–35% (107–109) and small 
intestine harboring 10–15% (109, 110) Tregs among total CD4+ 
T-cells. Apropos to the prevalent inflammatory milieu and 
antigenic environment, the colonic Tregs are largely developed 
against microbial antigens. GF mice, devoid of any microbiota, 
have several folds less number of colonic Tregs compared to 
specific pathogen-free (SPF) mice (111, 112). A long-term 
broad-spectrum antibiotic treatment also reduces colonic Tregs 
in SPF mice (111). As small intestine is seat for nutrient absorption, 
most of the small intestine LP (siLP) Tregs do not develop against 
bacterial antigens as evident by comparable number of Tregs in 
SPF and GF mice (109). However, once the GF mice are brought 
up as antigen-free (AF) mice by provision of only elemental diet 
post-weaning, there is a marked decrease in siLP Tregs (109).  
A subset of Tregs, however, remains in colon as well as small intes-
tine of GF and AF mice, presumably specific to gastrointestinal 
self-antigens.

Sequencing of colonic Treg TCRs of genetically engineered 
mice with limited polyclonal repertoires found that TCR usage of 
colonic Tregs was different from that of other tissues (113). Also, 
there was very little similarity of TCR usage between Tregs and 
naïve or effector Foxp3− T-cells (113). Stable chimeras made from 
retroviral transduction of colonic Treg TCRs to bone marrow 
progenitors resulted in induction of respective TCR expressing 
Tregs preferentially in colon while no specific TCR bearing cells 
were found in thymus (113). Adoptive transfer of naïve T-cells 
from the transgenic lines made from colonic TCRs resulted in 
very efficient conversion to peripherally induced Tregs (pTregs) 
in mesenteric LNs and colon (114). Other than the specific TCR 
repertoire, high surface expression of Helios, an Ikaros family  
transcription factor (115), and Nrp1, a membrane-bound  
co-receptor for vascular endothelial growth factor and sema-
phorin (116, 117), has been found to be associated with tTregs. 
Although the precise origin of Tregs based on these markers is 
debatable since their expression can be upregulated in inflam-
matory settings (118, 119), nevertheless, most of the studies have 
reported enrichment of Helios− and/or Nrp1− pTregs in colonic 
Treg compartment (107, 114). Also, the frequency of colonic 
Foxp3+Helios−Nrp1− Tregs is significantly reduced in GF mice 
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compared to SPF mice (116). Furthermore, treatment of SPF mice 
with broad-spectrum antibiotics decreased the Helios− colonic 
Tregs (111). Molecular studies on Foxp3 gene locus have identified 
an enhancer, CNS1, to have a prominent role in pTreg generation 
in gut-associated lymphoid tissues (46). CNS1 contains a TGFβ-
NFAT response element (46) and binding sites for retinoic acid 
receptor (RAR) and retinoid X receptor heterodimer, receptor for 
retinoic acid (RA) (120). It has been shown that TGFβ and RA can 
induce de novo generation of pTregs upon antigen activation via 
CD103+ DCs (121, 122) (Figure 3). Indeed, CNS1-deficient mice 
have fewer LP Tregs at weaning (46). However, it was recently 
reported that CNS1 deficiency in colonic TCR transgenic T-cells 

only delays the pTreg generation and ultimately T-cells do convert 
to Foxp3+ Tregs (114).

While pTregs are largely accepted to be the primary source 
of intestinal Treg population, at least under an experimental set-
ting where generation of extra-thymic Tregs are compromised, 
thymically generated Tregs can migrate to intestinal LP and 
proliferate to fill up the niche (Figure 3). It has been reported that 
in a limited TCR model, the TCR repertoire of tTregs and colonic 
Tregs overlap considerably (123). Another study utilizing K14-
Aβb (Keratin 14 transgenic, K14) mice, which have restricted 
MHCII expression in thymic cortical epithelium and thus, 
cannot provide peripheral MHCII signals for extra-thymic Treg 
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generation, showed that while Treg population was significantly 
decreased in mLNs and spleen, the intestinal Treg compartment 
was rather intact (124). The LP Treg niche of these mice was found 
to be inhabited by Tregs of thymic origin at young age. This niche 
filling phenomenon was not IL2 dependent but was induced by 
microbial presence, as broad-spectrum antibiotic treatment 
decreased both large and siLP-Tregs (siTregs) (Figure 3). At an 
older age however; newly generated tTregs were excluded from 
the LP, presumably due to already occupied Treg niche (124). 
Taken together, therefore, the available data suggest a peripheral 
origin of majority of intestinal Tregs and thymic origin of a small 
subset. However, these mechanisms of origin and development 
cannot be mutually exclusive and contributions from different 
pathways are likely to fine tune the ultimate composition of the 
intestinal Treg compartment.

Tregs Specialize into Multiple Subsets  
in intestines
Transcriptomic and functional analyses of intestinal Tregs have 
largely identified three specialized subsets. Based on transcrip-
tion factor and surface molecular expression these subsets are 
GATA3+Helios+(Nrp1+), retinoic acid receptor related orphan 
receptor γt (RORγt) expressing RORγt+Helios− and RORγt− 
Nrp1−(Helios−) subsets (Figures 3 and 4A).

GATA3 is expressed by about a third of intestinal Tregs and 
can be induced in CD4+Foxp3+ Tregs upon TCR engagement 
(110). That most of these Tregs are Helios+ and are unaffected by 

microbial presence suggests their thymic origin (107). However, 
upon TCR engagement, GATA3 can be induced in CD4+Foxp3− 
naïve T-cells as well, in both in vivo and Treg polarizing in vitro 
settings (110). While expression of GATA3 is not required under 
homeostatic conditions, under inflammatory conditions lack of 
GATA3 in Tregs hampers their accumulation at inflammatory 
sites (110). GATA3 and Foxp3 interact both at protein and gene 
levels in Tregs (47). GATA3 binds to Foxp3 locus and its dele-
tion in Tregs reduces Foxp3 expression (47, 125). It occupies 
significant number of genes, which are direct targets of Foxp3 and 
thus, collaborates with Foxp3 to establish Treg gene expression 
program. Indeed, Treg-specific GATA3 deletion results in intes-
tinal pathology with heightened Th2 cytokine production from 
large intestinal effector T-cells (47). Most of the GATA3+ Tregs 
in colon express ST2, which is regulated by GATA3 expression in 
a feed-forward manner (108). Alarmins like IL33 are produced 
upon local tissue damage (126, 127) and thus limit self-injury 
in part by activating GATA3+ST2+ Tregs (108). ST2+ Tregs show 
enhanced production and activation of IL10 and TGFβ (128). 
IL23 on the other hand appears to regulate the effect of IL33 in 
thymus-derived Tregs via STAT3 signaling (108).

