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Neutrophils are the first cells of our immune system to arrive at the site of inflamma-
tion. They release cytokines, e.g., chemokines, to attract further immune cells, but 
also actively start to phagocytose and kill pathogens. In the case of sepsis, this tightly 
regulated host defense mechanism can become uncontrolled and hyperactive resulting 
in severe organ damage. Currently, no effective therapy is available to fight sepsis; 
therefore, novel treatment targets that could prevent excessive inflammatory responses 
are warranted. Src Family tyrosine Kinases (SFK), a group of tyrosine kinases, have 
been shown to play a major role in regulating immune cell recruitment and host defense. 
Leukocytes with SFK depletion display severe spreading and migration defects along 
with reduced cytokine production. Thus, we investigated the effects of dasatinib, a tyro-
sine kinase inhibitor, with a strong inhibitory capacity on SFKs during sterile inflamma-
tion and polymicrobial sepsis in mice. We found that dasatinib-treated mice displayed 
diminished leukocyte adhesion and extravasation in tumor necrosis factor-α-stimulated 
cremaster muscle venules in vivo. In polymicrobial sepsis, sepsis severity, organ dam-
age, and clinical outcome improved in a dose-dependent fashion pointing toward an 
optimal therapeutic window for dasatinib dosage during polymicrobial sepsis. Dasatinib 
treatment may, therefore, provide a balanced immune response by preventing an 
overshooting inflammatory reaction on the one side and bacterial overgrowth on the  
other side.
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inTrODUcTiOn

Sepsis is a life-threatening systemic inflammatory condition 
which results in shock, multiple organ dysfunction, and eventu-
ally death (1, 2). It is characterized by a cytokine storm released 
from myeloid cells during an inadequate antimicrobial response 
to invading pathogens (3). Worldwide, more patients die due to 
sepsis-related complications than of breast and colorectal cancer 
together (4). The global incidence has been estimated to be  
31 million including 6 million fatalities (5).

Neutrophil activation and invasion into inflamed tissue is a 
critical step in the host’s fight against an infection. Under normal 
circumstances, extravasation of neutrophils is tightly regulated 
by different receptors and ligands on both the endothelium and 
neutrophils (6). In order to transmigrate, neutrophils need to roll, 
adhere, and crawl along the activated endothelium to find a spot 
for extravasation. Following extravasation, neutrophils release 
cytokines like interleukin (IL)-1β, IL-6, and tumor necrosis 
factor (TNF)-α to attract more immune cells (7–9). In addition, 
they start to phagocytose pathogens. In sepsis, pathophysiologic 
processes are rather caused through an exuberant host response 
by immune cells against the invading microorganisms than 
through the direct effects of microbes itself (10). In this respect, a 
balanced immune response depends on regulatory mechanisms 
modulating the intensity of the immune response. The Src-family 
of tyrosine kinases (SFKs) are a group of signaling enzymes 
with diverse biological effects including, but not limited to, cell 
proliferation, survival, migration, and metastasis (11–13). SFKs 
are the largest family of cytoplasmic tyrosine kinases expressed 
in innate immune cells. The presence of those may vary between 
innate immune cells, with Hck, Fgr, and Lyn being the most 
prominently expressed SFKs in monocytes, macrophages, 
granulocytes, and dendritic cells (14). SFKs bind directly to the 
cytoplasmatic tail of activated integrins and are responsible for 
the majority of protein phosphorylations involved in integrin 
outside-in signaling. Various studies using knockout mice or 
inhibitors demonstrated the importance of SFKs in host defense 
and inflammation (15–19), including adhesion and transmigra-
tion during leukocyte recruitment (20). Because of these find-
ings, tyrosine kinase inhibitors, originally designed for cancer 
therapy, have been studied for their role as immune-modulating 
drugs. Dasatinib, a multi-kinase inhibitor with strong effects on 
SFKs, acts on both Abl- and Src-family tyrosine kinases (21), 
and is currently used in patients with chronic myeloid leukemia 
and acute lymphoblastic leukemia with Philadelphia positive 
chromosome (Ph+) (22, 23). Besides its effect on malignant 
cells, dasatinib decreases systemic TNF-α production after LPS 
injection in a Src and Bruton’s tyrosine kinase dependent fashion 
(24) and reduced lung injury in a dose-dependent manner (25). 
Additionally, dasatinib treatment reduced chemokine secretion 
by neutrophils and bone marrow-derived macrophages, suggest-
ing that SFKs are also critical regulators of chemokine secretion 
in myeloid cells (26). As immune responses to pathogens prevent 
their dissemination and favor their elimination by the host, there 
is a concomitant risk of exaggerated immune responses, which 
may lead to tissue and organ damage. Thus, we hypothesized that 
immunomodulatory drugs balancing immune responses may 

be beneficial during systemic severe infection. To test this, we 
investigated the safety and efficacy of the tyrosine kinase inhibitor 
dasatinib during inflammation and sepsis. We show that dasatinib 
diminished the recruitment of leukocytes to the site of inflam-
mation in the inflamed cremaster muscle model. In addition, in 
a model of polymicrobial sepsis, dasatinib treatment improved 
survival and sepsis severity in mice and reduced organ damage 
in a dose-dependent manner with an optimal dose for survival.

MaTerials anD MeThODs

animals
We used male Swiss Webster (SW) mice (25–30  g) from the 
Oswaldo Cruz Foundation breeding unit, Rio de Janeiro, Brazil. 
Animals were lodged at 22°C with a 12-h light/dark cycle and 
free access to food and water. For in  vivo cremaster muscle 
experiments Lyz2GFP and Hck−/−Fgr−/−Lyn−/− (SFK-ko) mice 
on a C57Bl/6 background were used (27–29). These mice were 
maintained at the Walter Brendel Center for Experimental 
Medicine, Ludwig Maximilians Universität, Munich, Germany 
and accommodated in a barrier facility under SPF conditions. 
Mice used in the experiment were at least 8 weeks of age and of 
healthy appearance.

