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The importance of TLR2 and TLR9 in the recognition of infection with herpes simplex virus 
(HSV) and HSV-caused diseases has been described, but some discrepancies remain 
concerning the benefits of these responses. Moreover, the impact of TLR2/9 on innate and 
adaptive immune responses within relevant mucosal tissues has not been elucidated using 
natural mucosal infection model of HSV. Here, we demonstrate that dual TLR2/9 recogni-
tion is essential to provide resistance against mucosal infection with HSV via an intravaginal 
route. Dual TLR2/9 ablation resulted in the highly enhanced mortality with exacerbated 
symptoms of encephalitis compared with TLR2 or TLR9 deficiency alone, coinciding with 
highly increased viral load in central nervous system tissues. TLR2 appeared to play a minor 
role in providing resistance against mucosal infection with HSV, since TLR2-ablated mice 
showed higher survival rate compared with TLR9-ablated mice. Also, the high mortality in 
dual TLR2/9-ablated mice was closely associated with the reduction in early monocyte and 
NK cell infiltration in the vaginal tract (VT), which was likely to correlate with low expression 
of cytokines and CCR2 ligands (CCL2 and CCL7). More interestingly, our data revealed that 
dual TLR2/9 recognition of HSV infection plays an important role in the functional maturation 
of TNF-α and iNOS-producing dendritic cells (Tip-DCs) from monocytes as well as NK cell 
activation in VT. TLR2/9-dependent maturation of Tip-DCs from monocytes appeared to 
specifically present cognate Ag, which effectively provided functional effector CD4+ and 
CD8+ T cells specific for HSV Ag in VT and its draining lymph nodes. TLR2/9 expressed 
in monocytes was likely to directly facilitate Tip-DC-like features after HSV infection. Also, 
dual TLR2/9 recognition of HSV infection directly activated NK cells without the aid of den-
dritic cells through activation of p38 MAPK pathway. Taken together, these results indicate 
that dual TLR2/9 recognition plays a critical role in providing resistance against mucosal 
infection with HSV, which may involve a direct regulation of Tip-DCs and NK cells in VT. 
Therefore, our data provide a more detailed understanding of TLR2/9 role in conferring 
antiviral immunity within relevant mucosal tissues after mucosal infection with HSV.
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inTrODUcTiOn

Herpes simplex viruses including type 1 (HSV-1) and type 2 
(HSV-2) are ubiquitous, host-adapted pathogens with a preva-
lence rate of around 90% worldwide (1, 2). Notably, infection with 
HSV-1 and HSV-2 via a genital route is the most frequent cause 
of genital ulceration and results in a lifelong latent infection of 
the host after peripheral replication in genital tissues (1, 2). This 
latent infection evokes a relapsing pattern of illness in patients, 
which has an impact on physiological and social quality of life, 
as well as increasing the opportunity for other infections such 
as human immunodeficiency virus (3–5). However, currently 
there is no available vaccine to prevent initial infection, although 
pharmacological interventions, such as acyclovir, are used for the 
treatment of HSV-related symptoms (6).

TLRs expressed on the cell surface and within endosomes of 
dendritic cells (DCs), NK cells, and other innate immunity-related 
cellular components are key sensors of viral infection leading to 
activation of innate and adaptive immune responses. HSV glyco-
proteins including gH/gL and gB are likely to bind and activate 
TLR2 on the cell membrane that induces NF-κB activation and 
cytokine production for initiating innate immune responses 
(7, 8). Endosomal TLR9 also plays an important role in detecting 
HSV DNA, thereby leading to TLR9-dependent production of 
cytokines and type I IFN (IFN-I) in specialized plasmacytoid 
DCs (pDCs) (9, 10). Furthermore, replication and transcription 
of HSV DNA lead to the accumulation of intermediate dsRNA 
that are sensed by TLR3 (11). However, the roles of these TLRs 
in the progression of diseases caused by HSV infection have been 
shown with various and different results, depending on disease 
models, virus strains, and inoculation routes. TLR2 provides a 
detrimental effect on HSV-caused encephalitis through inducing 
CCL2 production in the brain after intraperitoneal inoculation 
with HSV-1 (12). TLR2 has also been reported to promote the 
production of cytokines and chemokines in primary microglia 
after HSV-1 infection (13). These results suggest that TLR2 plays 
a role in the immunopathology of HSV infection. Similarly, the 
ablation of TLR2 and, to a lesser extent, TLR9 results in signifi-
cantly diminished lesions in stromal keratitis caused by HSV-1 
infection (14). By contrast with these findings, TLR2 appears 
to play a role in reducing viral load in the trigeminal ganglia or 
brain after intravaginal (i.vag.) infection with HSV-2, and such 
control of viral replication requires TLR9 for maximal synergy 
(15). Also, the ablation of TLR9 and TLR2/9 results in highly 
increased susceptibility to HSV-caused encephalitis after intrana-
sal inoculation with HSV-1 (16), which suggests that TLR2/9 are 
required for preventing HSV dissemination into central nervous 
system (CNS) tissues. These various results on the role of TLR2/9 
in HSV-caused diseases indicate the need for detailed analysis 
in a more relevant infection model for a clear understanding. 
Furthermore, the impact of TLR2/9 on early innate immune 

responses and subsequent adaptive immunity within the relevant 
mucosal sites after mucosal infection with HSV has not been 
addressed. Knowledge of the role of TLR2/9 in generating innate 
immunity within the relevant mucosal sites is needed for prophy-
lactic and therapeutic approaches.

A murine model of HSV-1 or HSV-2 infection via the i.vag. 
route has been frequently used as a naturally relevant model for 
genital infection since most natural infections with HSV begin 
by invasion in local peripheral mucosal tissues such as the vagi-
nal tract (VT). Mice appear to be susceptible to i.vag. infection 
with HSV-1 or HSV-2 only during the catabolic metestrous-2 
and diestrous stages of the estrous cycle (17–20). Thus, treat-
ment of mice with progesterone (DepoProvera®) is required for 
consistent i.vag. infection with HSV in order to maintain the 
mice at the diesterous-like stage. Upon entering the mucosal 
surface of the VT, HSV replicates initially within the epithelial 
layer of the VT and then spreads into the CNS upon retrograde 
transport of virions into the sacral ganglia, resulting in fatal 
paralysis (21, 22). Studies using a murine model of genital herpes 
have shown that robust IFN-γ-producing T-helper 1 (Th1) CD4+ 
and CD8+ T-cell immunity is essentially required for protection 
against primary and secondary HSV-1 or HSV-2 infection 
via the VT (23, 24). Also, the importance of innate immune 
responses, including NK  cells, monocytes, and neutrophils, as 
well as the production of IFN-I, IL-12, and IL-18 in suppress-
ing viral replication and reducing virus-mediated mortality has 
been demonstrated (21). Among innate immune cells, NK cells 
appear to play a critical role in HSV control by recognizing and 
killing infected cells upon engagement of NK  cell-activating 
receptors with the putative ligands expressed on the infected 
cells or the loss of inhibitory signals due to missing self (25, 26). 
The coordinate role of CD11b+Ly-6Chi monocytes in conferring 
protection against mucosal infection with HSV has also been 
described (27). Ly-6Chi monocytes emigrate from bone marrow 
(BM) into the blood stream in a CCR2-dependent manner upon 
pathogenic infection, and then are recruited in inflamed tissues 
(28). Ly-6Chi monocytes have been shown to give rise to Ly-6Chi 
monocyte-derived cells (MCs) including monocyte-derived 
DCs, monocyte-derived macrophage, or myeloid-derived sup-
pressor cells (29). Notably, TNF-α and iNOS-producing den-
dritic cells (Tip-DCs) that produce TNF-α and iNOS are a subset 
of monocyte-derived DCs. It was suggested that Tip-DCs could 
be called iNOS+ MCs to underline both their monocytic origin 
and their iNOS-mediated killing capabilities (29). Tip-DCs have 
been shown to play an important role in lysis and clearance of 
various pathogens, including Listeria monocytogens (30) and 
Toxoplasma gondii (31). Likewise, in genital infection model of 
HSV, Ly-6Chi monocytes are CCR2-dependently recruited into 
inflamed tissues, where they exert tailored protective immunity 
through stimulating antiviral Th1 CD4+ T-cell immunity (32). 
NK  cells and Ly-6Chi monocytes have been shown to express 
multiple TLRs (33, 34). NK cells have been found to be activated 
by TLR ligands derived from pathogens in DC–NK crosstalk 
or direct stimulation manner (33). Also, the maturation of 
functional Tip-DCs from Ly-6Chi monocytes is likely to depend 
on the adaptor molecule MyD88 (35). These results suggest that 
TLR signaling plays an important role in functional maturation 

Abbreviations: CNS, central nervous system; DC, dendritic cell; DKO, double 
knock-out; HSV, herpes simplex virus; KO, knock-out; BM, bone marrow; BMDC, 
BM-derived DC; dpi, days post-infection; i.vag., intravaginal; OVA, chicken oval-
bumin; Tip-DC, TNF-α and iNOS-producing dendritic cell; IFN-I, type I IFN; 
WT, wild-type.
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of Tip-DCs and NK cells. Nevertheless, the impact of TLR2/9 on 
functional maturation of Tip-DCs and NK cells and subsequent 
Ag-specific T-cell responses within relevant mucosal tissues 
after mucosal infection with HSV-1 or HSV-2 has not yet been 
addressed.

Here, we discovered that dual TLR2/9 recognition is essential 
for functional maturation of Ly-6Chi monocyte-derived Tip-DCs 
and NK cells in primary inflamed tissue, such as the VT, after 
mucosal infection with HSV-1. TLR2/9-dependent maturation 
of Tip-DCs from Ly-6Chi monocytes was required to specifically 
present cognate Ag for CD4+ and CD8+ T-cell responses in the 
VT and its draining LNs. Moreover, our data revealed that dual 
TLR2/9 recognition directly activated NK cells through activation 
of the p38 MAPK pathway. This TLR2/9-dependent activation of 
Tip-DCs and NK cells was closely associated with the protective 
immunity against mucosal infection with HSV-1. Collectively, 
our data provide a more detailed understanding for the role of 
TLR2/9 in conferring protective immunity in mucosal tissues 
after mucosal infection with HSV.