CD4+Foxp3+RORγt+ Tregs in the intestine are another subset 
of Tregs specialized toward microbial immunity. These comprise 
about 50% of total Tregs in colon, which are readily lost in GF 
mice or upon antibiotic treatment (107, 129) (Figure 3). A small 
population consisting of about 10–15% of Tregs is also found in 
small intestine (107) (Figure 4). Most of the RORγt+ Tregs do 
not express Helios (107, 129) or Nrp1 (130), suggestive of their 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


10

Sharma and Rudra Tregs in Tissue Homeostasis

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 883

extra-thymic origin. However, these cells have substantially 
reduced CpG methylation within the CNS2 enhancer region of 
Foxp3 locus, which is known to be well correlated with stable 
Foxp3 expression (130, 131). Not all bacteria can elicit similar 
population of RORγt+ Tregs, as it was found that a gradation of 
Treg inducing capacity exists (107). Mechanistic insights on why 
certain bacteria have superior capacity of inducing intestinal 
Tregs than others have started to emerge only recently. It has 
been reported that short chain fatty acids produced upon fer-
mentation of starch and other dietary fibers by clostridia strains, 
mainly butyrate and propionate but not acetate, can contribute 
to colonic Treg generation. Mechanistically, this is attributed to 
their histone deacetylase inhibitory properties (132) resulting 
in increased acetylation of Foxp3 locus (133, 134) (Figure  3). 
Apart from directly acting on T-cells, butyrate also affects DC 
ability to induce Treg differentiation. Knockdown of Relb, which 
encodes NFκB subunit, has been shown to generate tolerogenic 
DCs by inhibiting their maturation (135, 136). Indeed, in vitro 
treatment with butyrate represses lipopolysachharide response 
genes, including Il12, Il6, and Relb in DCs (133) (Figure  3).  
On a translational note, in human IBD patients, colonic butyrate 
producing bacteria are decreased (137) and mucosal butyrate 
transporter, monocarboxylate transporter 1, is downregulated 
(138). It is also possible that colonic Tregs are generated in an 
antigen-specific manner. Indeed, colonic Treg TCRs have been 
reported to interact with colonic bacteria in  vitro (113). Very 
recently, colonic T cells with TCRs cognate to epitopes of a patho-
biont Helicobacter hepaticus are shown to induce pTregs under 
homeostatic conditions (139). This study establishes the role of 
colonic pTregs in induction and maintenance of tolerance to 
pathobionts as well. Surprisingly, it was found that although such 
Tregs are RORγt+, their major functional suppressive capabilities 
are implemented by expression of the transcription factor cMAF 
(139) (Figure 3). cMAF offsets Th17 polarization by producing 
IL10 downstream to TGFβ1-STAT3 signaling (140). H. hepaticus 
colonized mice with Treg specific Rorc deletion had no significant 
increase in colonic Th17 cells while mice with Treg specific Maf 
deletion had significantly high Th17  cells (139). Thus, RORγt+ 
pTregs in colon establish tolerance to commensals as well as 
pathobionts and suppress inflammation in a cMAF-dependent 
manner.

The third Treg subtype (CD4+Foxp3+RORγt−) was identified 
very recently. Most of these cells express low levels of Nrp1 and 
thus are, supposedly, pTregs. These cells constitute about 50% of 
siLP Tregs and 15% of colonic Tregs (109) (Figures 3 and 4A). 
Their localization suggests that these are primarily generated 
against dietary antigens. Indeed, long-term antibiotic treat-
ment of SPF mice could not reduce their numbers in intestine 
while RORγt+Nrp1lo pTregs were reduced several folds. On 
the other hand, weaning SPF mice onto AF diet dramatically 
reduced RORγt−Nrp1− pTregs (109). Adoptive transfer of naïve 
OTII CD4+ T-cells in mice on AF diet primarily elicits Th1 cell 
immune response while Th17 and Th2 responses were compa-
rable to SPF animals. However, pTregs generated in this model 
were primarily RORγt+Nrp1− pTregs, suggesting that dietary 
antigens can also generate RORγt+ pTregs in the absence of 
microbiota (109).

While TGFβ is by far the most important factor as far as 
generation and intestinal accumulation of pTregs is concerned 
(141–143), a generalized modulation of intestinal pTregs can be 
achieved by several other factors like dietary vitamin A, vitamin 
D, Niacin (Vitamin B3), Folic acid (Vitamin B9), and tryptophan 
[reviewed in Ref. (144)]. All-trans retinoic acid, a metabolite 
of Vitamin A, produced by DCs facilitates de novo generation 
of Foxp3+ Tregs from naive CD4+CD25− T-cell populations 
in mice (121, 145) (Figure  3). It also plays an important role  
in upregulating gut-homing markers CCR9 and CD103 (integrin 
αE) on pTregs (146). Feeding mice with Vitamin A-deficient diet 
or treatment with RAR inhibitors reduces the RORγt+ pTregs 
in colon while GATA3+ Tregs are not affected (129). Similarly, 
RORγt− pTregs in small intestine are also not affected by vitamin 
A or RA (109). Vitamin D metabolite 1, 25-dihyroxyvitamin D3 
binds to Vitamin D3 nuclear receptor in CD4+ T-cells and pro-
motes Foxp3 expression (147) (Figure 3). Recently, it was shown 
that in human patients of ulcerative colitis a Vitamin D3 agonist 
can convert CD4+ T-cells to pTregs (148).

Functions of intestinal Tregs
Foxp3+GATA3+ intestinal Tregs express high level of ST2 (108). 
These Tregs express high levels of tissue repair factor, an EGF 
like growth factor Amphiregulin (108, 149) (Figures 3 and 4A). 
It appears that Amphiregulin mediated tissue repair might be 
a generalized mechanism employed by tissue-resident Tregs 
as exemplified by its evolving role in lung resident as well as 
intratumoral Tregs (150, 151). Foxp3+RORγt+ Tregs express 
increased levels of ICOS, CTLA4, and the nucleotidases CD39 
and CD73 altogether, indicating robust regulatory functions 
(107, 129). Interestingly, Foxp3+RORγt+ Tregs have been impli-
cated in regulating both Th2 and Th1/Th17 mediated immunity 
in two independent studies, implicating animal housing 
conditions as an important determinant of the type of immune 
response (107, 129). siLP Foxp3+RORγt− Tregs primarily work 
toward containment of Th1 immunity. When OTII T-cells are 
transferred in AF mice, T-cells primarily convert to IFNγ+ 
OTII cells and induced Tregs are mainly Tbet+, although the 
extent of such RORγt− pTreg induction in AF conditions was 
severely compromised compared to SPF conditions (109). As a 
consequence, in an experimental model of food allergy, where 
SPF BALB/c mice were weaned onto an amino acid diet, higher 
diarrheal instances were reported than mice on normal chow 
(109). While these results underscore an important function of 
RORγt− pTregs in curbing food allergy, further transcriptomic 
and phenotypic analyses might provide additional clues to their 
functions.