Pharmacokinetic analysis
Pharmacokinetic evaluations were performed after the second 
administration of dasatinib (1 mg/kg). The administrations were 
made at the following time points: 30 min before CLP and 6 h 
after CLP. Blood samples were drawn at 0.25, 0.5, 0.75, 1, 2, 4, 8, 
16, and 23.75 h (Figure 1C).

Dasatinib levels in plasma were determined using a validated 
high-performance liquid chromatography–tandem mass spec-
trometry method (HPLC–MS/MS). HPLC system (1200 series, 
Agilent Technologies, Germany) is connected with API 3200 
triple quadrupole mass spectrometer (SCIEX, Toronto, ON, 
Canada) using multiple reaction monitoring (MRM). The MRM 
transitions monitored were m/z 488.2  →  401.3 for dasatinib,  
m/z 629.4 → 155.2 for internal standard.

3D chemotaxis assay
The analysis of migration in collagen gels was performed in μ-slide 
chemotaxis chambers (IBIDI, Planegg, Germany). A gel–cell  
mixture consisting of 3 × 105 neutrophils in 1.5 mg/mL type I rat 
tail collagen (IBIDI) was applied to the middle channel of the 3D 
chamber and left at 37°C for 5 min for gelation. After application 
of 100  nM fMLP for 20  min at 37°C, time-lapse videos were 
recorded for 10 min using an Axiovert 200 M microscope (Zeiss, 
Jena, Germany) equipped with a Plan-Apochromat 10×/0.75NA 
objective, AxioCam HR digital camera, and a temperature- 
controlled environmental chamber. Migration tracks were analyzed 
offline with the Image J software. Single cell migration tracks and 
rose plots were generated using the IBIDI Chemotaxis software.

intravital Microscopy
We applied intravital microscopy in exteriorized inflamed 
cremaster muscle venules of Lyz2 GFP and SFK-ko mice, as 
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FigUre 1 | Experimental design. Group designation (a), survival curve and inflammatory parameters (B), and pharmacokinetics (c). Sham, control group;  
CLP, cecal ligation and puncture; Das, dasatinib; Atb, antibiotic; VR, volemic reposition (500 µL); glu 20%, glucose 20%.
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described (30). Briefly, mice were treated with intrascrotal injec-
tion of 500 ng TNF-α, 2 h prior to microscopy. Mice were then 
anesthetized with intraperitoneal (i.p.) injection of ketamine 
(125 mg/kg body weight, Ketalar; Parke-Davis, Morris Plains, NJ, 
USA), and xylazine (12.5 mg/kg body weight; Phoenix Scientific, 
Inc., St. Joseph, MO, USA). Thereafter, mice were placed on a 
heating pad to maintain body temperature, intubated, and the 
left carotid artery cannulated for blood sampling and systemic 
antibody administration. To maintain a neutral fluid balance, 
mice were given heparinized saline 0.2 mL/h i.v. throughout the 
experiment. Intravital microscopy was conducted on an upright 
conventional fluorescence microscope (Olympus BX51WI, 
Tokio, Japan) with a saline immersion objective (SW40/0.75 
numerical aperture, Zeiss, Jena, Germany).

cremaster Muscle Preparation
The surgical preparation of the cremaster muscle was conducted 
as described (31). Shortly, after surgically opening the scrotum, 
the cremaster muscle was exteriorized and spread over a cover 
glass. The epididymis and testis were gently pinned aside giving 
full microscopic access to the cremaster muscle microcirculation. 
Experiments were recorded via a CCD camera system (CF8/1, 
Kappa, Gleichen, Germany) on a Panasonic S-VHS recorder and 
on hard-drive using virtual dub software. The cremaster muscle 
was superfused with thermocontrolled (35°C) bicarbonate-buff-
ered saline. Postcapillary venules under observation ranged from 

25 to 45 µm in diameter. Blood samples were taken during and 
after the experiment and WBC/neutrophil counts determined 
using ProCyte Dx Hematology Analyzer (IDEXX, Westbrook, 
ME, USA). Venular diameter, venular vessel segment length, 
and leukocyte rolling velocity were assessed using Fiji software 
(32). Venular centerline red blood cell velocity in the cremaster 
muscle preparation was measured during the experiment using a 
dual photodiode and a digital online cross-correlation program 
(Circusoft Instrumentation, Hockessin, DE, USA).

In a second set of experiments, the number of transmigrated 
cells was determined. For this approach, mice were treated as 
described above. After exteriorization, mouse cremaster mus-
cles were dissected and fixed by 4% PFA (AppliChem GmbH, 
Darmstadt, Germany). Thereafter, cremaster muscle whole 
mounts were stained using Giemsa (Merck Millipore, Darmstadt, 
Germany) and the number of transmigrated cells/mm2 assessed 
using a Zeiss Axioskop 40 microscope with an oil immersion 
objective 100×, 1.25NA (Zeiss, Jena, Germany). Micrographic 
images are shown using an oil immersion objective 40×, 1.3NA 
(Zeiss).

