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Inflammatory lung responses are one of the characterized features in the pathogenesis of 
many lung diseases, including acute respiratory distress syndrome (ARDS) and chronic 
obstructive pulmonary disease (COPD). Alveolar macrophages (AMs) and alveolar epi-
thelial cells are the first line of host defense and innate immunity. Due to their central 
roles in both the initiation and resolution of inflammatory lung responses, AMs constantly 
communicate with other lung cells, including the alveolar epithelial cells. In the past, 
emerging evidence suggests that extracellular vesicles play an essential role in cell–cell 
crosstalk. In this review, we will discuss the recent findings on the intercellular communi-
cations between lung epithelial cells and alveolar macrophages, via EV-mediated signal 
transfer.

Keywords: macrophage-epithelium crosstalk, lung injury and inflammation, extracellular vesicles, exosome, 
microvesicle, apoptosis, apoptotic bodies, microRnA

inTRODUCTiOn

Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) is fundamentally a syndrome 
characterized with an intense inflammatory response, severe injury to the epithelial/endothelial 
barrier, and alveolar edema (1–3). Overwhelming inflammatory responses cause collateral damage 
in lung tissue irrespective of the initial cause, patients with ARDS universally have high levels of 
inflammation and circulating cytokines. However, clinical trials using anti-inflammatory agents, 
such as glucocorticoids to treat ARDS have failed to improve outcomes (4). Chronic obstructive 
pulmonary disease (COPD) is also characterized by a heterogeneous lung inflammation (5) involv-
ing epithelial cells, alveolar macrophages (AMs), neutrophils, and T cells (6). To date, the knowledge 
on how pulmonary cells communicate with each other and subsequently trigger an inflammatory 
cascade remains incompletely understood.

Alveolar macrophages are a distinct resident population that comprises the majority of inflam-
matory cells in the healthy lung. They form the first line of host defense against inhaled dust and/or 
infection, working as antigen-presenting cells and releasing powerful pro-inflammatory cytokines to 
drive the inflammatory response required to fight infection. Macrophages are capable to directing the 
type and severity of inflammatory response based on the type of injury to the lung, and also plays an 
important role in the resolution of inflammation and lung injury. Due to its central roles in both the 
initiation and resolution of inflammatory lung responses, AMs constantly communicate with other 
lung cells. The interactions between macrophage–neutrophil, macrophage-recruited macrophages, 
macrophage-lymphocyte, and macrophage-mesenchymal stem cell have been well described previ-
ously (7–10). In this review, we will discuss a novel paradigm on how macrophage–epithelial cell 
crosstalk occurs via extracellular vesicles (EVs) and EV-containing microRNAs (miRNAs).
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The alveolar epithelium, with their large surface area acts as 
the first-line defense against insult, and contribute to the integrity 
and function of the lungs during the development of ALI (11, 12). 
Two major cell types populate the alveolar epithelium, alveolar 
epithelial cell type I (AECI) and type II (AECII) cells. AECII cells 
cover 2–5% of the surface area and have many known functions, 
including the secretion of surfactant (13, 14). AECI cells consti-
tute the vast majority of the internal surface area (approximately 
95%) of the lung, and interact with noxious stimuli during the 
development of ALI (13, 14). Recent evidence suggests that ATI 
cells have important functions in innate immunity and are under-
appreciated players in lung cell–cell crosstalk (15).

Alveolar Macrophage Polarization, 
Activation, and Function in the 
Pathogenesis of Lung injury
As a first-line defender, AMs are armed with high levels of 
pathogen-associated molecular pattern and danger-associated 
molecular pattern receptors in order to initiate necessary immune 
response (16). In response to the stimulation of microenviron-
mental signals, AMs often display the M1 macrophage phenotype 
(classically activated macrophage) or M2 phenotype (alternatively 
activated macrophage). M1-activated AMs produce high levels of 
proinflammatory cytokines, including IL-1β, tumor necrosis fac-
tor (TNF)-α, IL-12, and iNOS in the presence of IFN-γ or IFN-β 
(17). M2 macrophages produce anti-inflammatory cytokines, 
IL-10 and IL-1ra in response to IL-4 and IL-13. M1-activated 
macrophages often express MHC II (IA/IE), CD80, CD86, and 
CCR2, while M2-macrophages express mannose receptor, dec-
tin-1, TfR (transferrin receptor), and CD200R (17).