Of note, one more function of siTregs was identified recently 
while looking at the IEL population. It was observed that LP Tregs 
migrate to epithelial compartment as well, where a fraction of 
them lose Foxp3 expression (152). Further, these Tregs then give 
up ThPOK expression leading to de-repression of Cd8 locus and 
thus, get converted into a CD4+CD8αα+ IELs (152) (Figure 4B). 
IELs have cytotoxic as well as immunoregulatory machinery sug-
gesting a role in both mucosal barrier maintenance and elimina-
tion of stressed intestinal epithelial cells (153).
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SKiN Tregs: KeePS YOUR HAiR ON

Skin is the largest organ amounting to almost 15% of adult 
human body weight. Being our exterior, it is always exposed to 
environmental, microbial, physical, and chemical insults. Skin 
also harbors more than 1012 bacteria/m2 (154) in the surface 
intercorneocytic spaces.

Skin Architecture
Anatomically, skin is composed of three layers, the outer epi-
dermis, middle dermis, and inner subcutaneous tissue layer 
(155). The terminally differentiated keratinocytes in epidermis 
synthesize long, thread-like protective protein keratin and form 
a physical barrier. Products of various sweat and sebaceous 
glands interspersed at epidermal–dermal junction along with 
antimicrobial peptides develop an acidic hydrophilic skin which 
acts as a biochemical barrier (154). The epidermal–dermal junc-
tion also hosts hair follicles. Cellular component of epidermis 
comprises of Langerhans cells (specialized skin DCs) and T lym-
phocytes. The dermis is composed of layers of thick and thin 
collagen fibers which provide mechanical framework to host 
blood vessels and various immune cells like dermal DCs, αβ and 
γδ T-cells, NK cells, B cells, macrophages, and mast cells (154). 
Understandably, given the exposed nature of skin, it is highly 
vulnerable to overzealous immune responses against skin com-
mensals and self-antigens. Tregs are an important component of 
establishing tolerance and homeostasis in the skin. Indeed, both 
scurfy mouse and human IPEX patients present fulminating 
immune responses in skin. A study, examining children with 
IPEX syndrome reported that more than 70% children presented 
Atopic Dermatitis and eczema with 1.5 months as median age of 
onset of symptoms (156).

Skin Treg Origin and Accumulation
Normally, 30–50% and 20–30% of total CD4+ T-cells are Tregs 
in mouse and human skin, respectively (157, 158). It is difficult 
to establish the origin of cutaneous Tregs, given the paucity of 
specific information. However, a wave of Tregs has been shown 
to populate the skin in early neonatal period in a skin bacterial 
colonization model in mice (159). Furthermore, restricting 
lymphoid emigration of T-cells by treating with sphingosine-
1-phosphate receptor antagonist FTY720 resulted in preferential 
accumulation of Tregs in thymus instead of skin draining LNs, 
suggesting their migration directly from thymus (159). In 
humans, the cutaneous Tregs and Tconv cells share very few 
TCRβ sequences and these Tregs present a fully demethylated 
FOXP3 CNS2 region, suggestive of their stability and thymic ori-
gin (157, 160, 161). This is little surprising as skin Tregs establish 
tolerance to not only self-antigens but also to commensals. How 
are then commensal antigen-specific Tregs generated in thymus? 
One possibility appears to be plasmacytoid DCs (pDCs) that 
have been shown to be able to take up innocuous peripheral 
antigens to thymus (162) and LNs (163) to induce tolerance. 
Generally, pDCs are not present in skin but can accumulate in 
the presence of inflammatory conditions (164, 165). Another 
probability is that some tTregs have TCRs with sufficient cross-
reactivity to microbial antigens and thus can specifically expand 

and accumulate at sites where antigen is present. However, if 
indeed skin Tregs are thymic by origin, the concerning mecha-
nisms remain to be elucidated.

Modeling of inducible expression of a self-antigen, by fusing 
transferrin receptor transmembrane domain, GFP and amino 
acids 230–359 of chicken ovalbumin in mouse epidermis, 
revealed that circulating Tregs are not able to suppress primary 
immune response against OVA, though it initiated activation of 
Tregs (166). The inflammation resolved spontaneously and any 
subsequent antigen expression led to an attenuated and short 
immune response. Further analysis revealed that a fraction of 
Tregs persisted in the skin which expressed low level of CD25 
but higher KLRG1, CTLA4, and CD127, akin to the memory 
T-cells (166). It is to be noted here that a recent study examining  
the transcriptional, epigenomic, and functional changes in 
inflam mation experienced Tregs employing the Foxp3DTR sys-
tem, presented that Tregs revert most of the activation induced 
changes and lose the accentuated suppressive ability over time 
(167). An earlier report revealed that cutaneous Tregs express 
CCR4 and adhesion molecule Integrin αE, CD103 (168). In a 
mixed bone marrow chimera study, CCR4-deficient Tregs could 
not reconstitute the skin Treg compartment (168). CCL17 and 
CCL22 are known chemokine ligands for CCR4 (169, 170), 
which are differentially expressed in inflamed skin mainly by 
endothelial cells and dermal DCs, respectively (171). These 
molecules sequentially manage T-cell homing to skin, where 
CCL17 promotes vascular recognition and extravasation and 
CCL22 guides subsequent migration in skin (172). More than 
70% skin Tregs express GATA3, although its deletion in Tregs 
does not alter Treg profile or cause overt skin related phenotype 
under homeostatic conditions (110).

Since skin is heavily exposed to commensals as well as patho-
gens, it is imperative to speculate that a fine tuning of effector 
and suppressive immune responses has evolved. The commensal 
microbiota residing within skin has been shown to calibrate 
barrier immunity (173, 174). To identify mechanisms behind 
development of tolerance to skin commensals, Scharschmidt 
et al. performed some elegant experiments with model peptide 
antigen expressing Staphylococcous epidermidis, a human skin 
commensal which efficiently colonizes mouse skin (159). 
Surprisingly, skin colonization in adult mice did not evoke any 
tolerance to bacteria, as seen by inflammatory response upon 
re-challenge. However, when neonatal mice were colonized for 
a week during postnatal week 2, there was an appreciable attenu-
ation of inflammatory response upon re-challenge after 3–4 weeks. 
Subdued response was associated with marked enrichment of 
antigen-specific Tregs in skin and draining LNs and the tolerance 
could be reversed upon FTY720 treatment (159). Another study 
has also shown that Tregs, generated very early in life in a defined 
perinatal window, play a very distinct role in maintaining self-
tolerance (175). Thus, in mice, an abrupt wave of Treg infiltration 
occurs in a defined early postnatal period to establish dominant 
tolerance toward skin commensals (159) (Figure 5).