Dasatinib Treatment
Lyz2GFP mice received dasatinib (1, 10, or 20  mg/kg) by gav-
age in a volume of 100 μL/10 g methylcellulose. Control mice 
received methylcellulose alone. Swiss male mice received dasat-
inib (1 or 10 mg/kg) by gavage in a volume of 100 µL per animal 
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30 min before, 6 and 24 h after the induction of sepsis. Control 
animals received DMSO/saline solution (vehicle) same volume 
of dasatinb treatment. We based our treatment on dasatinib 
pharmacokinetics data reported by Ref. (33, 34). In acute experi-
ments with end point at 24 h after cecal ligation and puncture 
(CLP) the animals received only the two first doses of the drugs 
(Figures 1A–C).

clP Model
Swiss mice were anesthetized by intraperitoneal injections of 
ketamine (100 mg/kg, Cristália) and xylazine (10 mg/kg, Syntec) 
10–15 min prior to surgery. The cecal ligation was done below the 
ileocecal valve and the cecum was perforated four times with an 
18G needle. A small amount of fecal material was squeezed from 
the holes before reinsertion of the cecum in the abdominal cavity. 
Volemic reposition was made with 1 mL of sterile saline subcuta-
neously. The animals received meropenem (10 mg/kg) diluted in 
salina with glucose at 20% intraperitoneally at 6, 24, and 48 h after 
CLP in 500 µL volume. Sham-operated animals constituted the 
control and received the same volume reposition and antibiotic 
treatment administered to CLP animals. After 24 h the animals 
were submitted to euthanasia using isoflurane (Cristália), and 
the peritoneal cavity was washed with PBS for colony-forming 
unit (CFU) analysis and total and differential leukocyte counting 
(Figures 1A,B).

Biochemical analysis
Mice were kept in a 12-h fasting with water ad libitum, and then 
blood was collected by cardiac puncture. Serum was separated 
by centrifugation and used for the quantification of albumin, 
creatinine, alanine, aspartate aminotransaminase. The quantifica-
tions were made using the dry chemistry methodology (Ortho 
Clinical—Johnson & Johnson) for biochemical parameters.

assessment of sepsis severity
At 24 h after CLP, mice were scored for severity of sepsis. In this 
assessment, higher scores reflect increased severity. Mice were 
scored based on the following variables: piloerection, curved 
trunk, alterations in gait, seizures, lethargy, respiratory rate, 
lacrimation, grip strength, feces alterations, body tone, and body 
temperature alterations [adapted from Ref. (35, 36)]. Each animal 
received a total score between 1 and 11 and was ranked as: 1–3 
(mild sepsis); 4–7 (moderate sepsis); and 8–11 (severe sepsis). 
In our experimental conditions, most animals were ranked as 
moderate sepsis.

Peritoneal lavage
Briefly, mice were submitted to euthanasia 24 h after surgery using 
isoflurane (Cristália). The peritoneal cavity was washed with 3 mL 
of cold sterile saline in the laminar flow cabinet. The peritoneal 
washes were plated in Difco tryptic soy agar (TSA) (BD) for 
further analysis of bacterial growth through the count of CFU.

The peritoneal washes were also used for total cell count. Red 
blood cells were lysed using Turk solution (2% acetic acid) and total 
cell count was carried out using Neubauer chamber (Neubauer 
Improved). Differential leukocyte count was performed in 
cytocentrifuged smears stained with panotic (Laborclin). The 

supernatant was collected by centrifugation and stored at −20°C 
for further cytokine quantification.

cytokine and lTB4 Measurement
Tumor necrosis factor-α, IL-10, and IL-1β from the supernatant 
of peritoneal fluid or plasma were measured by enzyme-linked 
immunoabsorbant assay (ELISA, Duo set kit—R&D systems, 
Minneapolis, MN, USA) according to the manufacturer’s instruc-
tion. LTB4 was measured by enzyme immunoassay (EIA, Ann 
Arbor, MI, USA) according to the manufacturer’s instruction.

cFU counts
The number of CFU was determined in peritoneal lavage fluid, 
blood, and other organs that were diluted 1:10,000 and 1:1,000 
and incubated under aerobic and sterile conditions on Difco TSA 
for 24 h at 37°C. The number of bacterial colonies were counted 
and expressed as CFU/mL.

histology
Histological analysis of omentum was performed as previously 
described (37, 38). Briefly, omentums were collected, fixed in 
5% buffered formaldehyde and paraffin-embedded. Tissue sec-
tions (4 µm thick) were stained with hematoxyline and eosin for 
histomorphological analysis.

Kidney, small intestine, and liver Tissue 
Damage
The left kidney and the distal part of the right lobe of the liver were 
also removed after euthanasia. The tissues were fixed in 5% buff-
ered formaldehyde, paraffin-embedded, and sections (4-µm thick) 
obtained. Liver sections were stained with hematoxylin–eosin, 
whereas kidney tissue was stained with periodic acid–Schiff reagent 
to visualize the basement membrane. 10 to 15 fields per section 
from random tubular regions of the renal cortex and liver paren-
chyma were captured at a magnification of 400×. Renal tubular 
damage was defined as tubular epithelial swelling, loss of brush 
border, vacuolar degeneration, and desquamation. A five-point, 
semi-quantitative, severity-based scoring system was used to assess 
each lesion parameter, graded as: 0 = normal tissue; 1 = 1–25%; 
2 = 26–50%; 3 = 51–75%; and 4 = 76–100% of examined tissue.

In liver tissue, 10 fields per liver zone (central, lobular, and  
portal) were captured at a magnification of 400×. The ratio 
between sinusoidal cells and total cells was computed and 
expressed as percentage.

Image-Pro Plus 6.3 for Windows (Media Cybernetics, Silver 
Spring, MD, USA) was used for all analyses.

Dna Measurement
Extracellular DNA was measured as an indicative of neutrophil 
extracellular trap (NET) formation. The DNA was quantified in 
the free cell peritoneal lavage fluid by using the Picogreen dsDNA 
kit (Invitrogen) according to the manufacturer’s instructions.

Dnase Treatment
In some experiments, we also treated CLP or CLP+ dasatinib ani-
mals with DNase (5 mg/kg dissolved in saline solution enriched 
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with 2 mM CaCl2, i.p., 1 h after CLP). The CFU was analyzed in 
peritoneal lavage at an earlier time point (3 h after CLP).