During the development of ALI in animals, AMs are thought 
to play essential roles in both the acute inflammatory phase and 
resolution phase. Macrophage-derived cytokines are viewed as the 
major mediators. Resident AMs generate IL-8 and TNF-α, and 
subsequently stimulate neighboring cells to propagate the inflam-
matory responses (18). Increased BAL IL-8 level and increased 
IL-8 expression in AMs are associated with increased mortality 
in ARDS patients (18, 19). Additionally, macrophages secrete 
epithelial growth factor and GM-CSF to promote epithelial repair 
(20), an example of macrophage–epithelial communications. In 
order to achieve classical activation (M1) or alternative activation 
(M2), macrophages constantly receive signals from surrounding or 
other distant cells. A crosstalk has been reported between AMs and 
epithelial cells, in particular AECII cells, primarily via an autocrine 
and/or paracrine manner (21). The paracrine communication net-
work between AMs and epithelial cells has been reported to affect 
alveolar fluid clearance in influenza virus-induced lung injury 
(22), via epithelial type I IFN and especially the IFN-dependent, 
macrophage-expressed TNF-related apoptosis-inducing ligand 
(TRAIL). TRAIL determines Na, K-ATPase plasma membrane 
protein abundance and, thus, edema clearance during IAV 
infection (22). Appropriate modulation of the epithelial–mac-
rophage crosstalk might represent a novel strategy to improve the 
unchecked balance of lung inflammation, epithelial damage, and 
fluid absorption, thus alter the outcomes in lung injury. However, 
the trials of cytokine suppression or antibody administration have 

not resulted in any favorable outcomes (23), suggesting unreco-
gnized mechanisms that remain to be explored. For example, the 
minimum amount of cytokine required to maintain a concentra-
tion in the lung microenvironment, the mechanism by which the 
released cytokines are guided to their target cells. And how are 
the signaling molecules, including cytokines, proteins, and DNA/
RNAs protected from degradation or inactivation by extracellular 
enzymes?

Recently, emerging evidence suggest that EVs provide fur-
ther understandings in addition to what we have known on the  
macrophage–epithelial crosstalk via cytokines and chemokines.

evs: newly Recognized “Organelles”
Extracellular vesicle-like molecules were initially described 
by Chargaff and West in 1946 (24). Currently, EVs have been 
isolated from almost all cell types and biological fluids, includ-
ing broncho-alveolar lavage fluid (BALF). The morphology and 
structure of EVs can be visualized under transmission electron 
microscopy (Figure  1A) and 2D view (Figure  1B). In the past 
decade, accu mulating evidence suggests that EVs play a crucial 
role in intercellular communication and inter-organ crosstalk.