Both Tregs and skin commensals are localized to hair follicles 
and in mouse, the time of Treg infiltration (week 2 postnatal) 
is coincident with hair follicle development (176, 177). Thus, it 
was speculated that hair follicles might have a role in ingress of 
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FiGURe 5 | Cutaneous regulatory T-cells (Tregs) facilitate hair morphogenesis and establish tolerance to skin commensals. Skin Tregs colonize mouse skin in  
early postnatal period coinciding with initial microbial colonization and hair follicle development. Skin microbes enter the hair follicle which induces production of 
chemokine CCL20 from infundibular cells that attracts large number of Tregs expressing corresponding receptor CCR6. The accumulated Tregs subsequently 
establish tolerance to these commensals. Also, during the resting phase of hair growth (telogen) which initially coincides with commensal entry in hair follicle, large 
number of Tregs are seen in contact with hair follicle stem cells (HFSCs) in the bulb of follicle. These Tregs provide notch ligand Jagged1 to the stem cells. Notch 
signaling triggers the active phase of hair growth cycle (anagen). Tregs are reduced in anagen phase around HFSCs.
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Tregs in skin. It has been shown that chemokines from different 
parts of hair follicles like CCL2 from isthmus, CCL20 from infun-
dibulum, and CCL8 from bulge keratinocytes generate specific 
type of Langerhans cells (178). Similarly, in a mouse model of 
skin specific hair follicle morphogenesis arrest, skin Treg popula-
tion was reduced without affecting Treg population in intestine 
or draining LNs in neonatal mice (179). Further investigations 
revealed that neonatal SPF mouse skin produces high amount 
of chemokine CCL20 whose receptor CCR6 was found to be 
enriched on cutaneous Tregs (Figure  5). It was confirmed by 
adoptive transfer experiments that CCR6-deficient Tregs were at 
a competitive disadvantage to reconstitute skin T-cell compart-
ment (179). Tregs in neonates also express high CCR8 and its 
ligand CCL22 is, in turn, expressed in skin. However, their contri-
bution in establishing and/or maintenance of skin Tregs is yet to 
be examined. CCL20 mRNA expression also increases in human 
fetal skin explants upon exposure to cutaneous commensals and 
bacterial components (179). Thus, tissue morphogenesis (hair 

follicle generation and subsequent chemokine production by 
the cells of hair follicle) and commensals are shown to cooperate 
in developing a tissue-specific immune tolerance. It would be 
interesting to extrapolate this model to other microbe inhabited 
organ systems. Whether, these mechanisms sustain throughout 
the life span particularly in adult life is not known. Earlier, 8- to 
12-week-old GF mice were reported to have about twofold more 
cutaneous Tregs than SPF animals (180). It is possible that yet 
unknown factors other than commensals increase Treg popula-
tion in adult GF skin or a lack of tuned immune response against 
commensals diverts immune resources toward self-antigens and 
in turn, progressively enrich self-antigen-specific Tregs in skin.

Short wavelength Ultraviolet (UVB) exposure also enriches 
and accumulates Tregs in mouse skin (181). UVB exposure 
damages self-RNA in keratinocytes which is sensed by TLR3 
to generate an inflammatory response (182). Indeed, the Tregs 
accumulating post-UVB exposure were Nrp1+ with highly 
demethylated Foxp3 CNS2 (181). These Tregs highly expressed 
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FiGURe 6 | Cutaneous regulatory T-cells (Tregs) actively repair skin tissue damage. Tregs migrate to skin by virtue of sequential interactions of chemokines  
CCL17 and CCL22 with their receptor CCR4. CCL17 is secreted by endothelial cells in inflamed skin and helps in extravasation of Tregs, CCL22 manages 
subsequent migration of Tregs. In case of skin wound-induced inflammation, Tregs acquire a highly activated phenotype with higher surface expression of CTLA4 
and ICOS. These Tregs actively suppress IFNγ production from inflammatory Ly6C+ macrophages. Also, Tregs express high amount of EGFR, helping in their tissue 
repair ability. In case of short wave UVB light induced skin damage, self mRNA from keratinocytes are taken up by CD103+ dendritic cells (DCs) which induce the 
cutaneous inflammation. These DCs are suppressed by Tregs which have high surface expression of CD103 and P-lig and thus can migrate into non-inflamed skin 
as well, subsequent to UV exposure.
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homing molecules like CD103, CCR4, and P-lig and thus, were 
able to migrate to the non-UVB exposed parts of the skin as well 
(181) (Figure 6). Interestingly, UVB phototherapy is an effective 
treatment in autoimmune skin conditions, like psoriasis (183) 
and atopic dermatitis (184).

Tissue Adaptations and Homeostatic 
Functions
True to the nature of tissue-resident Tregs where they have 
been shown to not only develop immune tolerance but also get 
accustomed to and help local physiology, cutaneous Tregs in 
hair follicles have been found to modulate hair follicle stem cells 
(HFSCs) in addition to establishing tolerance to commensals.  
In mouse skin, an abundance of Tregs was found during telogen 
phase of hair follicle growth which is characterized by quiescence 
only to be followed by an active proliferation phase called anagen. 
Treg population decreases during anagen phase. And as these 

phases alternate in mouse skin so are the numbers of hair fol-
licle associated Tregs (158) (Figure  5). Animals with transient 
depletion of Tregs during telogen, failed to progress to anagen 
phase and could not re-grow hairs (158). It was not inflammation 
related, as transient depletion of Tregs did not elicit any major 
inflammatory event in skin and co-depletion of either effector 
CD4+, CD8+, Gr-1 expressing neutrophils or CD11C+ myeloid 
cells did not rescue HFSC proliferation (158). This suggested a 
non-immune role of Tregs in HFSC proliferation. Akin to Tregs 
in hematopoietic system which form an immune-privileged site 
to provide a protective niche to hematopoietic stem cells (185), 
hair follicle Tregs were found to co-localize with HFSCs. These 
Tregs highly express “jagged1” which encodes a ligand for notch 
signaling pathway responsible for HFSC proliferation (158) 
(Figure 5).

Regulatory T-cells play an important role in cutaneous wound 
healing as well. They accumulate in large numbers at the site soon 
after a wound injury in skin (186). These Tregs are of activated 
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phenotype with high CD25, CTLA4, and ICOS expression and 
limit the IFNγ producing T-cells and inflammatory macrophages 
in wounds (186). The Tregs involved in cutaneous wound healing 
were shown to be dependent on EGFR pathway (186) as in lung 
and muscle-healing Tregs (150, 187, 188) (Figure 6).