Plasma non-esterified Fatty acid (neFa) 
Quantification
Plasma concentrations of the predominant NEFA—palmitic, 
oleic, linoleic, palmitoleic, and stearic acids—were assessed by a 
colorimetric assay (Zen-Bio, Inc.) (39).

Phagocytosis assay
Whole blood was collected from mice receiving dasatinib or  
vehicle. The assay was performed using the pHrodo E. coli biopar-
ticles phagocytosis kit for flow cytometry (Invitrogen) according 
to the manufacturer’s instructions.

statistical analysis
Data are represented as mean ± SEM and statistically analyzed 
by analysis of variance (one-way ANOVA) followed by Tukey 
and Student’s t-test. Survival curves and comparisons between 
curves were assessed using the Mantel–Cox log-rank test.  
*P values  <  0.05 and ***P values  <  0.001 were considered 
significant.

resUlTs

Dasatinib Treatment increased rolling 
Velocity and severely impaired neutrophil 
adhesion In Vivo
Dasatinib, a potent Src family kinase inhibitor is known to modu- 
late immune responses (40). Therefore, we set out to evaluate the 
effect of dasatinib on leukocyte recruitment in an in vivo model of 
TNF-α (2 h) induced inflammation of the mouse cremaster muscle 
using Lyz2GFP mice. Dasatinib (2, 10, or 20 mg/kg) was given orally 
3 h prior to the exteriorization of the cremaster muscle. Observation 
of leukocyte rolling in cremaster muscle venules revealed a signi-
ficant increase in the number of rolling leukocytes in the presence 
of dasatinib (Figure 2A). Because dasatinib is a broad-spectrum 
tyrosine kinase inhibitor, we additionally performed analysis of 
leukocyte recruitment in hck−/− fgr−/− lyn−/− (SFK-ko) animals. In 
this model, all neutrophil-specific SFKs are deleted and, therefore, 
display a positive control for dasatinib specificity. We obtained 
comparable numbers of rolling cells/min in SFK-ko animals after 
TNF-α stimulation to 10 and 20 mg/kg dasatinib administration 
(Figure S1A in Supplementary Material). Because absolute num-
bers of rolling cells are influenced by changes in WBC count, we 
determined systemic leukocyte counts for each experiment and 
detected a dose-dependent increase in WBC counts following 
dasatinib application (Figure S1B in Supplementary Material). 
SFK-ko animals also showed an increase in the WBC count, follow-
ing TNF-α stimulation, indicating that this is an SFK-dependent 
mechanism. We then assessed leukocyte rolling flux fraction, which 
is defined by the number of rolling leukocytes/min divided by the 
WBC count. Interestingly, this normalization reduced the observed 
increase in rolling (Figure 2B), indicating that dasatinib did not 
alter the relative number of rolling cells, but increased total cir-
culating leukocytes. Next, we analyzed leukocyte rolling velocities 

and found a significant and dose-dependent increase in rolling 
velocity in the presence of dasatinib and in the SFK-ko mice (2 mg/kg  
10.1 µm/s and 20 mg/kg 15.0 µm/s vs. 6.9 µm/s in WT control 
mice; Figure  2C; Figure S1C in Supplementary Material). This 
suggests that dasatinib inhibits Src kinase dependent intermediate 
activation of beta2 integrins, a process known to modulate rolling 
velocities in inflamed tissues (41). Interestingly, absolute number 
of adherent leukocytes in TNF-α (2  h) stimulated cremaster 
muscle venules of dasatinib-pretreated mice showed only minor 
changes (Figure  2D). However, after normalizing the number 
of adherent cells to changes in WBC revealed a severe and dose-
dependent leukocyte adhesion defect (Figure 2E). This decrease 
was also visible in SFK-ko animals (Figure S1D in Supplementary 
Material). To exclude that these effects were due to changes in 
surface expression of rolling- and adhesion-relevant molecules, we 
performed FACS analysis of leukocyte surface molecules (Figure 
S1E in Supplementary Material). No major differences in surface 
expression could be detected for CD18, CD11a, CD11b, CD62L, 
PSGL1, CXCR2, and CD44.

Overall, these findings demonstrate that SFK inhibition by 
dasatinib significantly increases leukocyte rolling velocity and 
reduces leukocyte adhesion in inflamed postcapillary venules 
in vivo.

Dasatinib Treatment strongly reduced 
leukocyte extravasation
To extravasate into inflamed tissue, leukocytes need to crawl along 
the endothelial wall to find an appropriate spot for extravasation. 
We performed time-lapse fluorescence video microscopy in  
TNF-α (2  h) stimulated cremaster muscle venules and tracked 
GFP-fluorescent crawling leukocytes in control or dasatinib 
(10  mg/kg)-treated Lyz2GFP mice. In contrast to previous 
observations of neutrophil 2D migration in Zigmond chambers 
(42), dasatinib had almost no detectable effect on 2D neutrophil 
crawling in vivo (Figure 3A). No significant differences in crawl-
ing velocity or Euclidean distance were observed (Figure  3B), 
indicating that those cells which adhere in the presence of dasat-
inib display no further migration defect.

