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Hepatitis C virus (HCV) envelope glycoprotein heterodimer, E1E2, plays an essential 
role in virus entry and assembly. Furthermore, due to their exposure at the surface 
of the virion, these proteins are the major targets of anti-HCV neutralizing antibodies. 
Their ectodomain are heavily glycosylated with up to 5 sites on E1 and up to 11 sites 
on E2 modified by N-linked glycans. Thus, one-third of the molecular mass of E1E2 
heterodimer corresponds to glycans. Despite the high sequence variability of E1 and 
E2, N-glycosylation sites of these proteins are generally conserved among the seven 
major HCV genotypes. N-glycans have been shown to be involved in E1E2 folding 
and modulate different functions of the envelope glycoproteins. Indeed, site-directed 
mutagenesis studies have shown that specific glycans are needed for virion assembly 
and infectivity. They can notably affect envelope protein entry functions by modulating 
their affinity for HCV receptors and their fusion activity. Importantly, glycans have also 
been shown to play a key role in immune evasion by masking antigenic sites targeted 
by neutralizing antibodies. It is well known that the high mutational rate of HCV poly-
merase facilitates the appearance of neutralization resistant mutants, and occurrence 
of mutations leading to glycan shifting is one of the mechanisms used by this virus 
to escape host humoral immune response. As a consequence of the importance of 
the glycan shield for HCV immune evasion, the deletion of N-glycans also leads to an 
increase in E1E2 immunogenicity and can induce a more potent antibody response 
against HCV.
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iNTRODUCTiON

With approximately 70 million people chronically infected worldwide, hepatitis C virus (HCV) is 
a major health burden. In most cases, HCV establishes chronic infection that can lead to the deve
lopment of cirrhosis and hepatocellular carcinoma. For a long time, standard treatment for HCV 
infection consisted in a nonspecific combination therapy with pegylated interferon and ribavirin, 
which was relatively toxic and effective in half of treated patients. Advances in in vitro and in vivo  

Abbreviations: HCV, hepatitis C virus; HVR1, hypervariable region 1; HCVpp, HCV pseudoparticles; HCVcc, cell culture
derived HCV; ER, endoplasmic reticulum; SRBI, scavenger receptor BI; mAb, monoclonal antibody; Glc, glucose; Man, 
mannose; GlcNAc, Nacetylglucosamine.
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FiGURe 1 | Position of N-linked glycans on hepatitis C virus envelope glycoproteins. E1 and E2 are schematically represented by boxes with their transmembrane 
domains shown in brown. The glycosylation sites and their position are indicated by vertical bars (on reference strain H77). The localization of three major 
neutralizing epitopes on E2 (I: 412–423; II: 427–446; III: 523–535) is also shown.
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HCV infection systems resulted in a great increase of our under
standing of the HCV life cycle. This led to the development of 
several successful direct acting antivirals that allow for the achieve 
ment of high HCV clearance rates (>90%). However, the high 
cost of these antivirals therapy precludes their accessibility to  
the large majority of HCVinfected patients (1). In this context, the  
development of a preventive HCV vaccine would constitute the 
most costeffective means to limit HCV spread. Studies have 
shown that a successful HCV vaccine would induce the produc
tion of neutralizing antibodies and a potent HCVspecific T cell 
response (2). However, a key challenge in HCV vaccine develop
ment is to overcome the high diversity of this virus. Several vac
cine candidates targeting the envelope glycoproteins have been 
shown to induce strong humoral and cellular immune response 
in animal models or clinical trials in humans. However, their 
efficiency was limited by viral escape from immune response due 
to the high genetic variability of the virus (2–5). In this context, 
the design of an efficient vaccine will require a good knowledge of 
the strategies used by the virus to escape host immune response. 
One of these strategies is the presence of a glycan shield that pro
tects E2 conserved epitopes from neutralizing antibodies. Here, 
we present the glycosylation of HCV envelope glycoproteins and 
we review the different aspects of the modulation of neutralizing 
antibodies by HCV glycan shield.