MaTerials anD MeThODs

ethics statement
All animal experiments described in this study were conducted 
at Chonbuk National University according to the guidelines set 
by the Institutional Animal Care and Use Committee (IACUC) 
of Chonbuk National University, and were pre-approved by 
the Ethical Committee for Animal Experiments of Chonbuk 
National University (Permission code 2013-0028). The animal 
research protocol used in this study followed the guidelines set 
up by the nationally recognized Korea Association for Laboratory 
Animal Sciences (KALAS). All experimental protocols requiring 
biosafety were approved by the Institutional Biosafety Committee 
(IBC) of Chonbuk National University.

animals, cells, Viruses, and In Vivo Viral 
infection
Female C57BL/6 (H-2b) mice (5–6 weeks old) were purchased 
from Samtako Co. (O-San, Korea), and TLR2 or TLR9-deficient 
(TLR2 KO or TLR9 KO, respectively) mice (H-2b) have been 
described elsewhere (36). OT-II mice, which are transgenic 
for the Vα2/Vβ5 TCR that recognizes the I-Ab-restricted peptide 
(OVA323–339, ISQAVHAAHAEINEAGR) of chicken ovalbumin 
(OVA), were obtained from The Jackson Laboratory (Bar Harbor, 
ME, USA). TLR2/9 double knock-out (TLR2/9 DKO) mice were 
generated by crossing TLR2 KO and TLR9 KO mice at Chonbuk 
National University. All mice were genotyped and bred in 
the animal facilities of Chonbuk National University. HSV-1 
McKrae and KOS strains were propagated in Vero cells (CCL81; 
ATCC, Manassas, VA, USA) using DMEM supplemented with 
2.5% FBS, penicillin (100 U/ml), and streptomycin (100 U/ml). 
The virus stocks were stored in aliquots at −80°C after titration 
with a conventional plaque assay using Vero cells. For an in vivo 
viral challenge, mice were previously treated with progesterone 
to synchronize their estrous cycles, as described earlier (17–20). 
Briefly, mice were subcutaneously injected with Depo-Provera 

(DP) (Sigma-Aldrich) at 2 mg per mouse. Five days following 
the injection of DP, the mice were challenged i.vag. with different 
doses of the HSV-1 McKrae strain (1 × 106, 1 × 107, and 5 × 107 
PFU/mouse). Infected mice were examined daily for vaginal 
inflammation, neurological illness, and death, as described 
previously (37). Mice were scored from 1 to 5 depending on the 
clinical severity of disease: 0, no change; 1, mild inflammation; 
2, moderate swelling; 3, severe inflammation; 4, paralysis; and 
5, death.

antibodies and reagents
The mAbs used for flow cytometric analysis and other experi-
ments were obtained from eBioscience (San Diego, CA, USA) or 
BD Biosciences (San Diego, CA, USA) (Table S1 in Supplementary 
Material). The peptides of the defined H-2Kb-restricted epitope 
HSV-1 gB498-505 (SSIEFARL) and I-Ab-restricted epitope OVA323-339 
(ISQAVHAAHAEINEAGR) peptides were chemically synthe-
sized by Peptron Inc. (Daejeon, Korea). Lipopolysaccharide 
(LPS) was purchased from Sigma-Aldrich (St. Louis, MO, USA). 
Primers specific for HSV-1 gB, cytokines, and chemokines (Table 
S2 in Supplementary Material) were synthesized by Bioneer 
Corp. (Daejeon, Korea), and were used for PCR amplification of 
target genes.

Quantitation of Viral Burden and cytokine/
chemokine expression
Quantitative Real-Time PCR for Viral Burden and 
Cytokine/Chemokine Expression
Viral burden was determined by real-time qPCR using genomic 
DNA extracted from collected tissues, whereas the expression of 
cytokines (TNF-α, IL-6, IL-23, and IFN-β), iNOS, and chemokines 
(CCL2, CCL3, CXCL1, and CXCL2) was assessed by real-time 
qRT-PCR using total RNA extracted from collected tissues and 
sorted cells. Mice were infected i.vag. with HSV-1 McKrae (1 × 107 
PFU/mouse) and tissues including the VT, iliac LNs (ILNs), 
spleen (Spl), brain, and spinal cord (SC) were harvested at 0, 2, and 
5 days post-infection (dpi). Following the extraction of genomic 
DNA or total RNA, real-time qPCR using a CFX96™ Real-Time 
PCR Detection System (Bio-Rad Laboratories, Hercules, CA, 
USA) was employed. To determine the expression of cytokine 
and chemokine mRNAs, reverse transcription of total RNAs was 
performed with High-Capacity cDNA Reverse Transcription 
Kits (Applied Biosystems, Foster City, CA, USA) before real-time 
qPCR. The reaction mixture contained 2 µl of template cDNA, 
10 µl of 2 × SYBR Green based real-time RT-PCR, and 200 nM 
of specific primers at a final volume of 20 µl. Double-stranded 
nucleic acids were denatured at 95°C for 30 s and then subjected 
to 45 cycles of 95°C for 5 s and 60°C for 20 s. After the reaction 
cycle was completed, the temperature was increased from 65°C to 
95°C at a rate of 0.2°C/15 s, and fluorescence was measured every 
5 s to construct a melting curve. A control sample that did not 
contain template DNA was run with each assay, and all determi-
nations were performed at least in duplicate to ensure reproduc-
ibility. The authenticity of the amplified product was determined 
by melting curve analysis. Viral burden was expressed as viral 
DNA copy number per microgram of genomic DNA, and the 
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expression of cytokines and chemokines was expressed as relative 
fold expression compared with uninfected control group, after 
normalization to the housekeeping gene β-actin. All data were 
analyzed using the Bio-Rad CFX Manager, version 2.1 analysis 
software (Bio-Rad Laboratories).

Cytometric Bead Array (CBA)
The levels of cytokines and chemokines in vaginal lavages were 
measured by a cytometric bead array (CBA) specific for IL-6, 
TNF-α, GM-CSF, CCL2 (MCP-1), CCL3 (MIP-1α), CCL4  
(MIP-1β), CCL5 (RANTES), and CCL7 (MCP-3) according to 
the manufacturer’s protocols (eBioscience).

analysis of infiltrated leukocytes into the 
VT, ilns, and sc
Vaginal tracts, ILNs, and SCs were collected from wild-type 
(WT), TLR2 KO, TLR9 KO, and TLR2/9 DKO mice infected with 
the HSV-1 McKrae strain (1 × 107 PFU/mouse) at 0, 2, and 5 dpi. 
Leukocytes infiltrated in the SC and VT tissues were harvested by 
gently pressing them through a sterile cell strainer with 100 µm 
pore following digestion with 25  µg/ml of collagenase type IV 
(Worthington Biochem, Freefold, NJ, USA) in RPMI 1640 
medium for 1 h at 37°C. Leukocytes of SCs were further sepa-
rated using Optiprep density gradient (18/10/5%) centrifugation 
at 400 × g for 30 min (Axis-Shield, Oslo, Norway), after which 
cells were collected from 18 to 10% interface and washed twice 
with PBS. The ILN cells were prepared by gently pressing them 
through sterile cell strainers with 100  µm pore. All cells were 
then counted and stained for CD11b, CD11c, Ly6C, and Ly6G 
with directly conjugated antibodies (eBioscience) for 30 min at 
4°C. In some experiments, intracellular TNF-α or iNOS staining 
combined with surface CD11c staining was used to detect vaginal 
TNF-α and iNOS-producing Tip-DCs. Finally, the cells were 
fixed with 10% formaldehyde. Data collection and analysis were 
performed with a FACSCalibur flow cytometer (Becton Dickson 
Medical Systems, Sharon, MA, USA) and FlowJo (Tree Star, San 
Carlos, CA, USA) software.

analysis of nK cell activity
The activity of NK cells was assessed by the capacity to produce 
IFN-γ and granzyme B (GrB) following brief stimulation with 
PMA and ionomycin (Sigma-Aldrich). Cells were prepared from 
the VTs, ILNs, and Spls of WT, TLR2 KO, TLR9 KO, and TLR2/9 
DKO mice at 2  dpi, and stimulated with PMA and ionomycin 
(IFN-γ, PMA 50 ng/ml plus ionomycin 750 ng/ml for 2 h; GrB, 
PMA 50 ng/ml plus ionomycin 750 ng/ml for 4 h) in the pres-
ence of monensin (2 µM). The stimulated cells were washed twice 
with PBS containing monensin and surface-stained with CD3, 
NK1.1, and DX5 antibodies for 30  min at 4°C. After fixation, 
the cells were washed twice with PBS, and permeabilized with 
1× Permeabilization buffer (eBioscience). The cells were then 
subjected to intracellular IFN-γ and GrB staining in permeabili-
zation buffer for 30 min at room temperature. Then, the stained 
cells were washed twice with permeabilization buffer and FACS 
buffer, and analysis was performed with a FACSCalibur flow 
cytometer (Becton Dickson Medical Systems) using FlowJo (Tree 
Star) software.

histopathological examinations and 
confocal Microscopy
For histopathological examinations, vaginal tissues derived from 
WT, TLR2 KO, TLR9 KO, and TLR2/9 DKO mice were embed-
ded in paraffin 0 and 2 days following HSV-1 infection (1 × 107 
PFU/mouse), and 10-µm sections were prepared and stained with 
H&E. Sections were analyzed using a Nikon Eclipse E600 micro-
scope (Nikon, Tokyo, Japan). For confocal microscopy staining, 
VTs were collected and frozen in optimum cutting temperature 
compound at 0 and 2 dpi. 6–7 µm thick sections were cut, air-dried, 
and fixed with 1:1 mixture of acetone and methanol for 15 min at 
−20°C. After washing with PBS three times, non-specific binding 
was blocked with 10% normal goat serum and the sections were 
permeabilized with 0.1% Triton X-100. Staining was performed 
by incubating the sections overnight in a moist chamber at 4°C 
with PE-Ly-6C, biotin-conjugated anti-mouse myeloid-derived 
cell marker CD11b, DC marker CD11c, and NK  cell marker 
DX5 plus anti-HSV-1 gB (Abcam). Primary antibodies were 
detected with secondary FITC-conjugated goat anti-rabbit IgG 
and PE-conjugated streptavidin. Nuclei were counterstained with 
DAPI (4′,6-diamidino-2-phenylindole) (Sigma-Aldrich). Finally, 
the fluorescence was observed by a confocal laser scanning 
microscope (Cal Zeiss, Zena, Germany).

ag-Presentation capability of sorted 
ly-6chi Monocytes
The Ag-presentation capability of Ly-6Chi monocytes was assessed 
by measuring IL-2 production and viable ATP bioluminescence 
in response to stimulation of OT-II CD4+ T cells with an epitope 
peptide. Briefly, OVA323-339-specific CD4+ T  cells were purified 
from OT-II mice using a MACS LS column (Miltenyi Biotec) 
according to the manufacturer’s instructions. The purified OT-II 
CD4+ T cells were then co-cultured with vaginal Ly-6Chi mono-
cytes sorted from WT, TLR2 KO, TLR9 KO, and TLR2/9 DKO 
mice in the presence of the OVA323-339 epitope peptide for 72 h at 
37°C. The proliferated cells were then evaluated using a Vialight 
cell proliferation assay kit (Cambrex Bio Science) according to 
the manufacturer’s instructions. The level of IL-2 in culture media 
was determined by a cytokine ELISA.

hsV ag-specific cD4+and cD8+ T-cell 
responses
Herpes simplex virus Ag-specific CD4+ and CD8+ T-cell 
responses were determined by intracellular CD154 staining (38), 
combined with intracellular IFN-γ or TNF-α staining in response 
to stimulation with UV-inactivated HSV or HSV gB498-505 epitope, 
respectively. Briefly, cells were prepared from the VTs and 
ILNs of surviving WT, TLR2 KO, TLR9 KO, and TLR2/9 DKO 
mice 7  dpi. Erythrocytes were depleted by treating single-cell 
suspensions with ammonium chloride-containing Tris buffer 
(NH4Cl-Tris) at 37°C for 20  min. Then, cells were co-cultured 
with UV-inactivated HSV-1 KOS-pulsed APCs (5:1 ratio) in the 
presence of PE-conjugated CD154 antibody for 12  h at 37°C. 
HSV-1 Ag-specific CD4+ T cells were enumerated by intracellular 
IFN-γ and TNF-α staining combined with surface CD4 staining. 
CD8+ T-cell responses specific for the HSV gB498-505 epitope were 
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determined by 8 h-stimulation with the gB498-505 epitope peptide 
followed by intracellular IFN-γ and TNF-α staining combined 
with surface CD8 staining. Monensin (2 µM) was added to the 
antigen-stimulated cells 6 h before harvesting. Finally, the stained 
cells were analyzed with a FACSCalibur flow cytometer (Becton 
Dickson Medical Systems) using FlowJo (Tree Star) software.