The crossing of the vascular wall is the last step in the leuko-
cyte adhesion cascade. To quantify extravasation, we performed 
Giemsa staining of fixed cremaster muscle tissues of control and 
dasatinib (10 mg/kg) treated mice after TNF-α stimulation and 
counted perivascular leukocytes (Figure  3C). Quantification 
of extravasated cells revealed a significant inhibition of leuko-
cyte extravasation by dasatinib compared to control animals  
(394 vs. 632 cells/mm2, Figure 3D). Likewise in SFK-ko mice, the 
number of extravasated cells was decreased to a similar degree 
(430 cells/mm2). This further strengthens our hypothesis of 
dasatinib acting mostly on SFKs during leukocyte recruitment.  
A more detailed analysis of leukocyte subtypes crossing the vessel 
wall showed that dasatinib mainly inhibited neutrophil extravasa-
tion (Figure 3E). In contrast to intraluminal crawling, leukocyte 
migration in the interstitium occurs in a 3D environment and 
is integrin-independent and eventually also SFK independent. 
We, therefore, performed in  vitro 3D migration experiments 
to investigate the effects of dasatinib on integrin-independent 
migration. Indeed, analyzing migration of isolated leukocytes 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
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alone (control). Data are presented as mean ± SEM. (a) Number of rolling cells/min are shown. (B) Rolling flux fraction was calculated by the number of rolling cells/
min normalized to the total WBC count. (c) Rolling velocities of neutrophils are displayed in micrometer per second. (D) Adherent cells were assessed over 1 min of 
observation. (e) Adhesion efficiency was calculated by the number of adherent cells/mm2 normalized to the total WBC count (*P < 0.05 and ***P < 0.001).
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in a 3D collagen gel matrix revealed no alteration of leukocyte 
migration behavior in the presence of dasatinib (Figure  3F; 
Figure S1F in Supplementary Material). The Euclidean distance 
as well as their migration velo city was unchanged. This indicates 
that SFKs, similar to leukocyte integrins (43), are dispensable for 
interstitial migration once leukocytes managed to overcome the 
vascular barrier.

Dasatinib Dose-Dependent effect on 
survival and severity of sepsis after clP
Our in  vitro and in  vivo findings described above suggest a 
potential role of dasatinib treatment on the outcome of sepsis. 
We, therefore, tested dasatinib administration (1 and 10 mg/kg) 
in the CLP model of induced sepsis. Our first step was to evaluate 
the bioavailability of dasatinib by measuring its concentration in 
the plasma of septic animals. For that, we performed pharma-
cokinetics analyses and compared the plasma concentration of 
1 mg/kg dasatinib after administration to sham or CLP animals 
(Figure 4A). Septic animals had lower peak values of the drug 
than treated sham animals but their plasma levels remained at 
pharmacological levels up to 24 h after administration. Of note, 
plasma concentrations in both animals remained markedly 
above the concentration (14.9  ng/mL) able to inhibit 90% of 

phosphorylation of pBCR-ABL protein (34). We next induced 
polymicrobial sepsis using the CLP model to test for survival 
and clinical scores in septic mice. Sham-treated animal showed 
100% survival rate after 7  days. Following CLP, we observed a 
survival rate of 50% after 7  days in control animals, with the 
highest mortality observed between day 1 and 2 after CLP. In 
contrast, administration of dasatinib at 1  mg/kg protected the 
animals from lethal sepsis following CLP (Figure 4B). Dasatinib 
at 1 mg/kg administered 30 min before and 6 and 24 h after CLP 
resulted in an 80% survival rate 7 days after CLP. Interestingly, a 
higher dose (10 mg/kg) of dasatinib had an opposite effect, with 
a mortality rate increasing to 85%.

The beneficial effect of low dasatinib doses was also detected 
in the severity score. As shown in Figure 4C, 1 mg/kg dasatinib 
improved severity scores compared to untreated CLP animals  
and resulted in only moderate sepsis scores. Again 10 mg/kg dasat-
inib reversed this effect. Sham-treated animals did not present 
any sign of disease.

low Dosage of Dasatinib Decreased 
Organ Dysfunction in septic animals
To evaluate the protective effect of dasatinib treatment in septic 
animals in more detail, we analyzed the impact of dasatinib 
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FigUre 3 | Dasatinib treatment strongly reduces leukocyte extravasation. In vivo crawling experiments were analyzed in rmTNF-α-stimulated Cremaster muscle 
tissue of Lyz2GFP mice, pretreated orally with 10 mg/kg dasatinib in Methylcellulose, or with Methylcellulose alone (control). Time-lapse movies over 15 min were 
performed and leukocytes visualized by their GFP signal. Extravasated leukocytes were analyzed with Giemsa staining in rmTNF-α-stimulated fixed cremaster 
muscle tissue of Lyz2GFP mice, treated orally with 10 mg/kg dasatinib in methylcellulose, or with methylcellulose alone. Data are presented as mean ± SEM.  
(a) Representative single cell migration tracks and rose plots for intraluminal crawling are displayed. Red lines indicate migration in, black lines migration against  
flow direction. At least 80 cells were analyzed for each strain (B) Evaluation of crawling velocity and Euclidian distance of crawling cells (c) Representative images  
of cremaster muscle whole mounts after Giemsa staining. Scale bar: 10 µm (D) Total number of extravasated cells/mm2 in muscle tissue in close proximity to a 
vessel. Star indicates significance over control. (e) Differential total cell counts of polymorphonuclear cells, eosinophils, and other cells. (F) Evaluation of migration 
velocity and Euclidian distance of crawling PMNs with or without dasatinib (*P < 0.05). Statistical analysis: Student’s t-test.
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treatment in sepsis-induced organ dysfunction. We measured 
plasma biological markers for kidney (creatinine) and liver 
(aspartate and alanine aminotransferase), and lipotoxicity 