GLYCOSYLATiON OF HCv  
eNveLOPe PROTeiNS

Distribution of e1 and e2 N-Glycans
E1 and E2 are highly glycosylated with Nglycans representing 
onethird of the heterodimer mass. Nglycosylation occurs on 
the asparagine (Asn) residue belonging to aparagine–X–serine/
threonine (Asn–X–Thr/Ser) motifs where X denotes any residue 
but Proline. In most genotypes, E1 contains four conserved glyco
sylation sites that are located at amino acid position 196 (E1N1), 
209 (E1N2), 234 (E1N3), and 305 (E1N4) in genotype 1a H77 
strain (Figure  1). However, an additional glycosylation site is 
present at position 250 in genotypes 1b and 6, or at position 299 
in genotype 2b (6).

Up to 11 glycosylation sites can be detected in most E2 glyco 
protein sequences. Nine of them are conserved across HCV geno 
types, and they are located at positions 417 (E2N1), 423 (E2N2), 
430 (E2N3), 448 (E2N4), 532 (E2N6), 556 (E2N8), 576 (E2N9), 623 

(E2N10), and 645 (E2N11) in the H77 reference strain (Figure 1).  
The two other glycosylation sites are also conserved in most geno
types except in genotype 1b for the site at position 476 (E2N5) 
and in genotypes 3 and 6 for the site at position 540 (E2N7). 
Thus, despite high sequence variability in HCV, the majo rity of 
Nglycosylation sites are highly conserved, suggesting that glycans 
play a major role in the HCV life cycle. Importantly, all these sites 
have been confirmed to be occupied by glycans (7, 8).

In a minority of HCV genomes, additional glycosylation sites 
can also be observed. For instance, another glycosylation site has 
been reported to be present in the intragenotypic hypervariable 
region HVR495 of E2 in a minority of genotype 3a isolates from 
Pakistani patients (9). An additional glycosylation site has also 
been shown to appear in hypervariable region 1 (HVR1) after 
selection of a mutant resistant to monensin treatment in cell 
culture (10). The appearance of such natural or selected glycans 
suggests that HCV can adapt to environmental changes by gen
erating novel glycosylation sites.

Type of Glycans Associated with  
e1 and e2 Glycoproteins
Nlinked glycosylation occurs by the transfer en bloc of a 
Glc3Man9GlcNAc2 oligosaccharide from a lipid intermediate to 
an Asn residue in the consensus sequence Asn–X–Thr/Ser of a 
nascent protein. Three major types of Nglycans can be observed 
on glycoproteins. The first type corresponds to high mannose  
glycans which are composed of two Nacetylglucosamine molecules 
linked to several mannoses residues; the second type of glycans 
are complex oligosaccharides which are mainly composed of 
two Nacetylglucosamines, galactose and can contain sialic acid  
and fucose. Hybrid type glycans constitute the third type of 
Nglycans. They are composed of Nacetylglucosamine, galactose,  
mannose, and can contain sialic acid. Complex and hybrid gly
cans are generated during the transit of the protein through the  
Golgi compartment by addition or removal of sugar residues by 
specific enzymes. It has been shown that cellassociated E1E2 
mainly display highmannosetype oligosaccharides, which is 
in agreement with their retention in the endoplasmic reticulum 
(ER) of infected cells (11). Furthermore, the characterization of 
E2 glycosylation sites by mass spectrometry confirmed that the 
majority of these sites are occupied by high mannose glycans on 
a recombinant form of the glycoprotein (12).

Since they are assembled in the ER, HCV particles have to 
cross the secretory pathway before being released by infected  
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cells. During this process, the glycoproteins associated with the 
virions are modified by cellular glycosidases and glycosyl trans
ferases. In the absence of a cell culture system for HCV, the first 
evidence of glycan modifications linked to secretion of viral par
ticles came from the characterization of retroviral pseudotypes 
harboring HCV envelope glycoproteins [HCV pseudoparticles 
(HCVpp)] (13, 14). However, later on, different patterns of glyco
sylation have been observed between cell culturederived HCV 
(HCVcc) and HCVpp associated glycoproteins (11). Thus, HCVcc
associated E1E2 heterodimers contain both highmannose and 
complex type Nlinked glycans, whereas HCVpp associated E1E2 
display a majority of complextype glycans. Complex glycans are 
hallmarks of protein transit through the Golgi apparatus since 
they result from the processing of highmannosetype glycans by 
Golgi glycosidases and glycosyltransferases (15). The incomplete 
maturation of HCVcc E1E2 glycans indicates that some glycans are 
not accessible to Golgi enzymes. By contrast, HCVppassoci ated  
glycans are more efficiently matured. These results are likely due  
to differences in the assembly process of HCVpp and HCVcc. 
Indeed, HCVcc assemble in an ERderived compartment (16), 
whereas HCVpp assemble in a postGolgi compartment (17). 
Therefore, in the HCVpp system, E1E2 transit through the Golgi 
compartment without any other viral components and are thus 
fully accessible to Golgi enzymes. In the HCVcc system, E1E2 are 
already associated with nascent viral particles when they travel 
through the secretory pathway and might thus be less accessible 
to Golgi enzymes.