In Vitro Tip-Dc-like Maturation of ly-6chi 
Monocytes and nK cell activation
CD11b+Ly-6Chi monocytes and CD3-NK1.1+DX5+ NK cells were 
purified from the Spls of WT, TLR2 KO, TLR9 KO, and TLR2/9 
DKO mice via flow cytometry sorting on a FACSAria. Then, fresh 
CD11b+Ly-6Chi monocytes and NK  cells were stimulated with 
HSV-1 (5.0 moi) for 24  h at 37°C. The phenotypic maturation 
or activation of Tip-DCs from Ly-6Chi monocytes and NK cells 
was evaluated by cell surface staining with specific Abs for phe-
notypic markers or intracellular IFN-γ staining, respectively. In 
some experiments, total RNA extracted from stimulated Ly-6Chi 
monocytes was employed in real-time qRT-PCR.

co-culture experiment for nK cell–Dc 
crosstalk
Dendritic cells were generated from BM cells as described previ-
ously (39, 40). Briefly, BM cells harvested from femurs and tibiae 
of WT, TLR2 KO, TLR9 KO, and TLR2/9 DKO mice were cultured 
in RPMI 1640 supplemented with mouse GM-CSF (2 ng/ml) and 
IL-4 (10 ng/ml). The cultures were replenished with fresh media 
containing growth factors on day 4. On day 7, CD11c+ DCs were 
harvested for NK  cell stimulation. Co-culture of NK  cells–DC 
was performed as described with some modifications (41). 
Briefly, CD3-NK1.1+DX5+NK  cells were purified from the Spls 
of WT, TLR2 KO, TLR9 KO, and TLR2/9 DKO mice via flow 
cytometry sorting on a FACSAria. Then, NK cells (1.5 × 105) were 
co-cultured with CD11c+ DC (7.5 × 104) at an NK cell:DC ratio of 
2:1. The co-culture was subsequently stimulated with HSV-1 (5.0 
moi) or LPS (200 ng/ml) for 48 h at 37°C.

Western Blot analysis
CD3-NK1.1+DX5+ NK  cells were purified from the Spls of WT, 
TLR2 KO, TLR9 KO, and TLR2/9 DKO mice, and then stimulated 
with live HSV-1 (5.0 moi) for 48 h at 37°C. NK cells were lysed 
in PRO-PREP supplemented with protease inhibitors (iNtRON, 
INC., Daejeon, Korea) and resolved by electrophoresis on 10, 12, 
and 15% SDS-polyacrylamide gels. Samples (30 µg) were resolved 
by electrophoresis on 10–12.5% SDS-polyacrylamide gels. After 
proteins were transferred to PVDF Immobilon-P Transfer 
Membranes (Millipore, Billerica, MA, USA), blots were blocked 
with 5% non-fat dried milk or 3% BSA overnight at 4°C, and probed 
with the following panel of primary antibodies: rabbit anti-p44/42 
MAPK, phospho-p44/42 MAPK (Thr202/Tyr204), anti-p38 
MAPK, phospho-p38 (Thr180/Tyr182), anti-Akt, and phospho-
Akt (Ser473) (Cell Signaling, Danvers, MA, USA). Western blots 
were incubated with peroxidase-conjugated secondary antibodies 
(SouthernBiotech, Birmingham, AL, USA) and visualized with 
WEST-ZOL Plus Immunoblotting detection reagents (iNtRON 
Biotech) using a chemi-documentation system (Fusion Fx7, Vilber 

Lourmat, Cedex1, France). The intensities of western blot bands 
were quantified by luminescence intensity of each band using 
Bioprofil software (Bio-1D ver.15.01, Vilber Lourmat).

statistical analysis
All data were expressed as the average ± SEM, and statistically 
 significant differences between groups were analyzed by an 
unpaired two-tailed Student’s t-test for ex vivo experiments and 
immune cell analysis. For multiple comparisons, statistical signifi-
cance was determined using one-way or two-way ANOVA with 
repeated measures, both followed by Bonferroni post hoc tests. The 
statistical significance of viral burden and in vivo cytokine gene 
expression were evaluated by the Mann–Whitney test or unpaired 
two-tailed Student’s t-test. Kaplan–Meier survival curves were 
analyzed by the log-rank test. A p-value ≤0.05 was considered 
significant. All data were analyzed using GraphPadPrism4 soft-
ware (GraphPad Software, Inc., San Diego, CA, USA).

resUlTs

Dual ablation of Tlr2/9 highly enhances 
the susceptibility to Mucosal hsV-1 
infection via Promoting cns-invasion 
of Virus
To clarify the role of TLR2 and TLR9 in inflamed tissues after 
mucosal HSV infection, we assessed the survival of WT, TLR2 
KO, TLR9 KO, and TLR2/9 DKO mice following vaginal infec-
tion with different doses of the HSV-1 McKrae strain (1 × 106, 
1 × 107, and 5 × 107 pfu/mouse). Infected WT, TLR2 KO, TLR9 
KO, and TLR2/9 DKO mice showed similar clinical signs, starting 
with generalized piloerection and vaginal inflammation followed 
by hindlimb paralysis and death with CNS-invasion of the virus 
during 4–12 dpi. However, TLR2/9 DKO mice showed the high-
est mortality with 75% at a dose of 1 × 106, 80% at 1 × 107, and 95% 
at 5 × 107, as compared with WT mice with 5 and 20% mortality 
(Figures  1A–C, left graphs). TLR2 KO mice showed modest 
mortality with 30, 30, and 40%, while TLR9 KO mice exhibited 
apparently enhanced mortality with 55, 60, and 70%, depending 
on the infection dose. These results indicate that both TLR2 and 
TLR9 are essential to provide the resistance to mucosal infection 
with HSV-1, and TLR9 appears to play a more important role in 
providing resistance to mucosal HSV-1 infection compared with 
the TLR2. In support of the increased mortality rate, TLR2/9 DKO 
mice exhibited the highest severity in clinical signs during disease 
progression after mucosal HSV-1 infection (Figures 1A–C, right 
graphs). While TLR9 KO mice were observed to have an appar-
ently increased clinical score, TLR2 KO mice showed a modestly 
increased score compared with WT mice. Also, we examined 
viral burden in primary inflamed tissues (the VT), draining LNs 
(ILNs), and the Spl as well as the CNS including the SC and brain. 
TLR2/9 DKO mice had the highest viral burden in all examined 
tissues, and TLR9 KO mice also showed significantly increased 
levels of viral burden as compared with WT mice (Figure 1D). 
Of note, the CNS tissue (SC) of TLR2/9 DKO and TLR9 KO mice 
contained viral burdens with 1,000- to 10,000-fold increased 
levels 5  dpi, as compared with those of WT mice. TLR2 KO 
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FigUre 1 | Susceptibility and viral burden of TLR2 KO, TLR9 KO, and TLR2/9 double knock-out (TLR2/9 DKO) mice against mucosal herpes simplex virus (HSV)-1 
infection. (a–c) Survival rate and clinical score. Wild-type (WT) (C57BL/6), TLR2 KO, TLR9 KO, and TLR2/9 DKO mice (n = 9–12) were challenged intravaginal with 
different doses of the HSV-1 McKrae strain [(a): 1 × 106, (B): 1 × 107, and (c): 5 × 107 pfu/mouse]. Surviving mice were examined daily up to 21 days post-infection 
(dpi), and the clinical score was recorded at the indicated dpi. (D) Viral burden in inflammatory and lymphoid tissues. Viral burden in the vaginal tract (VT), iliac LNs 
(ILNs), spinal cord (SC), brain, and spleen of WT, TLR2 KO, TLR9 KO, and TLR2/9 DKO mice infected with HSV-1 (1 × 107 pfu/mouse) was assessed by real-time 
qPCR at the indicated dpi. The viral burden was expressed by viral DNA copy number per microgram of genomic DNA. (e) Infectious virus shedding in primary target 
tissues. Infectious virus titer was measured by a plaque-forming assay using vaginal lavages collected at the indicated dpi. Data represent the average ± SEM of the 
levels derived from at least three independent experiments (n = 3–4). Two-way ANOVA followed by Bonferroni post hoc testing was conducted in (D,e). *p < 0.05; 
**p < 0.01; ***p < 0.001 comparing levels between the indicated groups; #p < 0.05; ##p < 0.01 comparing levels between TLR9 KO and TLR2/9 DKO mice.
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mice showed slightly but not significantly increased levels of 
viral burden in the examined tissues. Similarly, TLR2/9 DKO 
mice contained the highest levels of infectious virus in vaginal 
lavages (Figure 1E). TLR2 KO mice showed higher levels of infec-
tious virus in vaginal lavages at 5 dpi, compared with WT mice. 
Collectively, these results indicate that both TLR2 and TLR9 are 
essential in providing resistance against mucosal HSV-1 infection 
through restricting CNS-invasion of the virus. Also, our vaginal 
challenge data revealed that the TLR9 molecule has a dominant 
role in providing resistance against mucosal HSV-1 infection 
compared with the TLR2 molecule.