TUMOR-iNFiLTRATiNG ReGULATORY 
T-CeLLS (Ti-Tregs): A BATTLe wON,  
wAR LOST

Tumors are wounds that do not heal (189–191). Solid tumors, 
in particular, heterogeneously indulge in various stages of 
wound healing, which provide essential growth factors for 
the tumor growth. This hijack of natural processes results in 
heightened inflammation and its subsequent resolution in the 
tumor microenvironment, presumably setting up a vicious cycle. 
Inflammation on one hand provides growth and metastasis 
opportunities; resolution of inflammation helps the tumor to 
escape antitumor immunity. Therefore, it is not surprising 
that many solid tumors including hepatocellular (192), gastric 
(193), lung (194), breast (195), ovarian (196), cervical (197), 
and melanomas (198) summon comparatively large numbers 
of Tregs which sometimes account for even more than 50% of 
CD4+ T-cell compartment (199). For most of the tumors, the 
presence of high number of Tregs indicates a guarded to grave 
prognosis. However, several studies reported a favorable role of 
FOXP3+ T-cells in colorectal carcinomas (CRC) (200–202). It is 
to be noted that FOXP3 expression is not exclusive to bona fide 
Tregs in humans, often, effector T-cells express FOXP3, albeit 
transiently (203, 204). Based on expression levels of FOXP3 and 
Protein tyrosine phosphatase isoform A (CD45RA), human 
peripheral blood FOXP3+CD4+ T-cells can be classified into 
FOXP3hiCD45RA− bona fide Tregs which are highly suppressive 
and phenotypically eTregs; FOXP3loCD45RA+ naïve T-cells and 
FOXP3loCD45RA− effector T-cells which are not suppressive in 
an in  vitro suppression assay (203). Indeed, careful analysis of 
TILs in human CRC by Saito et  al. (205) revealed the hetero-
geneity of FOXP3 expression. The authors identified that CRC, 
where higher expression of FOXP3 was associated with favorable 
outcomes, were actually infiltrated more with FOXP3loCD45RA+ 
effector T-cells and upregulated inflammatory genes like Il12a, 
Il12b, Tgfb1, and Tnf. Higher infiltration of FOXP3hiCD45RA− 
cells resulted in poor prognosis and lower disease-free survival 
(205) as reported for other tumors.

Origin and Accumulation of Ti-Tregs
As tTregs and pTregs differ in their stability, conclusive infor-
mation about origin of TI-Tregs can be very valuable to design 
TI-Treg specific therapies in cancers. Tumors drive immune 
responses against tumor-associated self-antigens as well as 
tumor-specific neo-self antigens. Thus, in theory, Tregs against 
self-antigens (tTregs) and pTregs against neo-self antigens are 
possible. Presence of high levels of TGFβ in most solid tumors 
reinforces the idea of generation of pTregs in tumor microen-
vironments (206, 207). However, TI-Tregs in several murine 
tumors have been shown to express high levels of Nrp1 and 

Helios proteins, suggestive of a thymic origin (208). Attempts for 
in situ conversion of conventional CD4+ T-cells to Tregs against 
tumors expressing model antigens did result in intratumoral 
pTregs generation (209, 210), but monoclonal populations of 
antigen-specific T-cells do not recapitulate physiological condi-
tions where antigen-specific T-cells represent less than 5% of 
TILs (211–213). TCR repertoire analyses have revealed almost 
no overlap in Foxp3+ and Foxp3− T-cells in autochthonous 
prostate tumors (214), carcinogen-induced tumors (215), and in 
heterotopic transplanted tumors in mice (216). Further, these 
studies confirmed that there is enrichment and expansion of 
selective TCR bearing Tregs inside tumor microenvironment 
(214, 216). In human breast cancers (217) and hepatitis B virus 
positive hepatocellular carcinomas (HCC) (192), very low TCR 
repertoire overlap between TI-Tregs and conventional T-cells 
suggests little to no conversion of conventional CD4+ T-cells into 
Tregs (Figure 7A). Malchow et al. (214) developed a transgenic 
mouse expressing the model oncogene SV40 T antigen in prostate 
and a fixed TCRβ chain (TRAMP-Foxp3eGFPTCRβTg). They found 
that Tregs expressing a single TCR (MJ23), reactive to a normally 
expressed prostate antigen, consistently populated the tumors 
(214). This TCR was able to drive a tTreg clone development. 
However, a deficiency of the transcription factor autoimmune 
regulator abolished development of these clones (214), suggesting 
that at least in these experimental settings, TI-Tregs are gener-
ated in thymus against a normal tissue expressed self-antigen 
(Figure 7A). Recently, two MHCII restricted natural self-antigen 
ligands of MJ23 Tregs were discovered. Both of these ligands are 
non-overlapping peptides originating from same prostatic pro-
tein (Tcaf3) and while one is expressed in mouse prostate tumors 
(MJ23), the other is associated with prostatic autoimmune lesions 
(SP33) (218). Another study focusing on epigenetic hallmarks 
of tTregs found that TI-Tregs had consistently hypomethylated 
Foxp3 CNS2 in various orthotopic and heterotopic transplanted 
tumor models, even at different time points of tumor growth 
(219). These findings were further confirmed in TI-Tregs from 
different human tumors. It is to be noted that there have been 
equivocal reports about the demethylated CNS2 being specific for 
tTregs, since Foxp3 CNS2 region in pTregs has also been shown to 
be demethylated (220, 221), most likely upon eventual stabiliza-
tion following its de novo induction.

Overall, available evidences largely point toward higher enrich-
ment and expansion of tTregs inside solid tumors. However, why  
should not higher TGFβ levels and an activating tumor envi-
ronment drive pTreg generation and expansion is a baffling 
question. Probably more conclusive lineage tracing experiments  
across tumors can be proven more insightful.

Ti-Tregs Add Another Layer  
of Diversification
Recent studies analyzing transcriptome of TI-Tregs from 
human cancers have identified that though TI-Tregs are largely 
similar to normal tissue-resident Tregs, these have some specific 
characteristics and molecular patterns which can be utilized for 
selective therapy (192, 217, 222). Plitas et  al. (217) found that 
breast cancers, with rather aggressive phenotype, were enriched 
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FiGURe 7 | Origin, accumulation, and functional potentiation of tumor-infiltrating regulatory T-cells (Tregs). (A) Tumor-specific antigens can be expressed by thymic 
epithelial cells in an Aire-dependent manner, which then select the tumor antigen-specific Tregs. These Tregs then expand in tumor draining lymph nodes (LNs)  
with the help of dendritic cells (DCs). Tregs can also be directly recruited to tumors and undergo expansion there. While intratumoral conversion of effector T-cells  
to pTregs is likely, the extent to which this occurs under physiological conditions is not completely understood. (B) A high number of TI-Tregs are apoptotic because 
of suppressed expression of Nrf2. These Tregs as well as dying tumor cells release copious amounts of ATP, which is converted to adenosine by Treg ectoenzymes 
CD39 and CD73 in a sequential manner. The resulting adenosine is highly suppressive to tumor-infiltrating CD8+ effector T-cells. Further, Tregs also produce 
Amphiregulin in certain tumor types, which help in tumor progression. (C) More than 50% of TI-Tregs express surface Neuropilin1 (Nrp1), which is a receptor for 
Semaphorin 4a. Upon ligation with Semaphorin4a, Nrp1 activates lipid phosphatase Phosphatase and tensin homolog (PTEN) which promptly dephosphorylates 
AKT rendering its sequestration in cytosol and nuclear retention of Foxo1/3 transcription factors which help in stabilization and survival of Tregs. A loss of Nrp1 
renders Treg highly susceptible to IFNγ and such Tregs also produce high amount of IFNγ and HIF1α (“Fragile” Tregs). The resultant high IFNγ environment, 
reciprocally, can induce “fragility” in other Nrp1-sufficient Tregs as well, setting up a vicious cycle.
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for Tregs, which were highly suppressive in a microsuppression 
assay and were highly proliferative based on increased expression 
of nuclear protein Ki67, a cellular marker for proliferation (223). 
Further transcriptome analysis of TI-Tregs from breast cancers 
and gastric cancers as well as brain metastases of NSCLC and liver 
metastasis of CRC, suggested a signature gene set for these cells 
(222). TI-Tregs expressed BATF, CCR8, CD30, IL1R2, IL21R, 
PDL1, and PDL2 along with FOXP3 and IL2Ra at a very high 
level (222). Recently, BATF was shown to be involved in context 
dependent gene set expression in tissue Tregs (224). In the IPEX 
patients, a gain-of-function mutation in FOXP3 locus (A384T) 
results in expanded DNA binding specificities of FOXP3.  
Its altered binding to BATF locus repressed BATF expression 
leading to repressed GATA3, ST2, and CCR4 expression in Tregs 
(224). These genes are significant in converting cTregs to eTregs, 
therefore, their decreased expression led to a widespread tissue-
specific autoimmunity (224).