(NEFA). All CLP animals displayed significantly increased levels 
of creatinine, aspartate aminotransferase, NEFA, indicating severe 
organ damage caused by CLP induced sepsis (Figures 5A–D). 
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FigUre 4 | Dose-dependent effect of dasatinib on survival and severity of sepsis after cecal ligation and puncture (CLP). Swiss mice were submitted to CLP. 
Sham-treated animals were used as control. Data are presented as mean ± SEM. (a) Dasatinib was given orally 30 min before and 6 and 24 h after CLP. Dasatinib 
concentration of blood samples taken at indicated timepoints is displayed. (B) The survival rate was quantified for 7 days (144 h) in sham mice, untreated animals  
or each treated with dasatinib at 1 or 10 mg/kg dosage. (c) Clinical score was assessed 24 h after CLP. Each dot represents one animal. 1–3 points in the clinical 
score corresponds to a mild sepsis, 4–7 points corresponds to a moderate sepsis, and 8–11 points corresponds to severe sepsis. The animals were treated with 
dasatinib 1 or 10 mg/kg orally 30 min before, 6 and 24 h after CLP procedure. At least two independent experiments were performed. Statistical analysis: one-way 
ANOVA followed by Tukey *P < 0.05, **P < 0.01, and ***P < 0.001, for Figure 3B and Mantel–Cox log-rank test *P values < 0.05, for Figure 3c. The number of 
animals per group range from 3 to 4 for pharmacokinetics, 7 to 31 for clinical score, and 10 to 11 per group from mortality.
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Dasatinib treatment at 1  mg/kg lowered these levels in CLP 
mice indicating that dasatinib can partly rescue sepsis-induced 
organ damage. Reduced plasma levels of albumin and glucose 
after CLP could not be rescued by dasatinib (Figures S2A,B in 
Supplementary Material).

In agreement with systemic biochemical markers of organ 
dysfunction, histological alterations were detected in the liver 
(first column), the small intestine (second column), and the 
kidney (third column) of septic mice, compared to control 
group (Figure 5E). CLP induced liver and kidney steatosis and 
edema in small intestine villi. However, treatment with 1 mg/kg 
dasatinib prevented these alterations. Histological changes were 
scored from 0 (without alterations) to 4 (more extensive lesions) 
and we could detect an overall decrease in the severity of the 
organ damage in CLP mice treated with dasatinib to the score 
levels of CLP mice (Figure 5F). In the omentum, we found some 
neutrophil infiltration due to the inflammatory reaction induced 
by surgery in sham animals. Dasatinib treatment did not affect 
omentum morphology or leukocyte infiltration in sham animals 
(Figure S2C in Supplementary Material). In septic mice, the 
omentum seems to be liquefied due to the intensity of the acute 
inflammatory response taking place in the peritoneal cavity. In 
dasatinib-treated animals, the omentum histology was similar to 
the sham conditions, reinforcing the protective role of dasatinib 
in CLP induced sepsis.

Dasatinib Treatment impaired the number 
of leukocytes in the Peritoneal cavity and 
Decreased concentration of inflammatory 
Mediators
We next investigated the effect of dasatinib treatment in leuko-
cyte accumulation and inflammatory mediators in more detail. 
For this purpose, we analyzed cell accumulation in the peritoneal 
cavity 24 h after CLP (Figures 6A–C). As expected, septic ani-
mals had higher numbers of mononuclear cells and neutrophils 
in the inflamed peritoneal cavity as compared to sham-treated 
animals (Figures  6A–C). Treatment with dasatinib (1  mg/kg) 
significantly lowered both mononuclear cell and neutrophil 
accumulation in the peritoneal cavity (Figures 6B,C). This find-
ing is in accordance to our previous data of reduced leukocyte 
extravasation in inflamed cremaster muscle tissue after dasatinib 
treatment.

Additionally, we analyzed the effect of dasatinib (1  mg/kg) 
on cytokine, and chemokine production. We measured plasma 
levels of TNF-α, IL-6, and IL-10 in dasatinib-treated animals 
24 h after CLP and compared them to sham-treated mice. Septic 
animals presented elevated levels of all measured cytokines 
(Figures 6D–F). Animals treated with dasatinib at 1 mg/kg dose 
presented significantly lower levels of all cytokines indicating a 
reduced extend of inflammation. We also measured the levels 
of cytokines, chemokines, and lipid mediators in the peritoneal 
lavage of septic mice. The levels of TNF-α and IL-6 were increased 
in septic mice and treatment with dasatinib decreased their levels 
(Figures  6G,H). Dasatinib administration did not affect IL-1β 
levels (Figure  6I). Septic mice also displayed increased perito-
neal levels of LTB4 and CXCL1/KC. Likewise 1 mg/kg dasatinib 

decreased LTB4 and CXCL1/KC levels (Figures  6J,K), while 
MCP1 levels remained at the same levels as in the CLP group 
(Figure 6L).

Dasatinib inhibited Bacterial growth and 
Bacterial spreading in septic Mice
About 60–70% of patients with sepsis have positive blood cul-
tures, most of them are Gram-negative bacteria (5, 44). In our 
model, we have a mixed infection with both Gram-negative and 
Gram-positive bacteria, detected in the peritoneal fluid from 
septic animals. Interestingly, 1  mg/kg dasatinib significantly 
reduced CFU counts in the peritoneal fluid (Figure  7A). At 
10  mg/kg, however, dasatinib-treated CLP animals showed 
higher CFU numbers compared to CLP (Figure S3A in 
Supplementary Material). We also evaluated CFU formation in 
distal organs to assess bacterial translocation and the ability of 
the organism to fight infection. We could detect high numbers 
of CFUs in all analyzed organs of CLP animals. Again 1  mg/
kg dasatinib successfully prevented bacterial translocation to 
the blood (Figure 7B), lung, spleen, kidney, and liver (Figures 
S3B–E in Supplementary Material).

Dasatinib Treatment enhanced neutrophil 
Functionality
Neutrophils phagocytose microbes, produce ROS, release anti-
microbial factors and form NET as part of their arsenal to fight 
invading organisms (45). In order to explore why treatment with 
dasatinib was able to decrease CFU numbers despite reducing 
the numbers of neutrophils at the site of infection, we investi-
gated the effect of dasatinib on the ability of neutrophils to kill 
bacteria. To evaluate the effect of dasatinib on NET formation, 
we measured extracellular double-strand DNA via fluorim-
etry in septic animals with and without dasatinib. As shown in 
Figure S3F in Supplementary Material, the CLP group showed 
an increase in extracellular DNA content compared to sham 
animals. Interestingly, treatment with dasatinib did neither alter 
extracellular DNA levels nor did the disassembling of NETs by 
DNAse interfere with the ability of dasatinib to decrease CFU 
numbers (Figure S3G in Supplementary Material).