CLASSiFiCATiOnS, nOMenCLATURe, 
AnD BiOGeneSiS OF evs

According to the International Society of EVs, three main sub-
groups of EVs have been classified based on the size of EVs, the 
membrane compositions, and the mechanisms of formation (25). As 
illustrated in Figure 1C, apoptotic bodies (ABs) are the largest EVs 
and formed in the process of undergoing apoptosis. Microvesicles 
(MVs) are the second subgroup measuring approximately 200–
500 nm in diameter, comprising of different sized vesicles directly 
protruding from plasma membranes. Exosomes are the smallest 
subgroup among EVs measuring approximately 30–100 nm, and 
are released after multiple vesicular bodies (MVBs) fuse with the 
plasma membrane [Figure 1C; (26)]. The mechanisms of forma-
tion of EVs are also heterogeneous. ABs are generated by cell 
membrane-blebbing resulting from systematic cellular breakdown 
during the process of apoptosis. The generation of exosomes is 
tightly associated with the dynamic homeostasis of endosomes/
lysosomes, trans-Golgi network, the MVBs, and intra luminal 
vesicles. ESCRT machinery plays an essential role in the formation 
of polymeric filaments and subsequently results in ILV formation, 
once released, called exosomes. ESCRT protein components have 
been confirmed in exosomes. Furthermore, ESCRT-independent 
mechanisms involving ceramide and tetraspanin CD63 have been 
reported in the exosome biogenesis and release (27–29). Fusion 
machinery, such as the SNARE proteins and GTPases, has been 
shown to regulate the ILV-plasma membrane fusion. Examples of 
such machineries are SNARE proteins and Rab GTPases (30, 31). 
As shown in Figure 1C, MVs are formed via the outward budding 
and expulsion of plasma membrane directly from the cell surface. 
This process of vesicle formation is often triggered by transloca-
tion of phosphatidylserine to the outer-membrane leaflet through 
aminophospholipid translocase activity (32, 33). MV formation is 
an energy-consuming process and requires ATP (34, 35).
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FiGURe 1 | Extracellular vesicle (EV) generation during lung inflammation. (A,B) Transmission electron microscopy (TEM)-based (A) and atomic force microscopy 
(AFM)-based (B) structure images of EVs derived from bronchoalveolar lavage fluid. EVs were fixed and dried on the formvar coated TEM grids (Ted Pella, Redding, 
CA, USA) and the cleaved mica sheets (Grade V-1, thickness 0.15 mm, size 15 × 15 mm) for TEM and AFM analysis, respectively. (C) Three main types of EVs. 
Exosome generation is initiated by membrane-endocytosis and inward-budding of the endosomal membranes to form multiple vesicular bodies (MVBs). Exosomes 
are then released when the MVBs are fused with the plasma membrane of the cells. Meanwhile, microvesicles (MVs) are formed by outward-budding of the plasma 
membrane. The size of MVs (100 nm–1 µm) is bigger than exosomes (50–100 nm) and their production is stimulated in various cell-stress conditions. Apoptotic 
bodies (ABs) are formed by membrane-blebbing of apoptotic cells. ABs are the largest EVs (1–5 µm) and contain nuclear fragments. (D) The type of EVs released 
during the development of lung inflammation and injury. (e) Epithelial MV-containing miRNAs altered in sterile ALIs.
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ev COMPOSiTiOnS

Microvesicles and exosomes are highly enriched with a variety 
of components and surface marker. A subset of marker proteins 
derived from parent cells is often detectable in EVs. Surfactant 
proteins, marker of alveolar type II cells (AECII), and caveolin-1, 
marker of alveolar type I cells (AECI) can be detected in the EVs 
derived from lung epithelial cells (34–37). MVs and exosomes 
also carry distinct proteins which can be used to differentiate the 
two types of EVs. Vesicle-associated membrane protein 3 can be 
found in the MVs while transferrin receptors are highly enriched 
in exosomes, but not in the MVs (38, 39). The marker proteins of 
MVs or exosomes are related to the parent cells and mechanism 
of secretion, thus can be used to distinguish the types of EVs, i.e., 
MVs vs exosomes vs ABs, as well as their origins. EV-encapsulated 
cytokines are a group of key proteins which potentially transmit 
inflammatory signals among cells. Examples of the EV-carrying 
cytokines include but not limit to interleukin 1β (IL-1β), IL1α, 
IL-18, macrophage migration inhibitory factor, IL-32, TNF, 
IL-6, vascular endothelial growth factor, IL-8 (CXCL8), frac-
talkine (CX3CL1), CCL2, CCL3, CCL4, CCL5, and CCL20 (40). 
Identifications of these important immune-modulatory cytokines/
chemokines in EVs strongly indicate that EVs carry crucial cellular 
functions and mediate intercellular communication.