Genome-wide transcriptome analyses identified MAGEH1, 
Melanoma antigen family H1 gene, encoding a putative E3 ubiq-
uitin ligase potentially regulating TI-Treg survival and function; 
Chemokine (C-C motif) receptor 8 (CCR8), known receptor for 
chemokines CCL1 (225), CCL8 (226), CCL16 (227), and CCL18 
(228) in humans; CD177, a glycosyl-phosphatidylinositol-linked 
cell surface glycoprotein that can bind platelet endothelial cell 
adhesion molecule-1 and is known for neutrophil transmigra-
tion and survival (229); and LAYN, encoding a novel c-type lec-
tin surface receptor layilin, a proposed receptor for Hyaluronan 
(230). However, subsequently, layilin has been found highly 
expressed on tumor-infiltrating cytotoxic CD8+ T-cells as well, 
particularly those with an exhaustive (highly expressing CTLA4, 
PDCD1, and HAVCR2) phenotype (192). Enrichment of LAYN, 
MAGEH1, and CCR8 in whole tumor samples correlated sig-
nificantly with reduced 5-year survival rate of CRC and NSCLC 
patients (222). CCR8 expression was exclusively enriched on 
TI-Tregs, whereas CCR2, CCR4, and CCR5 expressions were 
found on other tumor-infiltrating and/or peripheral blood 
Tconv cells as well. Indeed, a CCR4 depleting antibody has been 
shown to deplete both Tregs and Tconv cells (231). Some Tregs 
in draining LNs also expressed high CCR8 which might be ones 
earmarked for tumor infiltration or Tregs in micrometastases 
inside LNs (217). As peripheral blood and/or LN Tregs do not 
express CCR8, its importance in recruitment of Tregs to tumors 
is not appreciated. It is possible that CCR8 is expressed to retain 
Tregs in tumors. Indeed, CCR8 ligands like CCL1 and CCL18 
are highly transcribed in tumor-infiltrating myeloid cells (217). 
Whether, CCR8 expression is an indicator of highly suppressive 
TI-Tregs or it has further functional importance is not yet known. 
However, human Tregs exposed to CCR8 ligand CCL1 and not 
CCL8, CCL16, or CCL18 induce surface CCR8 expression via 
a STAT3-mediated pathway (232). Such cells, subsequently, 
upregulate their expression of FOXP3, CD39, Granzyme B, and 
IL10 and are functionally more suppressive in a microsuppres-
sion assay and in a mouse model of multiple sclerosis (232).

Function of Ti-Tregs
There is a repertoire of known and yet unknown mechanisms 
which Tregs utilize to suppress an immune response. TI-Tregs 

also use similar mechanisms which include production of immu-
nosuppressive cytokines like IL10 and TGFβ (233, 234); seques-
tration of IL2 (235); direct cytolysis of target lymphocytes using 
granzyme B and perforin (236); contact based immunosuppres-
sion using surface inhibitory molecules like CTLA4 (237), PD1 
(238, 239), LAG3 (240), TIM3 (241), and CD39/CD73-generated 
adenosine-mediated T-cell suppression via adenosine receptor 
2A (242, 243). However, how the TI-Tregs have highly accentu-
ated suppressive response is not very well understood. A large 
accumulation of Tregs might help in a collective exaggerated sup-
pression, but it cannot explain individual potentiation. Recently, 
it was shown that TI-Tregs are highly apoptotic on account of 
comparatively low expression of the transcription factor Nuclear 
factor like 2 (NRF2) (244). NRF2 regulates antioxidant defense 
system in macrophages and epithelial cells (245). A lack of NRF2 
makes TI-Tregs more apoptotic in high oxidative stress tumor 
microenvironment. But, owing to increased release of ATP and 
high CD73/CD39 expression, apoptotic TI-Tregs generate large 
amount of adenosine and thus, become even more suppressive 
(244) (Figure 7B). It is to be noted though that earlier Imatinib 
induced apoptosis of TI-Tregs was shown to enhance antitumor 
immunity (246).

