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Most preclinical treatments for sepsis failed in clinical trials in part because the  
experimental models of sepsis were performed on healthy animals that do not mimic 
septic patients. Here, we report that experimental diabetes worsens glycemia, inflamma-
tion, and mortality in experimental sepsis. Diabetes increases hyperglycemia, systemic 
inflammation, and mortality in sepsis. Diabetes exacerbates serum tumor necrosis factor 
(TNF) levels in sepsis by increasing splenic TNF production. Both serum from diabetic mice 
and glucose increase cytokine production in splenocytes. Anti-inflammatory treatments 
cannot control hyperglycemia and are less effective in diabetic patients. By contrast, 
dopaminergic agonist type-1, fenoldopam, attenuates hyperglycemia, and systemic 
inflammation in diabetic septic mice by inhibiting splenic p65NF-kB phosphorylation. 
Fenoldopam inhibits TNF production in splenocytes even at high glucose concentra-
tions and inhibits the canonical NF-kB pathway by inhibiting p65RelA and p50NF-kB1 
phosphorylation without affecting the non-canonical NF-kB proteins. Treatment with 
fenoldopam rescues diabetic mice from established polymicrobial peritonitis even when 
the treatment is started after the onset of sepsis. These results suggest that dopaminer-
gic agonists can control hyperglycemia, systemic inflammation and provide therapeutic 
advantages for treating diabetic patients with sepsis in a clinically relevant time frame.

Keywords: diabetic sepsis, inflammation mediators, dopaminergic agonist, murine sepsis, phosphorylation

inTrODUcTiOn

The regulation of the immune system and inflammation is critical for survival both from a physio­
logical and a clinical perspective. Probably one of the most characteristic examples is sepsis, a major 
clinical challenge in modern medicine killing around 250,000 patients every year and accounting 
for 9.3% of overall deaths in the United States (1–6). Sepsis was originally defined as a systemic 
infection and its diagnosis required the confirmation of bacterial infection. Thus, initial strategies 
focused on designing effective antibiotics to control the infection. New generations of antibiotics 
are more effective controlling infections, but sepsis still causes around 1/3 deaths in hospitalized 
patients with high mortality rates in the ICU ranking from 30 to 60% depending on the clinical study 
and the organ failure (3–6). In addition to the infection, septic is also characterized by detrimental  
systemic inflammatory responses that become more dangerous than the original infection and 
cause organ damage and lethal multiple organ failures (7–11). The inhibition of specific inflamma­
tory cytokines such as a tumor necrosis factor (TNF), migration inhibitory factor (MIF), or high  
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mobility group box (HMGB)­1 provided promising results in 
experimental sepsis (7, 10–13), but, they failed in the clinical tri­
als for sepsis (14). One explanation is that sepsis is not produced 
by a single cytokine and thus, successful treatments for sepsis  
may require inhibiting multiple cytokines. Therefore, recent efforts 
focus on designing therapeutic strategies that control multiple 
inflammatory factors and rescue patients from established sepsis 
in a clinically relevant time frame.

Most preclinical strategies that provided promising results 
in experimental models of sepsis, failed in clinical trials (7, 10). 
Indeed, more than 100 randomized clinical trials tested whether 
inhibition of inflammatory factors improves survival in sepsis. 
With one short­lived exception, none of these clinical trials 
have resulted in new treatments (15). Xigris [activated protein C 
(APC), drotrecogin­alpha, DrotAA] was the only drug approved 
by the FDA for treating severe sepsis, as it improved survival by 
6% in the 2001 PROWESS trial. However, Xigris increased the 
risk of severe hemorrhage in septic patients, and Eli Lily withdrew 
it from the market in 2011 due to the lack of beneficial effects in 
the PROWESS­SHOCK trial (16). Currently, there is no treat­
ment for severe sepsis approved by the FDA and present therapies 
are mostly supportive. Current studies indicate that the pathology 
of sepsis is a complex process with both immune and metabolic 
alterations, and most septic patients have preexisting conditions 
with metabolic and immune alterations that contribute to mul­
tiple organ failure in sepsis (17–25). Thus, one potential reason 
for the failure of these clinical trials is that the preclinical studies 
focused on healthy animals that did not mimic the preexisting 
conditions of septic patients (26). The CDC reported that 7 in 10 
septic patients had chronic diseases requiring frequent medical 
care or required hospital services 30  days before sepsis admission 
(27). Indeed, around 1/3 of septic patients are diabetic, and hyper­
glycemia increases 90­day mortality in septic patients (17–29).  
There is a huge population of prediabetic patients and as many 
as 50% of diabetic patients can be asymptomatic and remain 
undiagnosed (30). Diabetic patients also represent an additional 
challenge because insulin treatment is not effective during sepsis 
(31). Sepsis is characterized by detrimental inflammatory and 
hyperglycemic responses to infection (32), and this combina­
tion is associated with higher mortality rates over 40% (32–34).  
Despite the use of new generations of antibiotics and regardless 
of their higher susceptibility to infection, diabetic patients have 
a higher mortality rate in sepsis. Thus, recent efforts focus on 
identifying the mechanisms connecting metabolic and immune 
alterations and their clinical implications in infectious and infla­
mmatory disorders. Here, we analyze how experimental diabetes 
affects sepsis and the efficacy of anti­inflammatory treatments  
for sepsis.