Both Tlr2/9 are required for early ly-6chi 
Monocyte accumulation in inflamed 
Tissues
Inflammatory Ly-6Chi monocytes differentiate in the BM and 
egress into the blood stream. Upon viral infection, Ly-6Chi 

monocytes enter inflamed tissues from the blood stream in a 
CCR2-mediated manner, and some of the infiltrated Ly-6Chi 
monocytes further differentiate into inflammatory DCs, 
which participate in innate and adaptive immunity (30–32). 
Infiltrated Ly-6Chi monocytes were also reported to play a 
role in conferring resistance against mucosal HSV-1 infec-
tion through driving Th1-biased CD4+ T-cell responses (32). 
Therefore, we examined recruited myeloid-derived leukocyte 
subpopulations including Ly-6Chi monocytes in the VT, its 
draining LNs (ILNs), and SC of infected WT, TLR2 KO, TLR9 
KO, and TLR2/9 DKO mice. Our data revealed that both TLR2 
and TLR9 were critical for recruitment of CD11b+Ly-6Chi 
monocytes in the VT, ILNs, and SC during the early phase of 
mucosal HSV-1 infection (Figure  2). WT mice showed early 
infiltration of Ly-6Chi monocytes with a 3- to 10-fold increase in 
the VT 2 dpi, compared with Ly-6Chi monocyte levels in TLR2 
KO, TLR9 KO, and TLR2/9 DKO mice (Figures 2A,B). Notably, 
TLR2/9 DKO mice contained the lowest number of Ly-6Chi 
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FigUre 2 | Both TLR2 and TLR9 are required for early accumulation of Ly-6Chi monocytes into inflamed and lymphoid tissues following mucosal herpes simplex 
virus (HSV)-1 infection. Cells were prepared from the vaginal tract [VT, (a,B)], iliac LNs [ILNs, (c,D)], and spinal cord [SC, (e,F)] with collagenase digestion at 0, 2, 
and 5 days after mucosal HSV-1 infection (1 × 107 pfu/mouse) and employed to determine the subcellular proportion of Ly-6Chi monocytes and Ly-6Ghi and 
Ly-6ChiLy-6Ghi neutrophils using flow cytometric analysis. The values in the dot-plots represent the average percentages of each population derived from four 
independent samples after gating on CD11b+ cells. (a,c,e) The frequency of each cell population. (B,D,F) The accumulated absolute number of each cell 
population. Data in the bar graphs denote the average ± SEM of the levels derived from at least three independent experiments (n = 3–4). Two-way ANOVA  
followed by Bonferroni post hoc testing was conducted in (B,D,F). *p < 0.05; **p < 0.01; ***p < 0.001 comparing levels between the indicated groups.
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monocytes with one-tenth of the level in the VT of WT mice. 
Single ablation of TLR9 resulted in more reduced infiltration of 
Ly-6Chi monocytes in the VT than TLR2 ablation. By contrast, 
TLR2/9 DKO mice were found to contain a greater number of 
accumulated Ly-6Ghi granulocytes including Ly-6C-Ly-6Ghi and 
Ly-6ChiLy-6Ghi cells in the VT 2 and 5 dpi. These results indicate 
that TLR2 and TLR9 could be involved in differential infiltration 
of Ly-6Chi monocytes and Ly-6Ghi granulocytes in inflamed tis-
sues, depending on disease progression. Likewise, TLR2/9 DKO 
mice showed highly decreased infiltration of Ly-6Chi monocytes 
but increased Ly-6Ghi granulocyte infiltration in ILNs 2 and 
5 dpi (Figures 2C,D). The SC of TLR2/9 DKO mice also dis-
played infiltration of reduced Ly-6Chi monocytes and increased 
Ly-6Ghi granulocytes with a delayed pattern, as compared with 
vaginal tissue and ILNs (Figures  2E,F). Histopathological 
examinations support the severe inflammation in vaginal tis-
sues of TLR2/9 DKO compared with WT, TLR2 KO, and TLR9 

KO mice, as shown by the early and enhanced recruitment of 
inflammatory leukocytes including neutrophils in submucosa 
area (Figure  3A). TLR9 KO mice showed more significantly 
extensive inflammation in the vaginal tissues, compared with 
WT and TLR2 KO mice. By extension, to confirm the reduced 
infiltration of Ly-6Chi monocytes in the VT of TLR2/9 DKO 
mice, we examined the localization of Ly-6C+ monocytes 
in vaginal mucosa using confocal microscopy. As expected, 
infiltrated Ly-6C+ monocytes were detected with significantly 
reduced frequency in the area under the epithelial layer of the 
VT in TLR2/9 DKO mice compared with WT mice, and some of 
the Ly-6C+ cells co-stained with HSV-1 Ag (Figure 3B). Of note, 
clustered accumulation of Ly-6C+ monocytes was evident in the 
vaginal submucosa of WT mice, whereas TLR2/9 DKO mice 
displayed a scattered distribution of Ly-6C+ monocytes. Also, 
TLR9 KO mice showed a more scattered and reduced distribu-
tion of Ly-6C+ monocytes in the vaginal submucosa than TLR2 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 3 | Histopathological examination and confocal microscopy confirm the early accumulation of Ly-6C+ monocytes in vaginal tissues following herpes simplex 
virus (HSV)-1 infection. (a) Representative photomicrographs of vaginal tissue sections stained with H&E. Photomicrographs were taken from submucosal and 
epithelial areas 2 days after mucosal HSV-1 infection (1 × 107 pfu/mouse). Images are representative of sections (200×) from at least four mice. (B) Confocal 
microscopy of vaginal tissues. Sections of vaginal tissues obtained from HSV-infected wild-type (WT) (C57BL/6), TLR2 KO, TLR9 KO, and TLR2/9 double knock-out 
(TLR2/9 DKO) mice were co-stained for HSV Ag (gB) (green), the nuclear stain DAPI (blue), and the monocyte marker Ly-6C (red) 2 days post-infection. Images are 
representative of sections (400×) from at least four mice, and the lower image is a selected area magnified by twofold (800×). Some Ly-6C+ monocytes co-localized 
with HSV Ag are denoted by white arrows. White dot-line shows epithelial layer (EP layer). Sections of vaginal tissues obtained from uninfected mice were used for 
negative control group.
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KO mice. This implies that TLR9 predominantly functions in 
the infiltration of Ly-6Chi monocytes during mucosal infection 
with HSV-1, compared with TLR2. Furthermore, CD11c+ DCs 
and their myeloid DC subpopulation (CD11b+CD11c+) were 
detected with lower levels in the VT of TLR2/9 DKO mice than 
WT, TLR2 KO, and TLR9 KO mice at 2 and 5 dpi (Figure S1A in 
Supplementary Material). Likewise, ILNs and the SC of TLR2/9 
DKO mice contained a reduced number of CD11c+ DCs and 
myeloid CD11b+CD11c+ DCs compared with WT, TLR2 KO, 
and TLR9 KO mice (Figures S1B,C in Supplementary Material). 
Here, of interest, CD11b+CD11c− myeloid-derived cells were 
detected with lower levels in the VT of TLR2/9 DKO mice than 
in WT, TLR2 KO, and TLR9 KO mice at 2 dpi, but was reversed 
at 5  dpi (Figure S1A in Supplementary Material). This might 
be caused by the severe vaginal inflammation of TLR2/9 DKO 
mice at 5 dpi. Reduced infiltration of CD11b+ myeloid-derived 

cells and CD11c+ DCs in the VT of TLR2/9 DKO mice was also 
confirmed by confocal microscopy at 2 dpi (Figures S1D,E in 
Supplementary Material). Collectively, these results indicate 
that TLR2 and TLR9 are essential for the recruitment of Ly-6Chi 
monocytes and CD11c+ DCs in primary inflamed tissue, such 
as the VT, at the early stage after mucosal infection with HSV-1.

Dual Tlr2/9 recognition is required to 
recruit and activate nK cells
Besides Ly-6Chi monocytes, NK cells are a critical innate cellular 
component to confer protection against mucosal HSV-1 infec-
tion via production of IFN-γ and GrB (25, 26). Because vaginal 
infiltration of Ly-6Chi monocytes was governed by TLR2 and 
TLR9, we were also interested in testing whether the infiltration 
and activation of NK cells were affected during mucosal infection 
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with HSV-1. TLR2/9 DKO mice displayed highly decreased 
infiltration of CD3-NK1.1+DX5+ NK cells in the VT compared 
with WT, TLR2 KO, and TLR9 KO mice (Figure 4A). NK cells 
were detected with lower frequency in the VT of TLR9 KO mice 
than WT and TLR2 KO mice, which indicates that TLR9 may 
play a more important role in recruiting NK  cells than TLR2. 
Similarly, the ILNs and Spl of TLR2/9 DKO mice contained 
fewer NK cells compared with those of WT, TLR2 KO, and TLR9 
KO mice. Here, one interesting thing was that TLR2/9 DKO and 
TLR9 KO mice showed basally lower frequency of NK cells in the 

VT, ILNs, and Spl, as compared with TLR2 KO and WT mice. 
Supporting these findings, the total accumulated number of 
CD3−NK1.1+DX5+ NK cells in the VT, ILNs, and Spl was greatly 
reduced in TLR2/9 DKO mice, and TLR9 KO mice contained a 
lower total number of NK cells in the three tissues than TLR2 KO 
mice (Figure 4B). In addition, when the activation of NK cells was 
examined by analyzing their production of IFN-γ and GrB upon 
brief stimulation with PMA and ionomycin, TLR2/9 DKO mice 
showed a greater reduction in IFN-γ and GrB levels in vaginal 
CD3−NK1.1+DX5+ NK cells (Figure 4C), along with a decrease 
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FigUre 4 | Reduced recruitment and activation of NK cells by the deficiency of TLR2 and TLR9 molecules. (a) NK cell infiltration of infected wild-type (WT), TLR2 
KO, TLR9 KO, and TLR2/9 double knock-out (TLR2/9 DKO) mice. Cells were prepared from the vaginal tract (VT), iliac LNs (ILNs), and spleen (Spl) with collagenase 
digestion 0 and 2 days post-infection (dpi), and used for analysis of NK cells. The values in the dot-plots represent the average percentage plus SEM of NK1.1+DX5+ 
NK cells after gating on CD3-negative cells (n = 4–5). (B) Total accumulated NK cell number. The total number of accumulated CD3−NK1.1+DX5+ NK cells in the VT, 
ILN, and Spl was determined by flow cytometric analysis 2 dpi. (c) The frequency of IFN-γ and granzyme B (GrB)-producing cells in vaginal NK cells. The proportion 
of IFN-γ and GrB-producing cells in CD3−NK1.1+DX5+ NK cells was determined by intracellular staining after brief stimulation of vaginal leukocytes with PMA and 
ionomycin 0 and 2 dpi. The values in the plots represent the average plus SEM of IFN-γ or GrB-producing cells in NK1.1+ cells after gating on CD3−NK1.1+DX5+ 
NK cells (n = 4–5). Vaginal leukocytes unstimulated with PMA and ionomycin were used for negative control. (D) The absolute number of IFN-γ or GrB-producing 
NK cells. The total number of IFN-γ or GrB-producing CD3−NK1.1+DX5+ NK cells was enumerated by flow cytometric analysis using intracellular and surface 
staining 0 and 2 dpi. (e) Secreted IFN-γ levels in vaginal lavages. Secreted IFN-γ levels were determined by ELISA 0 and 2 dpi using vaginal lavages. (F) Confocal 
microscopy of infiltrated NK cells. Sections of vaginal tissues obtained from herpes simplex virus (HSV)-infected mice were co-stained for HSV Ag (gB) (green),  
the nuclear stain DAPI (blue), and the NK cell marker DX5 (red) 2 dpi. Images are representative of sections (400×) from at least four mice, and the lower image  
is a selected area magnified by twofold (800×). White dot-line shows epithelial layer (EP layer). Sections of vaginal tissues obtained from uninfected mice were 
used for negative control group. Two-way ANOVA followed by Bonferroni post hoc testing was conducted in B. One-way ANOVA with repeated measurements 
and Bonferroni post hoc tests were performed in (D,e). Data in the bar chart represent the average ± SEM of the levels derived from at least three independent 
experiments (n = 3–4). *p < 0.05; **p < 0.01; ***p < 0.001 comparing levels between the indicated groups.
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in the total number of vaginal NK cells producing IFN-γ and GrB 
compared with WT, TLR2 KO, and TLR9 KO mice (Figure 4D). 
Also, NK cells detected in VT of TLR2/9 DKO mice showed lower 
activated phenotypes for CD62L, CD69, and KLRG1 (Figure S2 
in Supplementary Material). Consistent with these results, lower 
levels of IFN-γ protein were detected in vaginal lavages of TLR2/9 
DKO mice compared with other animals including WT, TLR2 
KO, and TLR9 KO mice (Figure 4E). Furthermore, examination 
of NK  cell recruitment by confocal microscopy supported the 