RNAs detected in EVs generally are much smaller than cellular 
RNAs [less than 700 nucleotides (nt)]. Despite the smaller sizes 
of EV-RNAs, long non-coding RNAs, Ribosomal RNA, and the 
fragments of these intact RNA molecules have all been found in 
EVs (26, 41, 42). A large amount of 3′UTR mRNA fragments have 
been identified in EVs (43). There are multiple microRNA (miRNA) 
binding sites on the 3′UTR mRNAs (44) and a variety of miRNAs 
have been identified in EVs, suggesting that EVs serve as a cargo for 
circulating miRNAs. However, MVs appear to be the main cargo 
carrying majority of miRNAs, recent studies have highlighted that 
there are various number of copies of “highly up-regulated” miRNAs 
found in tumor cells, and very low exosome detected in plasma (45).

ev FUnCTiOnS AnD THeiR 
SiGniFiCAnCe

Current understanding on EVs facilitates to fill the knowledge 
gap on cell–cell communications. For example, EVs may partially 
answer the questions on how cytokines/chemokines achieve the 
needed concentration in the microenvironment and reach their 
target cells. It has been reported that cytokines are not transmitted 
in free forms, but appear to be associated with EVs (46). Cytokines, 
chemokines, protein, and miRNAs are markedly enriched inside 
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FiGURe 2 | Roles of extracellular vesicles (EVs) in lung injury. (A) EV-containing molecules reported to potentially serve as biomarkers. (B) The current reports on 
EVs and their functions involved in lung injury and inflammation. Schematic illustration and the summarized table for the biological pathways by which EVs contribute 
to the alveolar inflammatory process.

4

Lee et al. EV Mediates Epithelial–Macrophage Crosstalk

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 924

EVs, suggesting that EV function as a vehicle to concen trate 
and transport these signaling molecules. Addition ally, EV- 
encapsulating RNAs are protected from RNaseA, and thus EVs 
provide a consistent source of miRNAs for therapeutic delivery and 
disease biomarker detection (47). EV-based drug delivery offers 
several advantages over conventional drug delivery systems: EVs 
exhibit increased stability in the blood that allows them to travel 
long distances within the body under both physiological and patho-
logical conditions (48, 49). For example, EVs in plasma are stable up 
to 90 days under various storage conditions (50). In contrast, peak 
concentrations of TNF-alpha occur approximately 2 h after admin-
istration followed by a rapid decline of free TNF-alpha concentra-
tion in plasma (half-life approximately 18.2  min) (5). Moreover, 
EVs express the same surface markers as their “mother” cells. This 
feature potentially provides an opportunity to deliver EV-containing 
molecules in a cell type-specific manner. Furthermore, EVs carrying 
cell type-specific markers may serve as a diagnostic agent referring 
as “liquid biopsy” to avoid invasive tissue diagnosis. In fact, many 
EV-containing molecules have been reported to potentially serve as  
biomarkers as shown in Figure 2A (51–54).

Mvs Mediate the intercellular Crosstalk
The Type of EVs Released During the Development 
of Lung Inflammation and Injury
Extracellular vesicle-mediated signal transfer among lung cells 
is increasingly recognized as a novel mechanism by which the 

innate immune response is initiated (Figure 1D). A decade ago, 
scattered reports have shown the association between ALI and 
the generation of “microparticles” (MPs) derived from platelets, 
neutrophils, monocytes, lymphocytes, red blood cells, and endo-
thelial and epithelial cells (55, 56). The MPs are now believed to 
be replaced with the term of MVs.

Initial observations on the potential roles of MPs were made 
in the transfusion-associated acute lung injury (TRALI) (57). 
Stored packed RBCs release MPs and these RBC-originated MPs 
contribute to neutrophil priming, activation, and transfusion-
associated ALI (TRALI) (57, 58). Platelet-derived microparticles 
(PMPs) which carry the sCD40L increase during the storage 
period. PMPs may contribute to the occurrence of TRALI (57, 59).  
Furthermore, the signal transmission from monocyte/macrophage  
to epithelial cells has also been identified. Monocyte-derived MPs 
upregulate the synthesis of pro-inflammatory factors in lung epi-
thelial cells via NF-κB activation through a PPAR-γ-dependent 
pathway (60).