It is worth noting that, in addition to Nlinked sugars, Olinked  
glycans have also been identified on a recombinant form of E2 
protein (18). Four of these Olinked carbohydrates were iden
tified in HVR1 and two in the core structure of E2 (Thr473 and 
Thr518). However, these types of glycans were not found by 
another group which used a similar approach for their detection 
(19). Since the two groups used an E2 protein from different 
genotypes, one cannot exclude genotype differences in terms 
of Oglycosylation, but no Olinked glycans were reported on 
the structure of E2 (20, 21). It is also possible that the Oglycans 
observed by Braütigam and coworkers (18) are present on a 
misfolded structure of E2.

N-Glycans on e1 and e2 Structures
In 2014, the crystal structure of the Nterminal sequence (resi
dues 192–270) of E1 expressed in the absence of E2 was obtained.  
This polypeptide contained Nglycosylation sites E1N1 and E1N2, 
but the E1N3 Nglycosylation site was removed from the sequence 
by mutagenesis. However, to facilitate the crystallization process, 
the molecule was produced in the presence of an Nglycosylation 
inhibitor (22). In this structure, the Nterminus forms a beta
hairpin followed by a domain composed of a 16 amino acid long 
alphahelix flanked by a three strands antiparallel betasheet.  
The oligomeric arrangement displays two types of dimers. In the 
first type, the two monomers interface is formed by the inter
action of the Nterminal betahairpin forming an antiparallel 
betasheet and by hydrogen bonding between Y1 residue and 
the Nacetyldglucosamine of the E1N1 glycosylation site. The 
second dimer interface corresponds to a sixstranded betasheet 

formed from two sets of three strands from two monomers that 
is stabilized by two disulfide bridges.

The structure of the central E2 ectodomain was solved by two 
independent groups in 2013 and 2014 (20, 21). The obtained 
structures were very similar [residues 412–645 of E2 of E2 from 
H77 isolate of genotype 1a in Kong et al. (20); residues 456–656 
of E2 from J6 isolates of genotype 2a in Khan et al. (21)]. E2 core 
shows a globular structure. Indeed, it is composed of a central 
immunoglobulin fold beta domain as found in other viral envelope 
proteins. This central beta sandwich is flanked by front and back 
layers consisting of loops, short helices, and beta sheets. Most of the 
Nglycosylation sites present on E2 could be observed in the crystal 
structure (H77 strain sequence) obtained by Kong and collabora
tors (4MWF) (20). Only E2N1, E2N5, E2N4, and E2N9 are absent 
due to truncations or mutations introduced in the E2 sequence to 
facilitate crystallization (20). The majority of the Nlinked glycans 
were disordered in the crystal structure. Only glycan N430 could 
be modeled as Man6GlcNAc2. E2 structure revealed that 7 of the 
11 Nlinked glycans form an extensive glycan shield that masks 
E2 neutralizing epitopes (Figure  2) (20). Residues E2N7, E2N8, 
E2N10, and E2N11 were also modeled in the final E2 core structure 
obtained by Khan and collaborators (21). They were located on the 
periphery of the core on a highly basic surface.