reduced infiltration of DX5+ NK cells in the VT of TLR2/9 DKO 
mice (Figure  4F). Clustered accumulation of DX5+ NK  cells 
in a subarea of the epithelial dome of the WT VT was evident, 
whereas TLR2/9 DKO mice showed a scattered appearance of a 
few DX5+ NK cells in the submucosa area of the VT. Similar to the 
role of TLR2 and TLR9 in vaginal Ly-6Chi monocyte recruitment, 
these results indicate that vaginal recruitment of NK  cells and 
their activation could be governed by TLR2 and TLR9 during 
mucosal infection with HSV-1.
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FigUre 5 | Both TLR2 and TLR9 are required for rapid responses of cytokine and chemokines in vaginal tracts (VTs) infected with herpes simplex virus type 1.  
(a) Heatmap showing the expression of cytokines and chemokines in each tissue. The expression levels of cytokines and chemokines were assessed by real-time 
qRT-PCR using total RNA extracted from the VT, iliac LNs, spinal cord, brain, and spleen of infected wild-type (WT), TLR2 KO, TLR9 KO, and TLR2/9 double 
knock-out (TLR2/9 DKO) at 0, 2, and 5 days post-infection (dpi). The expression of each cytokine and chemokine is normalized to the housekeeping gene β-actin  
and displayed as the average of relative fold expression compared with uninfected control group, according to the indicated color on a log2 scale. (B,c) Secreted 
levels of cytokines and chemokines in vaginal lavages. Vaginal lavages were collected at the indicated dpi and used to measure levels of cytokines (B) and chemokines 
(c) by CBA. Data show the average ± SEM of values derived from at least three independent experiments (n = 4–5). Two-way ANOVA followed by Bonferroni post hoc 
testing was conducted in (B,c). *p < 0.05; **p < 0.01; ***p < 0.001 comparing levels between WT and TLR2/9 DKO mice at the indicated time points.
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early recruitment of ly-6chi Monocytes 
and nK cells is associated With rapid 
responses of cc chemokines in  
Mucosal Tissues
The complex cascade of responses of cytokines and chemokines 
provides an orchestrated environment for viral clearance through 
regulating the recruitment of innate and adaptive immunity-
related cellular components (42, 43). Our data demonstrate that 
both TLR2 and TLR9 are essential to provide antiviral immune 
responses in the VT via early infiltration of Ly-6Chi monocytes 
and NK cells. Therefore, to further understand antiviral immune 
responses in the VT of TLR2/9-ablated mice, we examined the 
expression of cytokines and chemokines in the VT during mucosal 
infection with HSV-1. TLR2/9 DKO mice showed diminished 
expression of cytokines and chemokines in the VT, by contrast 
with the rapid and high expression of cytokines and chemokines 
in WT mice (Figure 5A). One intriguing result was that CXCL2 
expression was greatly increased in the VT of TLR2/9 DKO mice 

5 dpi compared with WT, TLR2 KO, and TLR9 KO mice. This 
might facilitate the recruitment of Ly-6Ghi granulocytes in the VT 
of TLR2/9 DKO mice at a later stage (44). TLR2 KO and TLR9 KO 
mice showed delayed expression of cytokines and chemokines in 
the VT 5 days after mucosal infection with HSV-1, as compared 
with WT mice. ILNs and Spl also showed decreased and delayed 
patterns of cytokine and chemokine expression in TLR2/9 DKO 
mice. However, the expression of cytokines and chemokines in 
CNS tissues including the SC and brain was greatly increased in 
TLR2/9 DKO mice at a later stage (5 dpi). This higher expres-
sion of cytokines and chemokines in CNS tissue of TLR2/9 DKO 
mice might be caused by increased CNS-invasion of the virus. 
Supporting these results, WT mice secreted higher amounts 
of cytokines (IL-6, TNF-α, and GM-CSF) in vaginal lavages at 
the early stage (2 dpi) compared with TLR2 KO, TLR9 KO, and 
TLR2/9 DKO mice (Figure 5B). However, TLR2 and/or TLR9-
ablated mice contained higher amounts of cytokines in vaginal 
lavages than WT mice at the later stage (5  dpi), due to severe 
inflammatory responses. Regarding the secreted chemokine 
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proteins in vaginal lavages, CC chemokines were secreted earlier 
and at higher levels in WT mice 2 dpi compared with TLR2 KO, 
TLR9 KO, and TLR2/9 DKO mice (Figure  5C). Of note, WT 
mice, but not TLR2 and/or TLR9-ablated mice, showed early and 
greatly increased secretion of CCR2 ligands (CCL2 and CCL7) 
that are essential receptors for Ly-6Chi monocyte recruitment 
(45). This production of CCR2 ligands might lead to early recruit-
ment of Ly-6Chi monocytes in the VT of WT mice at the early 
stage (2 dpi). By contrast, some CC chemokines (CCL2, CCL3, 
CCL4, and CCL7) were secreted at higher levels in vaginal lav-
ages of TLR2/9 DKO mice at the later stage (5 dpi) as compared 
with WT mice. These results indicate that TLR2/9 plays a critical 
role in the cascade of responses of cytokines and chemokines in 
inflamed tissue after mucosal infection with HSV-1. Also, the 
stepwise response of chemokines in vaginal tissue of WT mice, 
but not TLR2 and/or TLR9-ablated mice, was closely associated 
with the early recruitment of Ly-6Chi monocytes and NK cells.

Tlr2/9 have a critical role in the 
Differentiation of ly-6chi Monocytes 
into Tip-Dcs
Once inflammatory Ly-6Chi monocytes are recruited in inflamed 
tissues, they can give rise to MCs including Tip-DC (iNOS+ 
MCs) subset that plays an important role in providing anti-
microbial defense (28–32). Therefore, we were interested in 
exploring whether TLR2/9 could affect the differentiation of 
Ly-6Chi monocytes into Tip-DCs in inflamed tissues such as 
the VT after mucosal infection with HSV-1. Ly-6Chi monocytes 
were observed to give rise to CD11c+ DCs producing TNF-α 
or iNOS in the VT of WT mice with around 18% following 
mucosal infection with HSV-1, whereas TLR2/9 DKO mice 
showed drastically reduced differentiation of TNF-α+ or 
iNOS+CD11c+ Tip-DCs from Ly-6Chi monocytes with levels 
of around 4% (Figure 6A). Also, TLR9 KO mice showed more 
impaired differentiation of Tip-DCs from Ly-6Chi monocytes 
with levels of 5–6%, compared with TLR2 KO mice that 
showed TNF-α+ or iNOS+CD11c+ DC levels of 12 or 21% in 
Ly-6Chi monocytes, respectively. This result implies that TLR9 
plays a dominant role in differentiating Tip-DCs from Ly-6Chi 
monocytes during mucosal infection with HSV-1. Consistent 
with this, TLR2/9 DKO mice contained the lowest number of 
TNF-α+ or iNOS+CD11c+ Tip-DCs in the VT when the absolute 
number of Tip-DCs in the VT was determined (Figure  6B). 
TLR9 KO mice were observed to have a lower number of Tip-
DCs in the VT than TLR2 KO mice. Furthermore, we assessed 
the profile of cytokine expression in vaginal Ly-6Chi monocytes 
to further clarify Tip-DC features of Ly-6Chi monocytes. As 
expected, Ly-6Chi monocytes sorted from the VT of WT mice 
showed high levels of expression of TNF-α and iNOS, whereas 
Ly-6Chi monocytes derived from TLR2/9 DKO mice expressed 
TNF-α and iNOS at the lowest levels (Figure  6C). This indi-
cates that Ly-6Chi monocytes derived from WT mice show 
Tip-DC-like features more than those of TLR2/9 DKO mice. 
Here, one interesting result was that Ly-6Chi monocytes sorted 
from the VT of WT mice showed significant expression of 
CCL2 and CCL3, but Ly-6Chi monocytes derived from TLR2/9 

DKO mice showed apparently increased expression of IL-23, 
CXCL1, and CXCL2. This differential chemokine expression in 
Ly-6Chi monocytes derived from TLR2/9 DKO mice appeared 
to facilitate the recruitment of Ly-6Ghi granulocytes in the VT. 
Because Tip-DCs have been known to play a role in presenting 
Ag to CD4+ or CD8+ T cells (46), we examined the expression of 
Ag-presentation-related molecules and some phenotypic mark-
ers including F4/80, CCR2, and CD11c. Ly-6Chi monocytes 
in the VT of TLR2/9 DKO mice showed reduced expression 
levels of Ag-presentation-related molecules (CD40, CD80, 
CD86, and MHC II), as compared with Ly-6Chi monocytes in 
WT, TLR2 KO, and TLR9 KO mice (Figure 6D). In addition, 
vaginal monocytes of TLR2/9 DKO mice expressed phenotypic 
markers for DCs with lower levels than those of other animals. 
Supporting this result, Ly-6Chi monocytes sorted from the VT of 
TLR2/9 DKO mice showed weak capability of Ag-presentation 
to OT-II CD4+ T cells compared with monocytes sorted from 
the VT of WT, TLR2 KO, and TLR9 KO mice (Figure 6E). Also, 
Ly-6Chi monocytes derived from TLR9 KO mice were less able 
to present Ag than Ly-6Chi monocytes from TLR2 KO mice. 
Taken together, these results indicate that TLR2/9 plays a criti-
cal role in differentiating Tip-DCs from Ly-6Chi monocytes and 
regulating their functions in the VT during mucosal infection 
with HSV-1.