MaTerials anD MeThODs

chemicals and reagents
LPS (Escherichia coli 0111:B4), streptozotocin, glucose, dopa­
mine hydrochloride, and fenoldopam were purchased from 
Sigma­Aldrich® (Saint Louis, MO, USA). The glucose measuring 
strips were purchased from PharmaTech Solutions, Inc. (Westlake 

Village, CA, USA). Pentobarbital sodium was purchased from 
Diamondback (Scottsdale, AZ, USA); ketamine from Henry 
Schein animal health (Dublin, OH, USA); xylazine from Akorn 
animal health (Lake Forest, IL, USA), and enrofloxacin from 
Bayer Healthcare (Shawnee Mission, KS, USA). Streptozotocin 
was injected (STZ; i.p., 50  mg/kg) at 10 and 5  days before the 
experiment as previously reported (35, 36). Treatment with fen­
oldopam (Fen; 10  mg/kg/dose; i.p.) was administered at 6 and 
1  h before LPS or CLP in most experiments. Treatment with 
fenoldopam was started 15 h after CLP and given every 12 h for 
3 days in the survival experiments.

animal experiments
All experimental procedures adhered to The Guide for the Care  
and Use of Laboratory Animals by the National Academy of Sciences 
and published by the National Institutes of Health (Copyright© 
1996 by the National Academy of Sciences), and were approved 
by the Institutional Animal Care & Use Committee of the 
Rutgers New Jersey Medical School. 6–8­week­old (≈25 ± 5 g) 
BALB/c male mice obtained from Charles River Laboratories 
(Wilmington, MA, USA) were maintained in a controlled envi­
ronment, room temperature 70–75 F, air humidity 40–70%, 12­h 
light/dark cycle, with free access to food and water (ad libitum) 
until experimentation. Animals were randomly distributed for 
the experimental treatments, and the investigators were blinded 
to the treatments.

experimental sepsis
Endotoxemia and cecal ligation and puncture (CLP) were 
performed as we previously described in Nat Med (37) with the 
modifications described in Nat Med (38). Endotoxemia: Endotoxin  
(E. coli LPS 0111:B4; Sigma Chemical, Saint Louis, MO, USA) was 
dissolved in sterile, pyrogen­free PBS (Gibco®: Life Technologies, 
Grand Island, NY, USA), and sonicated for 20 min immediately 
before use. Animals received a LD50 dose of LPS (10 mg/kg, i.p.). CLP:  
animals were anesthetized with pentobarbital sodium (50 mg/kg, 
i.p.; Diamondback, Scottsdale, AZ, USA). Animals underwent to 
a standard CLP procedure with 25–50% average mortality as we 
described in Nat Med (37, 38). Briefly, an abdominal incision, of 
approximately 1.0  cm, was performed to expose and ligate the 
cecum at 5.0 mm from the cecal tip away from the ileocecal valve. 
The ligated cecal stump was punctured only once with a 22­gauge 
needle, and the stool was extruded (approx. 1.0 mm) to ascertain 
patency of puncture. The abdominal wound was closed in two 
layers, peritoneum and fascia separately, to prevent leakage of 
fluid. All animals received antibiotic (Enrofloxacin 2.5 mg/kg, s.c.;  
Baytril®, Bayer Health Care™, Swanee Mission, KA, USA) dis­
solved in 0.9% normal saline immediately after surgery and every 
12 h for 3 days, 0.5 mL/dose.