ROLe OF e1e2 N-GLYCANS iN THe  
HCv LiFe CYCLe

Role of the N-Glycans of e1 and e2  
in the early Secretory Pathways
One of the major roles of Nlinked glycans is their involvement 
in protein folding (15). Indeed, the presence of large polar sac
charides directly influences the local orientation of the protein.  
In addition, Nglycans indirectly affect protein folding through 
their interaction with the ER chaperones, calnexin, and calreti
culin. Calnexin and calreticulin are lectinlike chaperones, which 
show an affinity for monoglucosylated Nlinked oligosaccharides 
(15, 25). Calnexin has been shown to interact with HCV envelope 
glycoproteins (26–28) and has been suggested to be involved in 
the folding of E1E2 envelope glycoproteins. In the case of HCV, 
several Nlinked glycans of E1 (E1N1 and E1N4) and E2 (E2N7, 
E2N8, and E2N10) have been shown to play a role in E1 and E2 
folding and heterodimerization. The alteration of the folding 
observed for these mutants was not due to a lack of recognition 
by the calnexin chaperone (8).

Functions of virion-Associated Glycans
The extended glycosylation of E1 and E2 suggests that interac
tions between lectin receptors and virus might play a role during 
HCV infection. In agreement with this hypothesis, several lectin 
receptors have been shown to participate in HCV entry (29). Thus, 
HCV is thought to initially bind the endothelium of the liver via 
the mannosebinding lectins LSIGN and the dendritic cells via 
DCSIGN. Both cell surface proteins are believed to function as 
capture receptors that concentrate the virus before subsequent 
interaction with the hepatocytes (29). HCV interaction with 
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FiGURe 2 | Glycan shield masking E2 neutralizing epitopes. The model of E2 structure is composed by the E2 core structure (PDB ID: 4MWF) (20) and its N-terminal 
antigenic region 412–423 (PDB ID: 4DGY) (23). The E2 structural model has been built in a similar way than in Fuerst et al. (24). The hypervariable region 1 located at 
the N-terminus of E2 is not shown. The E2 molecular surface is displayed in gray and its neutralizing epitopes are highlighted in green. High mannose N-glycans 
(Man9GlcNac2) have been modeled at the 10 N-glycosylation sites available in the E2 structural model using the Glycoprotein Builder tool of the GLYCAM-webserver 
(http://glycam.org), with an energy minimization step. The glycans (N1, N2, N3, N4, N6, N7, N8, N9, N10, and N11) are shown in sticks representation (in gold) with 
their transparent molecular surface. The figure was generated with PyMOL (The PyMOL Molecular Graphics System, Version 1.83 Schrödinger, LLC).
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hepatocytes is then mainly promoted by scavenger receptor BI 
(SRBI), CD81, and the tightjunction proteins claudin1 and 
occludin. Interestingly, the type of glycans associated with E1E2 
proteins has been shown to influence their binding affinity for 
lectin receptors as well as for the nonlectin receptors (30).

Sitedirected mutagenesis in HCVpp and HCVcc systems 
enabled to further characterize the functional role of Nglycans 
associated with HCV envelope proteins (8, 31, 32) (Table  1). 
These studies confirmed that several glycans (E1N1, E2N8, and 
E2N10) are involved in E1E2 folding and heterodimerization. 
Glycans can also modulate E1E2 entry functions by affecting the 
affinity of the envelope proteins for receptors. Indeed, mutation 
of E2N6 glycosylation site led to an increase in HCVcc infectivity. 
Moreover, this mutant was more sensitive to infectivity inhibition by 
a soluble form of the CD81 large extracellular loop (32). In agree
ment with these data, a soluble form of E2 devoid of E2N6 glycan 
exhibited a higher affinity for CD81 (31). Altogether, these data 
suggest that the improved infectivity of E2N6 mutant is due to its 
increased affinity for CD81. Interestingly, the loss of E2N6 glyco
sylation site has been observed among naturally occurring HCVcc 
variants adapted to cell culture (33, 34). It is worth noting that on 
the 3D structure of E2, the CD81binding site is surrounded by 
glycans (20), and the removal of the glycan at position E2N6 likely 
provides more space for CD81 binding.

By contrast, mutation of the E2N7 glycosylation site led to a 
strong decrease in HCVcc infectivity without affecting viral par
ticle secretion, suggesting that the glycan present at this position 
modulates virus entry (32). However, the exact mechanism was 
not determined. Furthermore, the role of E2N7 glycan in virus 
entry is likely genotype specific since this glycan site is absent in 
genotype 3 and 6.