Tlr2/9 recognition enhances Functional 
T-cell responses in inflamed Tissues and 
Draining lns Following Mucosal hsV-1 
infection
TNF-α and iNOS-producing DCs differentiated from Ly-6Chi 
monocytes migrate from inflamed sites to draining LNs and share 
functional features of classical DCs that stimulate CD4+ and CD8+ 
T-cell responses (47). In this study, dual recognition of HSV-1 
infection by TLR2/9 appeared essential to promote the differen-
tiation of Tip-DCs in the VT. Moreover, Tip-DCs in the ILNs of 
WT mice were detected with increased levels compared with other 
animals (data not shown). Therefore, we were interested in explor-
ing the in vivo capacity of TLR2 and/or TLR9-deficient Tip-DCs to 
stimulate Ag-specific CD4+ and CD8+ T-cell responses in the VT 
and its draining LNs. To this end, we assessed HSV-1 Ag-specific 
CD4+ and CD8+ T-cell responses in the VT and ILNs 7 days after 
mucosal infection with HSV-1. Although this analysis could not 
exclude the contribution of classical DCs in the draining LNs of 
the VT, the comparable possibility of TLR2 and/or TLR9-deficient 
Tip-DCs facilitating T-cell responses could be evaluated. In strong 
support of the impaired maturation of Tip-DCs in TLR2/9 DKO 
mice, TLR2/9 DKO mice showed a drastically reduced frequency 
of IFN-γ or TNF-α-producing HSV-1-specific CD4+ T  cells in 
the VT in response to stimulation with UV-inactivated HSV-1 
(Figure 7A). However, TLR2/9 DKO mice contained a comparable 
number of vaginal HSV-1-specific CD4+ T cells as WT mice based 
on the enumeration of HSV-1-specific CD4+ T cells by intracellu-
lar CD154 staining (38). This result implies that impaired Tip-DC 
maturation in TLR2/9 DKO mice may be involved in the poor 
expansion of functional cytokine-producing effector CD4+ T cells. 
Also, a comparable number of HSV-1-specific CD154+CD4+ T cells 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 6 | Dual TLR2/9 recognition of herpes simplex virus type 1 to promote the differentiation of Ly-6Chi monocytes in TNF-α+iNOS+CD11c+ TNF-α and 
iNOS-producing dendritic cells (Tip-DCs). (a) The frequency of Tip-DCs in the vaginal tract (VT) of infected mice. Cells were prepared from the VT with collagenase 
digestion 0 and 2 days post-infection (dpi) and used for analysis of Tip-DCs. Tip-DCs were detected by intracellular TNF-α or iNOS staining combined with surface 
staining for CD11c, Ly-6C, and CD11b. The values in the dot-plots represent the average percentage of TNF-α+ or iNOS+CD11c+ after gating on CD11b+Ly-6Chi 
cells. (B) The total number of accumulated TNF-α+ or iNOS+CD11c+CD11b+Ly-6Chi Tip-DCs in the VT. (c) The cytokine expression profile of sorted CD11b+Ly-6Chi 
monocytes in the VT. Total RNA was extracted from sorted CD11b+Ly-6Chi monocytes in the VTs 2 dpi and used for real-time qRT-PCR. (D) Phenotypic levels of 
vaginal Ly-6Chi monocytes. The values in the histograms denote the average ± SEM of MFI for the indicated surface marker after gating on CD11b+Ly-6Chi 
monocytes. (e) Ag-presentation of sorted CD11b+Ly-6Chi monocytes. Sorted CD11b+Ly-6Chi monocytes in the VTs were co-cultured with OT-II CD4+ T cells for 
72 h. OT-II CD4+ T-cell proliferation was assessed by a viable cell ATP bioluminescence assay, and IL-2 levels in culture supernatants were determined by ELISA. 
Data in the bar graphs denote the average ± SEM of values derived from at least three independent experiments (n = 4–5). Two-way ANOVA followed by Bonferroni 
post hoc testing was conducted in (B). One-way ANOVA with repeated measurements and Bonferroni post hoc tests were performed in (c,e). *p < 0.05; 
**p < 0.01; ***p < 0.001 comparing levels between the indicated groups.
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in the VT of WT, TLR2 KO, TLR9 KO, and TLR2/9 DKO mice was 
detected when the total number of HSV-1-specific CD4+ T cells 
was enumerated, whereas TLR2/9 DKO mice contained a highly 
reduced number of IFN-γ and/or TNF-α-producing CD154+CD4+ 
T cells compared with other animals (Figure 7B). TLR9 KO mice 
had a lower number of cytokine-producing CD154+CD4+ T cells 
in the VT than TLR2 KO mice. Likewise, TLR2/9 DKO mice 
showed the lowest responses of HSV-1-specific CD4+ T cells in 
the draining LNs (ILNs) (Figures 7C,D). Of note, TLR2/9 DKO 
mice contained a much lower total number of functional cytokine-
producing CD154+CD4+ T cells in the ILNs with one-tenth of the 
levels observed in WT mice. Consistent with HSV-1-specific CD4+ 
T-cell responses, IFN-γ-producing CD8+ T cells specific for the 
immunodominant epitope (gB498-505, SSIEFARL) of HSV-1 were 

detected in the VT of TLR2/9 DKO mice with 10-fold-reduced 
levels in frequency compared with WT mice (Figure 7E). Also, the 
lowest number of TNF-α-producing CD8+ T cells was found in the 
VT of TLR2/9 DKO mice. Supportively, TLR2/9 DKO mice were 
observed to contain the lowest number of gB498-505-specific CD8+ 
T cells in the VT when examined for IFN-γ or TNF-α-producing 
CD8+ T cells in response to stimulation with an epitope peptide 
(Figure 7F). ILNs of TLR2/9 DKO mice also contained a lower 
frequency and total number of gB498-505-specific CD8+ T cells than 
WT mice as well as TLR2 KO and TLR9 KO mice (Figures 7G,H). 
Therefore, these results indicate that TLR2/9 molecules play a 
critical role in generating functional effector CD4+ and CD8+ 
T-cell responses against HSV-1 Ag in inflamed tissues and their 
draining LNs.
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FigUre 7 | Herpes simplex virus (HSV)-1 Ag-specific CD4+ and CD8+ T-cell responses in the vaginal tract (VT) and its draining LNs of infected mice.  
(a–D) The frequency and absolute number of CD4+ T cells specific for HSV-1 Ag in the VT and iliac LNs (ILNs). (e–h) The frequency and absolute number of CD8+ 
T cells specific for the immunodominant epitope (gB498-505, SSIEFARL) of HSV-1 in the VT and ILNs. Leukocytes were prepared from the VT (VT) and ILNs of surviving 
mice 7 days post-infection and co-cultured with UV-inactivated HSV-1 or gB498-505 peptide-pulsed APCs for CD4+ or CD8+ T-cell responses, respectively. HSV-1 
Ag-specific CD4+ and CD8+ T cells were detected by intracellular IFN-γ and TNF-α staining combined with CD4 or CD8 surface staining. The values in the dot-plots 
represent the average percentage of each population (CD154+, IFN-γ+, or TNF-α+) after gating on CD4+ or CD8+ cells. Data in the bar graphs denote the 
average ± SEM of values derived from at least three independent experiments (n = 4–5). One-way ANOVA with repeated measurements and Bonferroni post hoc 
tests were performed in (B,D,F,h). *p < 0.05; **p < 0.01; ***p < 0.001 comparing levels between the indicated groups.
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Direct Tlr2/9 recognition is required for 
ly-6chi Monocyte and nK cell activation 
Upon hsV-1 infection
The conversion of Ly-6Chi monocytes to Tip-DCs can be accom-
plished by stimulation with several soluble factors including 
IL-12 and IFN-γ that are produced during inflammation (48). 
Moreover, MyD88 has been reported to be required for the 
maturation of functional Tip-DCs from Ly-6Chi monocytes (35), 
which suggests that functional maturation of Tip-DCs could be 
facilitated by TLR recognition of viral infection. Based on these 
findings, we next tested the intrinsic role of TLR2/9 in maturation 
of Tip-DCs from Ly-6Chi monocytes since Ly-6Chi monocytes 
expressed a wide range of TLRs including TLR2 and TLR9 at vari-
ous levels (Figure S3A in Supplementary Material). Our results 
revealed that purified Ly-6Chi monocytes showed up-regulated 

expression of Ag-presentation-related molecules (CD40, MHC 
II, and CD80) and a DC marker (CD11c) after HSV-1 infection 
(Figure 8A). Of note, Ly-6Chi monocytes purified from WT mice 
displayed greatly increased expression of Ag-presentation-related 
molecules and CD11c after HSV-1 infection, as compared with 
Ly-6Chi monocytes purified from TLR2/9 DKO mice. Ly-6Chi 
monocytes purified from TLR2 KO mice showed slightly higher 
expression of Ag-presentation-related molecules and CD11c than 
Ly-6Chi monocytes derived from TLR9 KO mice. Furthermore, 
we examined the expression of TNF-α and iNOS as functional 
factors of Tip-DCs in purified Ly-6Chi monocytes after HSV-1 
infection. Greatly increased levels of TNF-α and iNOS expression 
were induced in Ly-6Chi monocytes purified from WT mice, as 
compared with Ly-6Chi monocytes purified from TLR2/9 DKO 
mice (Figure 8B). Also, Ly-6Chi monocytes purified from TLR2 
KO and TLR9 KO mice showed a significant induction of TNF-α 
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FigUre 8 | Direct recognition of both TLR2 and TLR9 to promote Ly-6Chi monocyte differentiation into TNF-α and iNOS-producing dendritic cells. (a) Phenotypic 
changes of sorted Ly-6Chi monocytes after herpes simplex virus (HSV)-1 infection. Ly-6Chi monocytes sorted from the spleen of wild-type (WT), TLR2 KO, TLR9 KO, 
and TLR2/9 double knock-out (TLR2/9 DKO) mice were infected with HSV-1 (5.0 moi) and used for surface staining with the indicated markers 24 h later. The values 
in the histograms denote the average ± SEM of MFI for the indicated surface marker after gating on CD11b+Ly-6Chi monocytes. (B) TNF-α and iNOS expression in 
HSV-1-infected Ly-6Chi monocytes. The levels of TNF-α and iNOS mRNA were determined by real-time qRT-PCR using the total RNA extracted from sorted Ly-6Chi 
monocytes 24 h after HSV-1 infection. Data in the bar graphs denote the average ± SEM of values derived from at least three independent experiments (n = 4–5). 
Two-way ANOVA followed by Bonferroni post hoc testing was conducted in (B). *p < 0.05; **p < 0.01; ***p < 0.001 comparing levels between the indicated groups.
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and iNOS expression with HSV-1 infection, but TLR9-deficient 
monocytes showed lower induction of TNF-α and iNOS expres-
sion than monocytes from TLR2 KO mice. These results indicate 
that dual recognition of TLR2 and TLR9 for HSV-1 infection 
could directly lead to up-regulation of the functional features of 
Tip-DCs from Ly-6Chi monocytes.