TI-Tregs in human breast cancers (217) and HCC (192) highly 
express Il1r2 gene encoding a decoy IL1 receptor. Also, TI-Tregs 
are found to be highly stable owing to the enhanced expression 
of lipid phosphatase Phosphatase and tensin homolog (PTEN) 
and VEGF receptor Nrp1 (199, 238, 247). Binding of Nrp1 to 
its ligand Semaphorin4a increased Foxo1 and Foxo3 nuclear 
localization by inhibiting AKT phosphorylation which stabilized 
Treg signature genes and antiapoptotic genes (247) (Figure 7C). 
AKT dephosphorylation was achieved by activation of PTEN by 
Nrp1. Indeed, mice with Treg specific PTEN deletion generate an 
accentuated antitumor immune response (238). Nrp1 expression 
is primarily important for TI-Tregs as the loss of Nrp1 even from 
a fraction of Tregs under appropriate experimental conditions, 
rendered all the Tregs (including those that were Nrp1 sufficient) 
“fragile” (199). This observation emphasizes that Tregs can not 
only modulate other immune cells but can phenotypically influ-
ence other Tregs as well. The TI-Treg fragility was shown to be 
induced by IFNγ production by Nrp1-deficient Tregs and exog-
enous IFNγ (199) (Figure  7C). The authors further show that 
HIF1α was a major factor induced in Nrp1-deficient and fragile 
Tregs, and both HIF1α and IFNγ can be induced by hypoxia 
(199). However, as most of the solid tumors become progres-
sively hypoxic (248, 249), whether this phenomenon is prevalent 
in progressive tumors and if so, whether it is efficient for a 
significant regeneration of antitumor immune response, remains 
to be seen. TI-Tregs have been shown to highly express receptor 
activator of nuclear factor κB ligand (RANKL), which upon bind-
ing to its receptor RANK expressed in mammary carcinoma cells 
increases lung metastasis (250). RANKL has also been implicated 
in renewal of breast cancer progenitor cells (251) and metastasis 
of prostate cancers (252) by modulating protein kinase inhibitor 
of nuclear factor κB kinase α (IKKα). Overall, these findings 
suggest that there is a specific phenotypic and functional identity 
to TI-Tregs and thus, it is possible to selectively target them for 
triggering efficient antitumor immunity.
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FiGURe 8 | Emerging evidences highlight a compulsory requirement of regulatory T-cells (Tregs) in tissue regeneration and repair. (A) Both lungs and muscles  
contain population of Tregs which proliferate vigorously upon tissue injury. Lung reparative Tregs respond to both inflammatory IL18 and alarmin IL33 and produce 
amphiregulin in a TCR-independent manner. Muscle Tregs respond to IL33 produced upon muscle damage and produce amphiregulin for subsequent repair.  
(B) In zebrafish, mammalian Foxp3 ortholog Foxp3a expressing Tregs (zTregs) are primarily present in kidney. However, upon tissue injury, they soon accumulate  
at the site of the injury. Apart from anti-inflammatory IL10 production, zTregs co-localize with organ progenitor cells and provide tissue-specific growth factors to 
progenitors like neurotrophin3 for neural progenitors in spinal cord, neuregulin1 for cardiomyocytes in heart, and insulin-like growth factor1 to Müller glial cells in retina.
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OTHeR Tregs iN TiSSUe iNFLAMMATiON 
AND HOMeOSTASiS

As the diversity in characteristics and functions of tissue Tregs 
is being unraveled, several other interesting populations have 
been described which deserve more detailed phenotypic and 
functional characterization.

Regeneration Powerhouse
It was reported earlier that in a non-inflammatory model of regen-
erative alveologenesis, Tregs enhanced epithelial proliferation.  

A Treg coculture with type II alveolar cells (AT2) increased their 
proliferation in CD103-dependent manner (253). In accordance 
to these findings, a distinct population of Tregs expressing high 
levels of pro-inflammatory cytokine IL18 receptor (IL18R) and 
ST2 has been described in lungs (150). IL18R+ Tregs expand 
early in the course of a lung injury and enhance tissue repair by 
producing a large amounts of tissue repair protein amphiregu-
lin in an “innate” manner, independent of TCR engagement 
(150) (Figure  8A). In animals with Treg specific amphiregulin 
deficiency, a rapid decline in lung functions was observed upon 
intranasal influenza virus infection, while antiviral immune 
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response was intact (150). Transcriptomic analysis revealed 
that these “repair Tregs” have a distinct gene expression pattern 
indicating their proficiency in extracellular matrix remodeling 
and tissue repair (150).

Another unique tissue Treg population has been found in 
skeletal muscles, where by virtue of amphiregulin secretion, 
they help in muscle regeneration and healing. These cells, usually 
accounting for 10% of muscle T-cells at a steady state, proliferate 
vigorously after an intramuscular administration of cardiotoxin, 
which induces hypercontraction and myofibril death induced 
acute injury (254), reaching close to 50% of muscle T-cell 
population (188). High expression of Nrp1 and Helios and a 
unique and restricted TCR repertoire suggests thymic origin 
of muscle Tregs and reactivity to a local muscle antigen (188). 
These Tregs have a unique transcriptome compared to lym-
phoid organ Tregs with several differentially expressed genes. 
They have upregulated transcripts involved in Treg mediated 
suppression (Il10, Gzmb, etc.), tissue repair (Il1rl1, Areg, etc.), 
and muscle regeneration (255) (Ccr2) as well as genes encoding 
proteins found in contractile muscle function (256) like nebulin 
and nebulin-like proteins (Neb, Nebl). Depletion of Tregs during 
a muscle injury episode delays muscle healing, most probably 
because of loss of Treg generated amphiregulin. Also, fibro/
adipogenic progenitors in skeletal muscles produce high levels 
of IL33, whose receptor ST2 is highly expressed on muscle Tregs. 
Thus, muscle Tregs seem to be involved in an alarmin induced 
repair process (Figure 8A). Interestingly, muscle Treg popula-
tion declines in old age mice which results in a deterioration of 
repair and regeneration process (257).

Recently, a very elegant and detailed (258) study in zebrafish 
has elaborated upon yet unknown and spectacular regenerative 
capabilities of Tregs (Figure  8B). The authors found that an 
ortholog of mammalian Foxp3, Foxp3a, which was exclusively 
expressed in a subpopulation of zebrafish T-cells, was upregu-
lated most prominently in distinct regenerating organs. Zebra 
fish Tregs (zTregs) were predominantly found in kidneys but 
infiltrated and vigorously proliferated in regenerating tissues. 
As in the mammalian counterparts, these cells expressed high 
levels of Nrp1a and Helios in comparison to kidney zTregs (258). 
It has been reported that CNS1 region of Foxp3 locus, respon-
sible for pTreg generation, is not found in zebrafish (259). For 
identification of zTreg’s role in organ regeneration, punctual and 
continuous deletion of Foxp3a resulted in reduced and delayed 
regeneration in heart, spinal cord, and retina injury models 
(258). Deletion of zTregs, in fact, reduced the tissue-specific 
precursor cells and subdued their proliferation (258). Indeed, 
zTregs were found near progenitors, sometimes even in close 
contact (258). However, the most striking finding of this study 
is that zTregs which presumably came from a common unbiased 
pool, became plastic in a tissue-specific regenerative context and 
produced tissue precursor cell specific regeneration factors like 
Neurotrophin 3 for neural progenitors in regenerating spinal 
cord, Neuregulin 1 for cardiomyocytes in injured heart and 
insulin-like growth factor 1 for retinal progenitor Müller glia 
cells (258) (Figure 8B). That zTregs are the primary source of 
these growth factors was confirmed by rescue of regeneration 
in zTreg depleted tissues by recombinant tissue-specific growth 

factors (258). The regeneration potential of zTregs was independ-
ent of their immunosuppressive potential or at least was not 
dependent on their IL10 production as IL10-deficient cells were 
fully capable of inducing precursor cell proliferation. However, 
regeneration potential was Foxp3a-dependent as regeneration 
process was significantly reduced in Foxp3a−/− tissues along with 
growth factor expression levels (258). On the other hand, Areg 
expression was not Foxp3a dependent and its role in regeneration 
was limited. It would be interesting to extrapolate and confirm 
similar findings in murine and human tissues.