Different Roles for N-Glycans in  
HCvpp and HCvcc Systems
Noteworthy, in some cases, envelope glycoprotein entry functions 
were differently affected by glycan loss in HCVcc and HCVpp 
systems (32). It is the case for the E2N2 or E2N4 mutations that 
slightly affected HCVcc infectivity but abolished HCVpp infec
tivity (32). Several studies could also demonstrate differences 
between the entry functions of envelope proteins in HCVpp and 
HCVcc systems (35–39). These differences might be due to the 
distinct assembly processes of HCVcc and HCVpp particles, that 
lead to different glycan processing and different organization of 
the proteins at the virion surface (11, 14, 17, 40). Moreover, the 
association of HCVcc with lipoproteins might also account for 
the differences in the properties of E1E2 in HCVpp and HCVcc 
systems (40, 41). Importantly, despite differences in glycosylation 
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TAbLe 1 | Summary of the features of HCV glycosylation mutants [adapted from 
Helle et al. (92)].

virus HCvcc 
infectivitya

HCvpp 
infectivitya,b

Core 
releasec

Sensitivity to 
neutralizationd

wt +++ +++ ++ +
Mutant
E1N1 +/− ++ − ND (+)
E1N2 ++ + + ND (+)
E1N3 +++ ++ ++ ND (+)
E1N4 ++ + +/− ND (+)
E2N1 +++ ++ ++ ++
E2N2 ++ − (−) ++ ++e

E2N3 + +++ + ND (+)
E2N4 ++ − (−) + ++e

E2N5 ++ ++ ++ +
E2N6 +++ ++ ++ ++
E2N7 +/− +++ (+) + ND (−)
E2N8 − − +/− ND
E2N9 +++ +++ ++ +
E2N10 − − − ND
E2N11 + + +/− ++
HVR495 +++ + ND ++

aPercentage of infectivity relative to the wild type (wt): +++, >90%; ++, between 30 
and 90%; +, between 10 and 30%; +/−, between 2 and 10%; −, <2%.
bInfectivity of HCVpp of genotype 1a and 3a for the HVR495 glycan (9). The results in 
brackets are obtained for genotype 2a HCVpp.
cPercentage of core release relative to the wt: ++, >75%; +, between 30 and 75%; 
+/−, between 12 and 30%; −, <12%.
dSensitivity to antibody neutralization: +, similar to the wt; ++, more than fourfold 
increase in sensitivity to neutralization with most antibodies tested; −, decrease in 
sensitivity to neutralization. The values in brackets were obtained for genotype 1a 
HCVpp only.
eResults obtained with the HCVcc system only.
ND, not determined; HCV, hepatitis C virus; HCVpp, HCV pseudoparticles; HCVcc,  
cell culture-derived HCV.
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patterns, there is a strong correlation between HCVpp and HCVcc 
in their sensitivity to antibody neutralization, indicating that  
the type of glycans associated with HCV envelope proteins might 
not drastically affect the recognition of neutralizing epitopes (39).

Antiviral Strategies Targeting  
e1e2 N-Glycans
The importance of Nglycans for the folding of E1E2 envelope 
proteins, for HCV entry and for the protection of the virus from 
neutralizing antibodies make them promising targets for antiviral 
strategies. Accordingly, many studies have shown the antiviral acti 
vity against HCV of several carbohydrates binding agent (CBA), 
such as cyanovirinN, griffithsin, or scytovirin lectins, as well as 
pradimicinA (42–47). Surprisingly, the selection of resistance 
mutations by propagating HCVcc in the presence of increasing 
doses of CBA did not lead to the appearance of mutations in the 
envelope glycoproteins. Resistance was rather conferred by muta
tions in the core and the nonstructural proteins (48), suggesting 
indirect mechanisms of resistance.

In agreement with the functional role of glycosylation in 
the HCV life cycle, inhibition of αglycosidases I and II, that 
are essential for Nlinked glycan processing, impaired HCV 
production. Indeed, treatment of infected cells with competitive 
inhibitors of αglucosidases led to the degradation of E2 and 
to the consequent inhibition of HCV assembly and secretion 

(49, 50). Despite the great potential of glycosidase inhibitors as 
broadspectrum antiviral drugs, their clinical development has 
been hampered by their relatively low efficacy. Such a compound 
like celgosivir showed only a modest antiviral effect in chronically 
HCVinfected patients in a phase II clinical trial (5% of the tested 
patients experienced a 10fold reduction in viremia) (51).