Furthermore, NK cell activation can also be accomplished by 
direct TLR2 and TLR9 recognition, because CD3-NK1.1+DX5+ 
NK  cells express multiple TLRs including TLR2 and TLR9 
(Figure S3B in Supplementary Material). NK cell activation has 
been shown to be regulated by DC-derived cytokines (IFN-I, 
IL-12, and IL-15) and/or cell-to-cell contact between DCs and 
NK cells (49–51). DCs are believed to recognize HSV-1 infection 
via TLR2 and TLR9, and then produce cytokines that are involved 
in NK cell activation (49–51). To rule out the role of TLR2 and 
TLR9 signaling on accessory cells including DCs in NK  cell 
activation, we utilized an in vitro DC–NK cell co-culture system. 
CD3-NK1.1+DX5+ NK cells purified from WT, TLR2 KO, TLR9 
KO, or TLR2/9 DKO mice were co-cultured in  vitro with WT, 
TLR2, TLR9, or TLR2/9-deficient DCs prepared from BM cells 
in the absence or presence of HSV-1 infection. LPS treatment 
was used for a positive control. Our data showed that similar 
amounts of IFN-γ were produced by WT NK cells co-cultured 
with TLR2, TLR9, or TLR2/9-deficient DCs in the presence of 
HSV-1 infection, as compared with WT NK cells co-cultured with 
WT DCs (Figures 9A,B). However, NK cells derived from TLR2 
KO, TLR9 KO, and TLR2/9 DKO mice showed highly reduced 
production of IFN-γ when co-cultured with DCs derived from 
WT, TLR2 KO, TLR9 KO, and TLR2/9 DKO mice in the presence 

of HSV-1 infection. This result indicates that NK cell activation 
is independent of TLR2 and TLR9 signaling on DCs in response 
to HSV-1 infection. Instead, direct signaling of TLR2 and TLR9 
on NK cells appeared to play a critical role in activating NK cells. 
Also, the lack of IFN-γ production by NK  cells derived from 
TLR2 KO, TLR9 KO, or TLR2/9 DKO mice was unlikely to be 
driven by their inherent inability to be activated, as TLR2, TLR9, 
or TLR2/9-deficient NK cells stimulated with the TLR4 ligand, 
LPS, produced comparable amounts of IFN-γ to WT NK  cells 
(Figures 9A,B). To further support the role of direct TLR2 and 
TLR9 signaling on NK cell activation, purified and accessory cell-
free NK cells were stimulated with HSV-1 and assayed for NK cell 
activation 48  h later. HSV-1 infection stimulated NK  cells to 
significantly produce IFN-γ, and NK cells purified from TLR2/9 
DKO mice showed the lowest production of IFN-γ by HSV-1 
infection (Figure 9C). Taken together, these results suggest that 
functional activation of Ly-6Chi monocytes and NK cells could 
be directly facilitated by dual recognition of TLR2/9 expressed in 
corresponding cells during mucosal infection with HSV-1.

activation of the p38 MaPK Pathway  
in nK cell activation by Dual Tlr2/9 
recognition of hsV-1
TLR2 is believed to be located on cell surface, whereas TLR9 is 
expressed within endosomes (7–10). Although they have differ-
ent subcellular locations, TLR2 and TLR9 use the same adaptor 
molecule, MyD88, to transmit signals to a cascade of MAP 
kinases including ERK, JNK, and p38 that ultimately lead to 
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FigUre 9 | Both TLR2 and TLR9 signaling on NK cells, but not dendritic cells (DCs), are required for NK cell activation upon herpes simplex virus (HSV)-1 infection. 
Sorted CD3-NK1.1+DX5+ NK cells from the spleen (Spl) of wild-type (WT), TLR2 KO, TLR9 KO, and TLR2/9 double knock-out (TLR2/9 DKO) mice were co-cultured 
with CD11c+ DCs derived from bone marrow cells of WT, TLR2 KO, TLR9 KO, or TLR2/9 DKO mice and stimulated with HSV-1, lipopolysaccharide (LPS), or left 
uninfected (Mock). The activity of NK cells was assayed by intracellular IFN-γ staining 48 h after infection. (a) The plots that show the percentage of IFN-γ-positive 
cells among CD3-NK1.1+DX5+ NK cells. (B) The mean percentage ± SEM of IFN-γ-positive cells among CD3-NK1.1+DX5+ NK cells. (c) Direct activation of NK cells 
by dual TLR2/9 recognition. Sorted NK cells from the Spl of WT, TLR2 KO, TLR9 KO, and TLR2/9 DKO mice were infected with HSV-1 (5.0 moi) and assayed for 
intracellular IFN-γ 24 h later. The values in the plots represent the average percentage of IFN-γ-producing cells in NK1.1+ cells after gating on CD3-NK1.1+DX5+ 
NK cells. One-way ANOVA with repeated measurements and Bonferroni post hoc tests were performed in (B). Data shown are representative of three independent 
experiments (n = 4–5). ***p < 0.001 comparing levels between the indicated groups.
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the activation of transcription of inflammatory cytokines (52). 
Next, we examined that which MAPK pathways were activated 
by stimulation of TLR2/9-MyD88 signaling in NK cell activation 
by HSV-1. To this end, we measured the phosphorylation of ERK, 
p38, and Akt MAPKs 0, 12, and 24 h after HSV-1 infection, using 

NK  cells purified from WT, TLR2 KO, TLR9 KO, and TLR2/9 
DKO mice. The phosphorylation of ERK in NK  cells purified 
from WT, TLR2 KO, TLR9 KO, and TLR2/9 DKO mice was not 
apparently observed, except that NK cells derived from TLR2/9 
DKO mice showed slightly increased phosphorylation of ERK at 
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FigUre 10 | Direct TLR2/9-dependent activation of NK cells by herpes simplex virus (HSV)-1 is mediated by p38 MAPK. (a) Phosphorylation of MAPKs in HSV-1 
infected NK cells. NK cells purified from the spleen (Spl) of wild-type (WT), TLR2 KO, TLR9 KO, and TLR2/9 double knock-out (TLR2/9 DKO) mice were infected 
with HSV-1 (5.0 moi). Western immunoblot was used for detecting unphosphorylated and phosphorylated forms of target MAPKs using specific Abs at the indicated 
time points. The luminescence intensities of Western blot bands were expressed by relative fold intensity compared with uninfected NK cells. (B) Dependence of 
HSV-1-mediated NK cell activation on p38 MAPK. NK cells purified from the Spl of WT mice were infected with HSV-1 in the presence or absence of a JNK inhibitor 
(SP600125), MEK inhibitor (PD98059), and p38 inhibitor (SB203580). NK cell activation was evaluated by intracellular IFN-γ staining 24 h later. The values in the 
plots represent the percentage of IFN-γ-producing cells in NK1.1+ cells after gating on CD3-NK1.1+DX5+ NK cells. Data in bar graphs and the plots denote the 
average ± SEM of values derived from at least three independent experiments (n = 4–5). Two-way ANOVA followed by Bonferroni post hoc testing was conducted 
for the comparison of luminescence intensities in (B). Data shown are representative of three independent experiments (n = 4–5).
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24 hpi (Figure  10A). However, somewhat interestingly, HSV-1 
infection induced phosphorylation of Akt MAPK in NK  cells 
derived from WT, TLR2 KO, TLR9 KO, and TLR2/9 DKO mice, 
whereas the phosphorylation of p38 MAPK was observed in 
NK cells purified from only WT mice except TLR2 KO, TLR9 KO, 
and TLR2/9 DKO mice. Instead, NK cells obtained from TLR2/9 
DKO mice showed specifically and drastically reduced phospho-
rylation of p38 MAPK at both 12 and 24 hpi, as compared with 
WT and TLR2 KO mice. The reduction of p38 phosphorylation in 
NK cells purified from TLR9 KO mice was observed with delayed 
pattern at 24 hpi, as compared with TLR2/9 DKO mice. This 
finding implies that NK cell activation by dual TLR2/9 recogni-
tion of HSV-1 infection is mediated by the p38 MAPK pathway. 
To further confirm the role of p38 MAPK in NK cell activation 
through TLR2/9 signaling, we assessed NK cell activation after 
HSV-1 infection in the presence of MAPK inhibitors such as a 
JNK inhibitor (SP600125), MEK inhibitor (PD98059), and p38 

inhibitor (SB203580). NK  cell activation by HSV-1 infection 
was significantly reduced after treatment with a p38 inhibitor 
(SB203580), as compared with treatment with JNK  inhibitor 
(SP600125) and MEK inhibitor (PD98059) (Figure 10B). There-
fore, these results indicate that direct NK cell activation by dual 
TLR2/9 recognition of HSV-1 is mediated by activation of the p38 
MAPK pathway triggered by MyD88-TRAF6 activation.

DiscUssiOn

CD11b+Ly-6Chi monocytes egress massively from the BM into 
the bloodstream in a CCR2-dependent manner upon pathogenic 
infection, and are then recruited into inflamed tissues via the 
CCR2-CCL2 axis. There, host-derived inflammatory cytokines 
and chemokines or pathogen-derived molecules activate the 
infiltrated Ly-6Chi monocytes to upregulate CD11c, CD80/86, 
and MHC class II, thereby facilitating their maturation toward 
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monocyte-derived DCs including Tip-DCs (28–32). Bosschaert 
et al. demonstrated that the conversion of Ly-6Chi monocytes to 
Tip-DCs consists of a three-step process including (i) a CCR2-
depedent step crucial for emigration of Ly-6Chi monocytes 
from the BM followed by (ii) a differentiation step of infiltrated 
Ly-6Chi monocytes to immature inflammatory DCs (CD11c+ but 
CD80/CD86/MHC IIlo) which is IFN-γ and MyD88 signaling-
independent and (iii) a maturation step of inflammatory DCs to 
functional (CD80/CD86/MHC IIhi) TNF-α and iNOS-producing 
Tip-DCs which is dependent on IFN-γ and MyD88 signaling 
(35). This notion indicates that the differentiation of Tip-DCs 
from Ly-6Chi monocytes could be governed by the microenviron-
ment orchestrated by multiple factors including cytokines and 
pathogen-derived molecules, i.e., PAMPs, in inflamed tissues. 
Notably, considering that monocyte-derived DCs in MyD88 KO 
and IFN-γ KO mice express CD80/86 and MHC II molecule but 
produce TNF-α and iNOS with low levels (35), MyD88 and IFN-γ 
signaling may be involved in the maturation of monocyte-derived 
DCs to functional Tip-DCs. Therefore, TLR2/9 expressed in 
Ly-6Chi monocytes may contribute to the functional maturation 
of Tip-DCs with help from IFN-γ produced from NK cells in the 
VT, even though the role of IFN-γ was not examined in this study. 
Supporting this speculation, our results showed that HSV-1 infec-
tion directly promotes Tip-DC-like features in Ly-6Chi monocytes 
sorted from WT mice by increasing the expression of CD11c, 
MHC II, TNF-α, and iNOS, but TLR2 and/or TLR9-deficient 
Ly-6Chi monocytes did not show such phenomena. The currently 
identified TLR2/9 ligands of HSV-1, gH/L and gB as well as CpG 
DNA, could represent candidates that contribute to the functional 
maturation of monocyte-derived DCs to Tip-DCs (7, 8). However, 
TLR2/9 and IFN-γ are not the only factors thought to be involved 
in Tip-DC maturation. Other factors produced in inflamed tis-
sues, such as GM-CSF, IL-12p40, and TNF-α, may act in concert 
with TLR2/9 and IFN-γ to induce the differentiation of Tip-DCs. 
In support of this idea, WT mice expressed such factors in the VT 
with highly increased levels at the early stage after HSV-1 infection 
compared with TLR2 and/or TLR9 KO mice. Although a dissected 
investigation of the multiple factors produced in the VT is needed 
to uncover their comparable contribution to the differentiation 
and maturation of Tip-DCs from Ly-6Chi monocytes, our results 
revealed one aspect that TLR2/9 can directly contribute to the 
facilitation of Tip-DC-like features from Ly-6Chi monocytes.