Alveolar epithelial cell-derived “MPs” have been reported to  
be the main source of tissue factor procoagulant activ-
ity in ARDS (61). EVs detected in BALF may be derived 
from multiple different cell types, including but not limited 
to alveolar and bronchial epithelial cells, endothelial cells, 
AMs, neutrophils, lymphocytes fibroblasts, and the above- 
mentioned blood cells. The type of EVs detected in BALF, i.e., MVs, 
exosomes, or ABs, may be dependent on the type of noxious stimuli 
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and the severity of diseases in a time/dose-dependent dynamic  
manner. Moon and Lee et al. recently described that MVs form the 
dominant type of EVs in BALF after exposure to oxidative stress 
(62, 63). Lee et al. further reported that MVs are also the main type 
of EVs detected in BALF after exposure to acid inhalation (37). 
Approximately, 70% of BALF-EVs are MVs based on the size and 
marker analysis, using Nano Tracking Analysis (NTA) and Western 
Blot Analysis, respectively (37, 63). In the setting of hyperoxia or 
acid exposure, the second largest group of EVs is composed of  
exos omes, followed by a small amount of ABs. Apparently, Moon 
and Lee et  al. focused on the early stage of exposure to noxious  
stimuli, whether the MVs remain dominant type of EVs after 
prolonged exposure to oxidative stress or acid requires further 
investigation. Interestingly, in LPS-induced lung injury model, a fair 
amount of large size vesicles are detected in BALF (64). Since the size 
of EVs in this study is not analyzed using NTA, the current “state of 
the art” analysis used in EV research, one potentially argues that the 
EVs studied in this report are composed of AB and MV mixture.

The Source of MVs Detected in BALF During the 
Development of Lung Inflammation and Injury
Moon et al. also report that at the usual state of mice, i.e., without 
exposure to noxious stimuli, AMs are the main sources of the MVs 
detected in BALF (62) (Figure 1D). After exposure to hyperoxia-
associated oxidative stress, MVs derived from alveolar epithelial 
cells increase robustly in BALF. On the other hand, AM-derived 
MVs remain at a steady level (62). MVs derived from other cells 
failed to increase as robust as the epithelial cell-derived MVs (62). 
Lee et al. further confirmed this observation in the setting of acid-
exposure induced lung injury (37). In both studies, the type of 
EVs was analyzed using FACS analysis via a bead-based antibody 
conjugation against the surface markers of interested cells, such 
as AMs, AECI, or AECII cells.

These studies used non-infectious or sterile stimuli (hyperoxia 
or acid inhalation). Alveolar epithelium has a large surface area 
which is exposing to the inhaled stimulators. Hyperoxia-induced 
oxidative stress and acid inhalation are both known to cause diffuse 
alveolar cell damage (65–69). Therefore, it is expected that majority 
of MVs in BALF are derived from lung epithelial cells. On the other 
hand, bacterial infection often triggers extensive pro-inflammatory 
responses to induce bactericidal effects. Presumably, after inhaled 
bacteria or LPS, the first responder which is AM may be responsible 
for the release of EVs into BALF. Furthermore, Moon and Lee et al. 
focus on the MV release in BALF at the early stage of exposure rather 
than prolonged treatment. All the above noxious stimuli, including 
both sterile and the infectious, potentially induce the generation 
of ABs after prolonged exposure. Zhu et al. reported recently that 
AM-derived ABs exert a functional role on the epithelial cells and 
potentially promote epithelium proliferation (70). Their work 
confirmed that there is a mutual communication between epithelial 
cells and AMs, rather than a single direction crosstalk.

The Compositions of Mvs During the 
Development of Lung inflammation  
and injury
Microvesicles are highly enriched with proteins, lipids, DNA, and 
RNA molecules (63, 71). Lee et al. first determine the amount of 

protein and RNAs in the isolated MVs. Although both compo-
nents are highly upregulated in the presence of noxious stimuli, 
only RNA components are robustly increased in each individual 
MV after normalization with the number of MVs. Furthermore, 
Lee et al. demonstrated that small RNA molecules are elevated 
much more significantly than the large RNAs (63). Subsequent 
miRNA profiles and RT-PCR confirmation suggest that after oxi-
dative stress, epithelial MV-containing miRNAs are dramatically 
altered (Figure 1E).