HCv GLYCAN SHieLD AND HOST 
iMMUNe ReSPONSe

Neutralizing Determinants in HCv 
envelope Glycoproteins
Neutralizing antibodies inhibit viral infection by binding to 
viral particles. This leads to the blockade of the interaction with 
receptors or prevents the envelope glycoproteins conformational 
changes required for the fusion step. E2 envelope glycoprotein is 
the main target of the humoral immune response against HCV 
(52). The importance of neutralizing antibodies to eliminate 
HCV infection has been shown in a humanized mouse model 
(53). Several regions of E2 are targeted by neutralizing antibodies. 
Among them the first 27 amino acids of E2 that correspond to 
HVR1, a highly variable region of the protein, play important roles 
in interaction with the HCV coreceptor SRBI, in viral fitness, 
and in assembly and release of viral particle (54–57). However, 
antibodies targeting HVR1 exhibit poor crossneutralization 
potency across HCV genotypes due to the high variability of this  
region (58). HVR1 deletion mutants are more susceptible to neutra
lization by monoclonal antibodies (mAbs) and patient sera (54, 56).  
Since CD81binding site is the main target of neutralizing anti
bodies, this finding suggests that HVR1 masks this site on E2. 
Additional lines of evidence gave rise to this hypothesis. Indeed, 
no interaction could be observed between HCV and CD81 at the 
cell surface in the absence of SRBI (59). This led to the proposal 
that HVR1 shields CD81binding site and that the interaction 
of SRBI with HVR1 allows for the exposure of CD81binding 
region on E2 (54, 60, 61).

Interestingly, most antibodies endowed with broad neutra
lizing activity target conserved conformational epitopes on E2  
and inhibit the interaction between E2 and CD81 (52). Neutra
lizing antibodies targeting the CD81binding site either recognize 
linear epitopes located in amino acids 412–423, conformational epi 
topes with contact residues located between residues 523 and 535 
or epitopes spanning these two CD81binding regions (Figure 1). 
Importantly, the most potent neutralizing murine antibodies tar
get linear epitopes covering residues 412–423, whereas antibodies 
isolated from HCVinfected patient sera targeting this epitope are 
rare. By contrast, most human neutralizing antibodies recognize 
conformational epitopes centered on the CD81binding residues 
W529, G530, and D535 (62).

While most neutralizing antibodies target CD81binding 
sites, some neutralizing antibodies targeting conserved epitopes 
overlapping the SRBI binding site have been described (63). Inte
restingly, a synergistic neutralization has been observed between 
the HEPC74 and the HEPC98 antibodies that, respectively, block 
E2CD81 and E2SRBI binding (64). Moreover, the pairing of 
these antibodies showed an enhanced neutralizing breadth and  
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their mechanisms of action were found to be independent. Thus, the  
reliance of HCV on multiple cellular receptors constitutes a source  
of vulnerability that could be exploited in the design of an efficient 
vaccine.

Over the past few years, the interaction between E2 and sev
eral different neutralizing antibodies could be precisely mapped 
by resolution of the crystal structure of E2 peptideantibody 
complexes (23, 65–67), providing a molecular framework to bet
ter understand HCV neutralization.

Role of Glycosylation in HCv Resistance 
to Neutralization
The most common mechanism of evasion to antibody neutrali
zation is mutational escape. For its replication, HCV relies on a  
RNAdependent RNA polymerase that lacks proofreading capa 
bilities and allows a high replication rate of the virus. These fea
tures result in the generation of a high diversity of viral variants 
that constitute quasispecies (68). The neutralization escape vari
ants contained in the viral population have a selective advantage 
over sensitive variants and can become the dominant circulating 
strain (52, 69–71).

Apart from its high genetic heterogeneity, HCV has developed 
various ways to escape the host immune response. One of them  
is a protection by a glycan shield that reduces the immunoge
nicity of the envelope proteins and masks conserved neutralizing 
epitopes at their surface. Indeed, glycans associated with viral 
envelope proteins are synthesized by the host cell and are recog
nized as selfstructures. Thus, many viruses that impact human 
health use glycosylation to evade the host immune response (72).