TNF-α and iNOS-producing DCs share some functional fea-
tures with classical DCs that are differentiated from common DC 
precursor-derived from hematopoietic stem cells (29). Classical 
CD11c+ DCs are well known to initiate T-cell responses and res-
timulate effector and memory T-cell responses (53). The Iwasaki 
group demonstrated that classical and tissue-resident CD11c+ 
DCs are primarily involved in priming of naive CD4+ T  cells 
(53), whereas Ly-6Chi monocyte-derived DCs regulate Th1-type 
cytokine production from effector CD4+ T cells (32). This sug-
gests that Ly-6Chi monocyte-derived Tip-DCs are dedicated 
to maintaining function of effector T  cells in inflamed tissues. 
Their findings strongly strengthen our results that TLR2/9 DKO 
mice contained a comparable number of vaginal HSV-1-specific 
CD154+CD4+ T cells as WT mice (38), while TLR2/9 DKO mice 
showed a greatly reduced number of functional IFN-γ and/or 

TNF-α-producing cells in CD154+CD4+ T  cells. Although the 
intrinsic ability of classical TLR2 and/or TLR9-deficient CD11c+ 
DCs to prime naive CD4+ and CD8+ T  cells was not excluded 
in this experiment, our data may help evaluate the comparable 
possibility that TLR2 and/or TLR9-deficient Tip-DCs maintain 
functional effector CD4+ and CD8+ T-cell responses in the VT 
and its draining LNs. In support of this, Ly-6Chi monocytes sorted 
from the VT of TLR2 and/or TLR9 KO mice after HSV-1 infec-
tion were observed to exhibit impaired Ag-presentation to OT-II 
CD4+ T cells compared with Ly-6Chi monocytes from WT mice. 
However, since Tip-DCs were also observed to exhibit T-cell 
stimulatory capacity in different infection models (46), the intrin-
sic ability of Tip-DCs derived from TLR2 and/or TLR9 KO mice 
to stimulate CD4+ and CD8+ T cells remains to be investigated.

Another intriguing issue raised in this study was that TLR2/9 
directly activate NK cells without the aid of DCs. HSV-1 infection 
could be recognized by TLR2 and TLR9 expressed in DCs, and 
thereby induce the production of cytokines, such as IFN-I, IL-12, 
and IL-15, that play an important role in indirect activation of 
NK cells (49–51). However, our data support that NK cell activa-
tion depends on triggering the TLR2 pathway on NK cells rather 
than TLR2-depedence in DCs. Indeed, our data are strengthened 
by a few reports showing that TLR2 signaling on NK  cells is 
involved in their direct activation independent of TLR2 in 
DCs (33, 41, 54). Of note, UV-inactivated HSV-1 was recently 
demonstrated to stimulate the expression of CD69, degranula-
tion, migration, and cytokine production in NK  cells, partly 
via TLR2/PKC/NF-κB signaling (55), suggesting that certain 
surface components of UV-inactivated HSV-1 directly activate 
NK  cells. It is conceivable that gH/L and gB trigger the TLR2 
pathway for direct NK  cell activation (7, 8). However, the role 
of TLR9 in directly activating NK cells remains obscure because 
CpG DNA, a TLR9 ligand, failed to directly activate isolated 
NK cells (56, 57). Most of the NK cell activation by TLR9 ligands 
is dependent on DCs and/or cytokines produced from DCs. 
Nevertheless, our results are consistent with very recent results 
showing that baculovirus directly activates NK  cells via TLR9, 
coinciding with the expression of CD69 and promotion of IFN-γ 
production and cytotoxicity (58). Also, because NK  cells were 
shown to be directly activated with CpG (59), NK cells are likely 
to be exposed on CpG derived from HSV-1 through intracellular 
TLR9 at certain stage. HSV-1 is detected in sequence by TLR2/9 
in DCs: first, by surface TLR2 interacting with the virions and 
second, by intracellular TLR9 recognizing the viral genome DNA 
(10). This sequential recognition of HSV-1 must occur within the 
same DCs upon direct recognition of the virus and not through 
activation of bystander DCs (10). Similarly, it is thought that this 
sequential recognition of HSV-1 by TLR2 and TLR9 occurs in 
NK cells because TLR2 is expressed on the surface of NK cells, 
whereas TLR9 has an intracellular localization overlapping with 
the Golgi apparatus (60, 61). Also, since TLR2 and TLR9 use the 
same adaptor molecule, MyD88, to transmit signals to a cascade 
of MAPKs that induces transcriptional expression of inflamma-
tory cytokines (52), dual and sequential recognition of HSV-1 by 
TLR2 and TLR9 is assumed to amplify their intracellular signal 
in NK  cells. Our data showing that TLR2/9-deficient NK  cells 
drastically and specifically reduced the phosphorylation of p38 
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MAPK with HSV-1 infection support this speculation. It is likely 
that there are subtle differences in the activation of MAPKs fol-
lowing direct TLR2 triggering by HSV-1 in NK cells (41, 55). By 
contrast with the activation of the p38 MAPK pathway in this 
study, NK  cells are directly activated by TLR2 triggering via 
the PI3K/ERK pathway and PKC/NF-κB in vaccinia virus and 
UV-inactivated HSV-1 infections, respectively (41, 55). This 
subtle difference in the cascade of intracellular signals for direct 
NK cell activation by HSV-1 is thought to be derived from the virus 
strain used in the study, because the utilization of TLR2 and TLR9 
depends on HSV strains and specific cell types (10). Ultimately, 
this direct activation of NK cells by dual TLR2/9 recognition of 
HSV-1 infection could help to stimulate subsequent CD4+ and 
CD8+ T-cell responses in the VT through interacting with CD4+ 
T cells (54) or cross-presentation of apoptotic cell-derived Ag by 
DCs (62), along with the cooperative contribution of Tip-DCs.

A previous study demonstrated that MyD88, a common 
adaptor molecule for both TLR2 and TLR9, is fundamental 
in the immune defense against HSV, as observed by the 100% 
mortality in MyD88-ablated mice (63). In the context of TLR2 or 
TLR9 deficiency alone, inoculation with HSV, especially in TLR2 
KO mice, led to localized viral replication or starkly contrasting 
results in mortality, depending on the virus strain and inocula-
tion route (12–16). Our result showed a minor role of TLR2 in 
conferring protective immunity against mucosal infection with 
HSV-1. However, dual ablation of TLR2/9 appeared to diminish 
the protective effects conferred by TLR2 ablation, which may 
reflect a cooperative role of TLR2 and TLR9. Thus, it is thought 
that although TLR9 seems to play a more important role than 
TLR2, both receptors are not only pivotal immune receptors in 
HSV-1 recognition and control but may also cooperate to gener-
ate effective innate and subsequent adaptive immunity in the VT 
against mucosal infection with HSV-1. Moreover, the diminished 
survival rate in TLR2/9 DKO mice was closely associated with 
the reduction of early Ly-6Chi monocyte and NK cell infiltration 
in the VT. This suggests that dual TLR2/9 recognition of HSV-1 
infection contributes to orchestrated mobilization of innate and 
adaptive immunity-related cells in the VT for the early control of 
viral replication, thereby preventing CNS-invasion. Although the 
redundancy of chemokine recognition by immune cells sometimes 
makes the interpretation of leukocyte infiltration in inflamed 
tissues difficult, impaired infiltration of Ly-6Chi monocytes and 
NK cells in the VT of TLR2/9 DKO mice can be explained by 
the low expression of the CCR2 ligands, CCL2 and CCL7, that 
play a role in the recruitment of Ly-6Chi monocytes and NK cells 
(45). Here, one interesting result was that dual ablation of TLR2/9 
resulted in massive infiltration of Ly-6Ghi granulocytes in the VT, 
which suggests that TLR2/9 signals may be a negative regulator in 
the recruitment of Ly-6Ghi granulocytes in the VT. Although the 
role of Ly-6Ghi granulocytes in viral infection remains controver-
sial, these cells are believed to be involved in immunopathology 
(64, 65). IFN-I was recently reported to abrogate the recruitment 
of Ly-6Ghi granulocytes to the ganglia by directly suppressing 
CXCL2 expression by Ly-6Chi monocytes (66). Conceivably, 
recognition of HSV-1 infection by specialized cells such as 
pDCs through TLR9 is expected to produce IFN-I (9). Also, 
Ly-6Chi monocytes appear to be an important cell population for 

producing IFN-I via TLR2 recognition of HSV-1 infection (34). 
Therefore, the reduced production of vaginal IFN-I in TLR2 and/
or TLR9 KO mice is likely to result in enhanced recruitment of 
Ly-6Ghi granulocytes in the VT. Supporting this speculation, our 
data revealed that TLR2/9 DKO mice showed greatly increased 
expression of CXCL2 in the VT. In addition, Ly-6Chi monocytes 
sorted from the VT of TLR2/9 DKO mice displayed greater 
expression of IL-23, CXCL1, and CXCL2, which contribute to 
the recruitment of Ly-6Ghi granulocytes in the VT.

Besides TLR2 and TLR9, HSV-1 infection can be recognized 
by other PRRs such as DNA-dependent activator of IFN-
regulatory factors (DAI), IFN-γ-inducible protein 16 (IFI16), 
and TLR3 (67). Although our data discount the indirect antiviral 
action generated by these PRRs in activating innate immune cells 
including monocytes and NK  cells, we surmise a coordinated 
role of TLR2 and TLR9 in directly regulating the differentiation 
and maturation of infiltrated Ly-6Chi monocytes and NK cells in 
the VT, thereby contributing to effective and early viral clearance 
in primary inflamed tissues. Also, although our data provide no 
evidence for direct correlation between the impaired activation of 
Tip-DCs and NK cells and the enhanced susceptibility in TLR2/9 
DKO, our findings elucidate a detailed TLR2/9-dependent 
pathway that establishes effective innate and adaptive immune 
responses in relevant mucosal tissues after natural mucosal infec-
tion with HSV-1. To the best of our knowledge, this is the first 
report that elucidates the detailed role of TLR2/9 in conferring 
antiviral innate and adaptive immunity in the relevant VT after 
mucosal infection with HSV-1.
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