Functionally, Lee et  al. showed that MV-miRNAs promote 
macrophage migration and infiltration in  vitro and in  vivo. 
After exposure to acid, epithelial MV-containing miR-17 and 
miR-221 exert the effects on promoting macrophage migration 
via modulating integrin β1 (37). After exposure to hyperoxia, 
MV-containing miR-221 and miR-320 activate AMs by stimulat-
ing pro-inflammatory cytokine secretion (63). It appears that after 
specific stimuli, different MV-containing miRNAs exert specific 
functional roles. Collectively, in response to sterile stimuli such 
as hyperoxia or acid inhalation, AMs receive “pro-inflammatory” 
signals from the epithelial MV-containing miRNAs and sub-
sequently respond by classical activation (M1) and increased 
migration.

Macrophage-Derived ev-Containing 
miRnAs Regulate Lung epithelial Cell 
Proliferation and Cell Cycle
The EV research focused on the roles of MVs or Exos, Zhu et al. 
recently demonstrate that after LPS stimulation, ABs derived 
from macrophages exert a functional role in maintaining lung 
epithelial cell growth via their regulation of cell cycle (70). 
Although AB is significantly larger in size and contains more 
diverse contents than MV and exosome, Zhu et al. demonstrated 
that AB-containing miR-221/222 confer robust effects on pro-
moting epithelial cell proliferation via targeting the CDKN1B 
(p27Kip1) gene (70). This observation demonstrates that under 
certain condition, an EV-mediated macrophage-epithelium 
crosstalk exists in both directions, further confirming a constant 
and dynamic intercellular communication among different cell 
types in the microenvironment of lungs.

evs Play a Role in Other inflammatory 
Lung Responses
Apart from ALI and inflammation, the generation and function 
of EVs in the pathogenesis of other lung disease have gained 
increasing attention. For example, in the development of COPD, 
EV-mediated signaling transport has been widely reported 
(72– 74). Epithelial cell-derived exosomes have been detected from 
BALF of control and asthmatic mice (72), in response to IL-13. 
These epithelial exosomes induce chemotaxis of undifferentiated 
macrophages and confer proliferative effects (72). Despite that in 
this report, due to the lack of NTA analysis of the sizes of EVs, 
the term “exosome” here may represent the three groups of EVs.

Cigarette smoke has been reported to induce the endothelial 
cell-derived MVs and MV-containing miRNAs, such as miR-191, 
miR-126, and miR125a. These miRNAs are transferred to mac-
rophages in an EV-mediated manner, subsequently promoting 
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the clearance of apoptotic cells (73). Interestingly, besides AMs, 
lung epithelial EVs can also transport EV-containing miRNA, 
miR-210, into lung fibroblasts, resulting in the inhibition of ATG7 
expression and promotion of myofibroblast differentiation (74).

In addition to the EVs derived from lung epithelial cells, 
endothelial cells also generate a significant amount of EVs. 
Takahashi et al. have demonstrated that endothelial cell-derived 
MVs increase robustly in COPD patients compared to those in 
healthy volunteers (75). Furthermore, the injured endothelial 
cells release a significant amount of EVs, which regulate the 
process of coagulation, inflammation, endothelial function, and 
angiogenesis (76). The current reports on EVs and their func-
tions involved in lung injury and inflammation are summarized 
in Figure 2B.

Pitfalls and Further Directions
Many questions remain to be answered on the role of EVs in the 
cell–cell crosstalk during the development of lung inflammation 
and injury. These questions include but are not limited to the 
concentration and amount of specific miRNAs in each MVs, 
exosomes or ABs after noxious stimuli; the effective “dose” or 
“amount” of MV/AB-shuttling miRNAs to trigger cellular effects; 

the efficacy and pathway of MV or AB-shuttling miRNAs to enter 
the recipient cells. There is yet to be a study on the underlying 
mechanisms by which EV-shuttling miRNAs exert functions in 
the recipient cells.

In summary, EVs (MVs, exosomes, or ABs) play an essential 
role in mediating epithelial–macrophage crosstalk in the absence 
and presence of noxious stimuli. EV-containing miRNAs are the 
likely emerging targets for the development of novel therapeutic 
and/or diagnostic agents.
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