Characterization of Nglycosylation mutants in the HCVcc 
system has shown that at least five glycans (E2N1, E2N2, E2N4, 
E2N6, and E2N11) on E2 reduce the sensitivity of the virus to 
neutralization (32). Indeed, the absence of one of these glycans 
leads to an increase in the sensitivity of the virus to neutraliza
tion by antibodies purified from HCV positive patients or mAbs.  
These data further confirm those obtained with the HCVpp system 
for E2N1, E2N6, and E2N11 mutants (8, 31). However, in this latter 
system, E2N2 and E2N4 mutations resulted in the production of 
noninfectious particles. HCV glycans have been shown to mask 
the neutralizing activity of mAbs targeting conserved epitopes 
while having no effect on the recognition of HVR1 epitopes (32). 
Moreover, E2N1, E2N2, E2N4, and E2N6 modulate the inhibi
tion of HCV infectivity by a soluble form of CD81 receptor. Since 
most broadly neutralizing mAbs target CD81binding site on E2,  
these results suggest that this site is the neutralizing antibody 
target that is protected by Nglycans. In agreement with these 
data, the modeling of Nlinked glycans on E2 core structure con 
firmed the presence of an extensive glycan shield that masks 
CD81binding site (Figure 2) (20). Since HVR1 is also thought 
to hide CD81binding site, it would be interesting to determine 
whether glycans and HVR1 shielding effects are additive.

E1 glycosylation had no effect on the sensitivity of HCVpp 
to neutralization with purified antibodies from HCV positive 
patient sera (6). However, this result could be due to the fact that 
the neutralizing immune response against HCV is dominated by 
antiE2 antibodies. Thus, it would be interesting to determine the 
role of E1 glycans in the protection of HCV from neutralization  

by using antiE1 neutralizing mAbs. Unfortunately, the availa
bility of such antibodies remains very limited (73, 74).

N-Glycosylation escape Mutants
Further highlighting the importance of Nlinked glycosylation 
in shielding E2 epitopes from recognition by broadly neutral
izing antibodies, Pantua and collaborators (75) observed the 
appearance of escape mutants from AP33 neutralizing mAb that 
exhibited a glycan shift. Indeed, in vitro resistance selection led 
to the identification of N417S and N417T HCVcc variants that 
were resistant to broadly neutralizing antibodies targeting the 
412–423 E2 epitope. The two variants presented a glycosylation 
shift from N417 (E2N1) to N415. N415 residue has been shown to 
be important for the recognition of the 412–423 epitope by AP33 
and HCV1 neutralizing antibodies. Moreover, N415 appeared to 
be buried in the antibodypeptide interface in the crystal structure 
of 412–423 epitope in complex with several neutralizing antibo
dies (66, 67, 75). Consequently, attachment of a glycan at N415 
and not at N417 would create a steric bulk that would abrogate 
AP33 and HCV1 binding. These data led to the conclusion that 
the glycosylation shift from residue N417 to N415 causes HCV 
resistance to AP33 and HCV1 neutralizing antibodies (75).

Interestingly, this glycosylation shift could also be observed in 
the absence of neutralizing antibody selection, thus showing that 
residue 417 is polymorphic (N, S, or T) (76–78). Furthermore, in  
a minority of genotype 3a isolates, an additional glycosylation 
site appears in the intragenotypic hypervariable region HVR495, 
which has been shown to provide some protection against neut
ralizing antibodies (9). Therefore, as previously described for HIV, 
glycosylation shift is another mechanism leading to the appear
ance of HCV resistance to neutralizing antibodies (79). However, 
as compared to HIV, this glycosylation shift remains very limited 
in HCV as determined by the analysis of patient sequences (80). 
This is likely due to additional roles played by most HCV glycans 
in protein folding and/or in other unidentified functions.