Feto-Maternal Tolerance
An equally fascinating population of Tregs which accumulates in 
murine placenta to induce maternal tolerance to fetus has been 
described (259). To say that the Tregs are extremely important 
from the outset of pregnancy will not be an overshoot [reviewed 
in Ref. (260, 261)]. Indeed, mating itself expands uterine Tregs 
and induces a transient “tolerance” to paternal alloantigens 
(260). In both humans and mice, seminal plasma contains TGFβ 
and prostaglandin E, which are potent Treg inducers. In fact, 
seminal fluid in humans and rodents contains highest meas-
ured TGFβ levels among biological fluids (260). Women with 
recurrent spontaneous abortions have reduced Treg population 
(262). Female decidual and uterus draining LN Treg generation 
is CNS1 dependent (259) and increased fetal resorption and 
placental T-cell infiltration was observed in CNS1-deficient 
mice. Apart from the their most likely peripheral origin, it is 
not known whether these Tregs have a distinct phenotypic 
and functional profile, elucidation of which could come very 
informative toward amelioration of infertility, pre-eclampsia, 
and other spontaneous abortive disorders. Very recently, an 
elegant study on human fetal antigen presenting cells (263) has 
found that fetal counterparts of DCs are primarily tolerogenic 
in their response. And, the primary response is generation of 
Tregs, even more than the adult DCs, in an in  vitro Treg dif-
ferentiation assay (263). These DCs were found across several 
fetal tissues, including spleen, thymus, skin, gut, and lungs (263). 
Unfortunately, the authors did not describe if Tregs were also 
present in these tissues. Earlier, it has been shown that human 
fetal Tregs promote tolerance to non-inherited maternal antigens 
(264) but only recently, it came to light that Tregs are required 
for suppression of in utero autoimmunity as well. Two children 
with IPEX syndrome, who died soon after birth, presented 
histological evidences of tertiary lymphoid structures, chronic 
inflammatory changes, and targeted exocrine pancreas autoim-
munity (265). This signifies that in the perplexing settings of a 
pregnancy, Tregs are instrumental in establishing tolerance at 
both ends of maternal–fetal relationship.

CONCLUSiON AND PeRSPeCTiveS

Translational utility of many biological processes is marred by 
lack of specificity. A similar dilemma exists for Treg biologists 
as well; however, in case of Tregs selective therapeutic targeting 
appears to be achievable by virtue of harnessing their gradually 
established phenotypic and functional diversity. Recent studies 
have provided evidence that even for the organs like testes and 
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eye, which are conventionally considered immune-privileged; 
there are populations of Tregs maintaining dominant tolerance 
and/or tissue homeostasis. While in testis, where otherwise privi-
leged autoantigen escapes from the seminiferous tubules, only to 
generate systemic tolerance via Tregs (266), the retina actively 
recruits Tregs, which not only attenuate inflammation, but also 
repair the vasculature, saving blinding neovascular retinopathies 
(267). Another layer of specificity is added by discovery of tissue-
resident Tregs and their unique characteristics. However, most 
of the information except the recent reports on skin resident 
Tregs and TI-Tregs are from mouse tissues. There are several 
differences in structure as well as physiology between mice and 
humans. For example, mouse skin contains a thin muscle layer 
panniculus carnosus, which is vestigial in humans (268). This 
helps in contraction, revascularization and healing of wounds 
without scar formation in mouse. Human skin on the other 
hand heals by secondary intention leaving scar tissues. Thus, it is 
important to identify human tissue Tregs for an informed effort 
toward therapeutic usage.

There is a need to conclusively establish the origin and 
accumulating factors for tissue Tregs. One of the most pressing 
questions about almost all the tissue Tregs is identification of their 
natural ligands or tissue antigens. Although it has been demon-
strated that in certain cases Tregs do not need TCR stimulation 
for some of their functions (150), Tregs with a smaller subset 
of specific TCR repertoire populate various tissues as well as 
malignancies. Therefore, cognate ligands that help in survival and 
proliferation of Tregs in these tissues are likely to have significant 
contributions in catering tissue-specific modulations. Proof of 
concept studies provide evidence that Tregs with defined antigen 
specificity (chimeric antigen receptor Tregs, CAR-Tregs) have 
potent immunosuppressive functions along with advantage of 
not inducing generalized immunosuppression (269).

Question remains as to how Tregs communicate with specific 
tissue cells-like adipocytes to establish a channel of communica-
tion with the environment. Beyond adaptation to inflammatory 
context, there are peculiarities of Treg biology, which modulate 
their effect temporally in life as well. Such as, Treg accumula-
tion in aging WAT induces insulin resistance (79), whereas 
its accumulation in young obese WAT ameliorates it (83). 
The mechanisms that drive such specific outcomes need to be 
studied in detail. This accentuated capability to adapt sometimes 
becomes counterproductive too as seen in tumors where the 
suppressive capacity is enhanced even in comparison to normal 
tissue-resident Tregs and is, in turn, utilized by tumors for their 

survival and immune escape. The mechanisms by which Tregs 
can push the limits of their functional capabilities are yet to be 
identified.

A major aspect of tissue adaptation is adjusting the cellular 
metabolism according to the tissue environment. There are 
huge gaps in our understanding of both lymphoid and tissue 
Treg metabolism. In in vitro differentiated Tregs (iTregs), it was 
shown that Foxp3 suppresses glycolysis by repression of Myc 
and helps in developing resistance to l-lactate (270). Similarly, 
Foxp3 counters PI(3)K-Akt-mTORC1 to diminish glycolysis in 
iTregs (271). Contrastingly, splenic and TI-Tregs were shown 
to uptake more 2NBDG, a fluorescent glucose analog, while 
intratumoral effector T  cells showed glucose deprivation 
leading to reduced production of glycolytic metabolite phos-
phoenol pyruvate, resulting in compromised effector functions 
via reduced calcium-NFAT signaling (272). More recently, 
glycolysis was found to be instrumental in Treg trafficking and 
migration to inflamed tissues. The induction of the glycolytic 
enzyme glucokinase GCK and cytoskeletal rearrangement 
upon its association with actin was shown to be critical for the 
process (273). These findings underscore the need for extensive 
studies to delineate metabolic reprogramming in not only tissue 
Tregs but also lymphoid Tregs under steady state and activated 
conditions.

One can only be amazed by the diversity and functional 
plasticity of Tregs. A question, therefore, always comes up as 
to why Tregs are the chosen ones? Whether similar diversities 
among other immune cell types are still awaiting discoveries, or 
whether Foxp3 and presumably other unknown factors provide 
some degree of functional uniqueness to Tregs, remains to be 
seen. Nevertheless, looking at the diversity of responses ranging 
from maintaining immune tolerance to tissue repair, to becoming 
a major stakeholder in maintenance of physiological function of 
tissues, it would be apt to say that Tregs are the proverbial “Jack 
of all trades,” and certainly, “master” of some.
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