Next, we checked the production of nitrite as readout for 
NO production in the peritoneal cavity after treatment with 
1 mg/kg dasatinib. NO and superoxide generate antimicrobial 
molecules called reactive nitrogen species that act together 
with ROS in damaging cells and microbes (46, 47). Our results 
show that dasatinib increased local nitrite production during 
CLP, which contributes to bacterial clearance (Figure 7C). Next 
we examined the effect of dasatinib treatment on neutrophils 
phagocytosis. Mice were treated with 1  mg/kg dasatinib and 
neutrophils phagocytosis was determined in whole blood by 
flow cytometry. Interestingly, compared to untreated animals, 
animals treated with dasatinib (1  mg/kg) showed increased 
neutrophil phagocytosis (Figure  7D), suggesting a potential 
enhancing effect on the ability of neutrophil to clear bacteria. 
Also here we encountered a dose-dependent effect, because 
treatment with 10  mg/kg dasatinib decreased the ability of 
neutrophils to phagocytose.
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FigUre 5 | Low dosage of dasatinib decreases organ dysfunction in septic animals. Swiss mice were submitted cecal ligation and puncture (CLP). Sham-treated 
animals were used as control. The animals were treated with dasatinib at 1 mg/kg 30 min before and 6 h after CLP. Blood was collected 24 h after CLP procedure, 
and organs were harvested for HE staining. (a) Creatinine, (B) alanine, (c) aspartate aminotransferase, and (D) non-esterified fatty acid (NEFA) were analyzed. Data 
are presented as mean ± SEM. (e) Optical microscopy of liver, small intestine, and kidney. In the CLP group, liver hepatocytes around of centrilobular vein and 
tubular renal cells exhibit apoptosis (arrows) and diffuse vacuolization in the cytoplasm by accumulation of fat (asterisks), thus characterizing liver and kidney 
steatosis; the small intestine show apoptosis of enterocytes (arrows) and prominent edema of the villi (#). After dasatinib treatment, the integrity of liver hepatocytes, 
small intestine villi, and tubular renal cells are restored with reduction in apoptosis and steatosis score similar to Ssam and Sham animals treated with dasatinib. 
Scale bar is 50 µm. (F) Injury score with severity analyses of microscopically visible organ damage. The score ranges from 0 to 4 where 0 means no injury and  
4 maximum injuries. Statistical analysis: one-way ANOVA followed by Tukey *P < 0.05. The number of animals per group range from 4 to 10.
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DiscUssiOn

Sepsis is one of the leading causes of morbidity and mortality in 
Intensive Care Units, and is associated with increased health-care 
costs (48, 49). This is complicated by the rise of drug-resistant 
microorganisms, a growing elderly population, and an increased 
incidence of immunosuppression (50–54). The failures of anti-
toll-like receptor 4 antibody, recombinant activated protein C, 
and anti-TNF-α therapies in clinical trials require a rethinking 
of sepsis’ pathophysiology and therapeutic strategies (8, 55–60). 
Systematic approaches, such as presented here, could fuel the  
discovery of promising immunosuppressive or anti-inflammatory  
drugs that aim at multifunctional targets such as Src family 
kinases.

Src family kinases play critical roles in a whole variety of 
pathologies including cancer; in addition, it was shown that Src 
is involved in inflammation-related signaling pathways (61).  
Dasatinib is a type I ATP-competitive protein kinase inhibitor 
(62). SFK-inhibitors affect signaling pathways and downmodu-
late the inflammatory response. Nevertheless, the current dose of 
dasatinib (100 mg daily in human) used to treat some leukemia 
does not induce severe immunosuppression (63). In the present 
work, we used lower doses of dasatinib (1 and 10 mg per kg). We 
chose these doses because initial pharmacokinetic experiments 
showed that dasatinib at 1 mg per kg yields plasma concentrations 
that remained above the critical concentration to inhibit SFKs.

It is currently accepted that it is not the insult per se, but the 
host’s response, that determines severity and outcome in sepsis 
(4). Therefore, the immunosuppressive action of dasatinib may 
affect the response against infectious agents and it is expected that 
high-dose favors the progression of infection with deleterious 
effects to the host as shown for Pneumocystis jiroveci pneumonia 
(63). On the contrary, lower doses may modulate the immune 
response affecting and/or preventing tissue damage resulting 
from host immune response or cellular hyperactivation. In fact, 
we show here that dasatinib at 10 mg/kg is deleterious to the host 
fueling infection progression. In contrast, the lower dose of dasat-
inib (1 mg/kg) showed promising results improving the animal 
clinical condition and increasing survival. The higher dasatinib 
dose may inhibit other kinases and proteins impacting on ability 
of the host to fight the infection effectively because of its potent 
anti-inflammatory effect. Lower dose of dasatinib decreases 
the neutrophil migration but does not abrogate it. So the fewer 
neutrophils that reach the peritoneum remain effective on killing 
the bacteria and restrain the infection.

Septic patients present systemic inflammation with exacer-
bated cytokine production, and increased cell migration to the 

site of infection or sterile inflammation, as shown with CLP mice 
in this publication. Trafficking of myeloid leukocytes to the site 
of inflammation is linked to the generation of an appropriate 
inflammatory environment (20). In this regard, LTB4 is a potent 
chemotactic agent for neutrophils (64). Its levels increase 24  h 
after CLP and treatment with dasatinib (1 mg/kg) reduced the 
levels of LTB4. Dasatinib also decreased the levels of CXCL1/
KC, another potent chemo attractant to neutrophils. CXCL1/
KC is released by resident macrophages and mediates neutrophil 
accumulation induced by LPS (65).