However, while conferring resistance to AP33 and HCV1 
neutralizing antibodies and a greater in vitro fitness, the glycan 
shift observed in N417T and N417S led to greater sensitivity to 
neutralization by other antibodies targeting amino acids 412–423 
(76, 77). Notably, HC33.1 antibody, which was isolated from an 
HCVinfected blood donor, could neutralize HCVcc bearing 
E2 N417T and N417S adaptive mutations more efficiently than 
HCVcc wild type (wt) (81). The structure of HC33.1 in complex 
with E2 412–423 epitope revealed a different conformation of 
the epitope than the betahairpin conformation observed in 
the epitopeAP33 or HCV1 complexes. In this structure, N415 
residue was surface exposed such that its glycosylation would 
not impair antibody binding. Thus, crystallography studies 
have highlighted the structural flexibility of E2 412–423 epitope 
that exhibited three different conformations depending on the 
matched antibody (23, 65–67, 82). The structural flexibility of 
this peptide may contribute to reduce its immunogenicity in 
HCVinfected individuals. Such structural flexibility was also 
reported for E2 epitope 427–446 that presents different structures 
when bound to neutralizing or nonneutralizing antibodies (83). 
Moreover, the crystal structure of E2 core revealed that 60% of all 
residues are either disordered or in loops implying considerable 
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overall flexibility (20, 21). Hence, as proposed for HIV and influ
enza viruses, conformational flexibility seems to be an additional 
mechanism used by HCV to evade humoral immunity (84).

Modulation of immunogenicity  
by N-Glycosylation
Since glycans represent onethird of E1E2 heterodimers mole
cular weight, they are likely to impact the immunogenicity of the 
envelope proteins. Several data argue in favor of this hypothesis. 
For instance, removal of E1N4 glycosylation site improved the 
antiE1 humoral immune response (85, 86). In a similar way, muta 
tion of E2N9 glycosylation site improved the immunogenicity 
of E2 in a DNAbased vaccination approach (87). Indeed, E2N9 
mutant elicited higher E2specific cytotoxic T lymphocytes acti
vities, T lymphocyte proliferation, and expression of IFN gamma 
producing T  cells. More recently, mice vaccination with CpG 
coupled E1E2 DNA containing mutated E1N2 and E2N3 glyco
sylation sites induced a higher cellular immune response than wt 
E1E2. Furthermore, the corresponding serum presented broad 
neutralizing activity (88). Thus, in this DNA vaccination assay, 
the naturally poor immunogenicity of E1E2 could be enhanced 
by deletion of Nglycans combined with the addition of immune 
activator CpG. Recently, HCV E1E2 heterodimer and a mutant 
form lacking E2N6 glycosylation site were transiently expressed 
in an edible crop, lettuce, using Agrobacterium. Produced anti
gens were used for oral vaccination of mice. The follow up of 
the immune response induced by HCV heterodimers revealed 
improved immunogenic properties for the Nglycosylation mutant  
compared to wt E1E2 (89).

Interestingly, the type of glycans associated with HCV enve
lope glycoprotein E2 can also affect its immunogenicity. Indeed, 
as compared to its expression in mammalian cells, E2 produced 
in insect cells exhibits different glycosylation patterns, which also 

lead to increased immunogenicity, as evidenced by the induction 
of higher titers of broadly neutralizing antibodies (90).

CONCLUSiON

In conclusion, recent studies have greatly contributed to increase 
the knowledge of the mechanisms used by HCV to evade humoral 
immune response. The high genetic variability of the virus favors 
the emergence of neutralization escape variants. Furthermore, 
the envelope proteins associated glycans and the virusassociated 
lipoproteins protect conserved immunogenic epitopes from neu
tralizing antibodies. Although HCV, HIV, and influenza virus share 
the common feature of shielding neutralizing epitope with glycans, 
Nglycosylation sites in HCV E1E2 are far less variable than in HIV 
and influenza, suggesting a different contribution to HCV immune 
escape (91). Furthermore, the influence of HCV glycans on anti
HCV immune response makes them essential parameters to take 
into account in the design of an HCV vaccine based on HCV 
envelope glycoproteins. Indeed, while the removal of Nglycans 
seems to improve the envelope proteins immunogenicity, the con
tribution of these carbohydrates to E1 and E2 folding makes them 
essential components for the induction of a biologically relevant 
E1E2specific antibody response. One needs, therefore, to keep a 
good balance between these two functions to optimize the design 
of a vaccine based on HCV envelope glycoproteins.

Finally, answering questions that remain on the role played by 
Nglycan in modulation of the humoral immune response will 
facilitate the design of an effective HCV vaccine.
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