Src family tyrosine kinases are important components of the 
signaling pathways initiated by the TLRs (critical for cytokine 
production) and many cytokines, such as TNF, use Src family 
kinases in their own signaling pathways (17, 66). In our model, 
dasatinib reduced the levels of all measured cytokines confirming 
data from the literature (25, 67), except IL-1β. Impairing TLR4-
related signaling pathway inhibits cytokine production including 
both TNF and IL-10 (68). IL-1β requires the cleavage of the pro-
form (pro-IL-1β) by caspase-1 into its biologically active form 
(69). However, we cannot exclude that IL-1β detected here may 
reflect the release of already present IL-1β in the cell which would 
suggest that the release of IL-1β is independent of Src kinases 
(70) while the other measured cytokines are upregulated by SFK-
dependent transcriptional activity, reinforcing the key role of SFK 
in cytokine production in infectious disease.

Activated neutrophils are able to generate reactive oxygen 
species, release NETs, increase phagocytosis, and produce nitric 
oxide (45). We further elucidated the role of tyrosine kinases 
in these processes and found that dasatinib did not affect NET 
formation. In contrast, nitric oxide generation was increased 
in septic mice treated with dasatinib strengthening its potent 
bactericidal activity at the local level (71, 72).

Phagocytosis is a prime mechanism of bacterial killing. 
Src-family kinase-deficient leukocytes are less effective than 
wild-type cells at mediating phagocytosis (73, 74). On the other 
hand macrophages lacking Src family members Hck, Fgr, and 
Lyn showed phagocytosis mediated by Fcγ Receptor (75), so 
phagocytosis obviously can happen independently of neutrophil-
expressed SFKs. Interestingly, our experiments revealed that 
1  mg/kg of dasatinib increased phagocytotic activity of blood 
neutrophils compared to control neutrophils, while higher doses 
(10 mg/kg dasatinib) decreased phagocytosis. The mechanism 
for this dose-dependent effect of dasatinib on phagocytotic 
activity in neutrophils is currently unclear and needs further 
investigations.

Patients with severe sepsis symptoms display metabolic dys-
function with elevated levels of plasma NEFA and lower levels 
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FigUre 7 | Dasatinib treatment decreased colony-forming unit (CFU) counts and simultaneously enhances neutrophil function. Swiss mice were submitted cecal 
ligation and puncture (CLP). Sham-treated animals were used as control. The animals received dasatinib at 1 mg/kg 30 min before and 6 h after CLP. Data are 
presented as mean ± SEM. The CFU was determined 24 h after CLP in (a) the peritoneal lavage fluid and (B) blood. (c) Cell-free supernatant from peritoneal lavage 
of animals was collected 24 h after CLP, and nitrite levels was measured by Griess reaction. (D) Relative neutrophil phagocytosis was tested in blood neutrophils 
from dasatinib or vehicle treated cells using pHrodo E coli bioparticles. Statistical analysis: one-way ANOVA followed by Tukey *P < 0.05, **P < 0.01, and 
***P < 0.001. The number of animals per group range from 6 to 15.

FigUre 6 | Dasatinib treatment results in fewer peritoneal leukocytes along with decreased amounts of inflammatory markers. Swiss mice were submitted cecal 
ligation and puncture (CLP). Sham-treated animals were used as control. The animals received dasatinib at 1 mg/kg 30 min before and 6 h after CLP. Cells were 
collected 24 h after CLP procedure by peritoneal lavage to assay total and differential counts. Data are presented as mean ± SEM. (a) Total leukocyte count,  
(B) mononuclear cell count, and (c) neutrophil cell count are shown. Cytokines were measured by ELISA and LTB4 by EIA. (D–F) Display plasma levels of tumor 
necrosis factor (TNF)-α (D), interleukin (IL)-6 (e), and IL-10 (F), (g–l) display peritoneal lavage values of TNF-α (g), IL-6 (h), IL-1β (i), LTB4 (J), CXCL1 (K), and 
MCP1 (l) Statistical analysis: one-way ANOVA followed by Tukey *P < 0.05, **P < 0.01, and ***P < 0.001. The number of animals per group range from 6 to 18.
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of albumin (76, 77). NEFA activates TLRs boosting cytokine 
production (78), induce cell death (79), and inhibit sodium 
potassium ATPase in several organs, including the lungs (80). 
In addition, the inhibition of lipogenesis or the increase in lipid 
oxidation reduces levels of free fatty acids, TNF-α, and IL-6, 
and reduces liver injury improving survival in sepsis (81, 82). 
Accordingly, the observed decrease in NEFA levels in the plasma 
of dasatinib-treated mice might at least in part be responsible for 
their improved organ function.

Regardless of their clinical potential in septic patients, our study 
demonstrates that the use of SFK inhibitors needs to be tightly 
controlled to keep the fine balance between overtreatment with 
uncontrolled bacterial growth in an immuno-compromised  
organism and ineffective treatment leading to a hyper-inflamma-
tory response of the host immune system. Keeping this balance 
at an optimal level will certainly be a challenge and require 
intensive monitoring. In view of the fact that great efforts have 
been made to develop tyrosine kinases inhibitors for the therapy 
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of inflammatory diseases (83), their use might open new doors 
in modulating the inflammatory response during sepsis and, 
therefore, improve the outcome of patients suffering from this 
life-threatening syndrome.

eThics sTaTeMenT

Animal housing conditions and experimental procedures con-
formed to institutional regulations and were in accordance with 
the National Institute of Health guidelines on animal care. The 
Institutional Animal Welfare Committee approved all proce-
dures described here under license number 002-08, LW36/10, 
and L15/2015. The animal experiments were approved by the 
Regierung von Oberbayern, Germany (AZ 55.2-1-54-2531-80-
76/12). Both Institutions follow the ARRIVE guidelines (Animal 
Research: Reporting of In Vivo Experiments) originally published 
in 2010 (84).
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