splenectomy
Animals were anesthetized with rodent cocktail 100­mg/kg 
ketamine; 20­mg/kg xylazine; intraperitoneal. Anesthesia was 
confirmed by the absence of withdrawal reflex to toe pinch. 
Splenectomy was performed 3 days before the experimental pro­
cedure as we described in J Exp Med (39). Right after surgery, 
all animals received antibiotic (Enrofloxacin 2.5 mg/kg, s.c) 
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dissolved in 0.9% normal saline immediately after surgery and 
every 12 h for 3 days. Anesthetized animals were subjected to an 
abdominal incision on the epigastrium and mesogastrium. The 
spleen was exposed by gentle retraction of the stomach to the 
side. The three main branches of the spleen artery were stabilized 
with nylon thread, ligated and cut. The spleen was removed and 
the wound was closed with sutures; catgut for the abdominal wall, 
and nylon thread for the skin.

cell cultures
Primary culture of splenocytes and peritoneal macrophages were 
performed as we previously described (39). Murine RAW264.7 
cells (ATCC, Manassas, VA, USA) were cultured as we previously 
described (37). Cells were transferred onto a 24­well polysty­
rene culture plates at 3 × 105 cells/well and incubated overnight. 
Cells were washed with PBS and incubated overnight with 5% 
serum­free DMEM medium. Cells were incubated with DMEM, 
no glucose (ThermoFisher, SKU# 11966­025) supplemented 
with the indicated concentrations of glucose. Alternatively, cells 
were incubated directly on serum without dilution from normal 
or diabetic mice for 3 h prior LPS challenge. Cells were lysed  
in lysis buffer with protease inhibitor (CelLyticMT and Protease 
Inhibitor Cocktail P8340; 1:100  v/v, both from Sigma­Aldrich, 
Saint Louis, MO, USA) and centrifuged at 12,000× g for 20 min 
at 4°C for NF­kB analyses. The conditioned supernatant was used 
for TNF analyses.

Blood, Organ, and cell analyses
Serum samples were obtained by clotting the blood for 2 h at 
room temperature, and centrifuged at 2,000× g for 15 min at 
4°C. Organs were collected and immediately homogenized in 
4°C PBS. Samples were normalized to protein concentration 
and TNF was analyzed by ELISA (Affymettrix Inc, San Diego, 
CA, USA). Glucose was analyzed from the mouse tail tip blood  
using the Genstrip (PharmaTech Solutions Inc., Westlake Village,  
CA, USA) and the Onetouch UltraMini glucometer (LifeScan 
Inc., Milpitas, CA, USA). TNF in the culture cells was analyzed at 
3 h post­LPS. TNF levels in the serum and organs were analyzed 
at 90 min after the LPS treatment. Cell samples for NF­kB 
analyses were normalized to protein concentration and their 
activa tion and binding to DNA was analyzed using the TransAM 
DNA­Binding ELISA (Active Motif; Cambridge, MA, USA). 
Phosphorylation of p65NF­kB protein at serine 536 was ana­
lyzed by ELISA using the specific (Total/Phospho) Multispecies 
InstantOne™ ELISA Kit (Cat# 85­86083­11; ThermoFisher, 
Waltham, MA, USA).

statistical analyses
All tests were performed using the GraphPad Prism Software® 
(GraphPad Software, La Jolla, CA, USA). The sample size was 
determined using standard deviation values and power analyses 
of our previous studies on the vagal stimulation (39, 40). All data 
in the figures are expressed as the mean ± SEM. The student’s t­test 
(Mann–Whitney U test) was used to compare mean values between 
two experimental groups. Analyses of three or more groups were 
performed using the one­way ANOVA with multiple pair­wise 
comparisons. The time courses and pair­wise comparisons were 

analyzed with the two­way ANOVA for repeated measures. Pair 
comparisons in ANOVA non­parametric tests were post  hoc 
adjusted with Tukey test (in equal sample sizes) or Bonferroni’s 
for multiple hypothesis testing. Normality and homogeneity of  
variance were confirmed using the Kolmogorov–Smirnov ana­
lysis. Statistical analyses of survival were determined using the 
log­rank (Mantel–Cox) test. n = sample size per group. p < 0.05 
are considered statistically significant and represented as follows: 
# Student’s t­test,  +  one­way ANOVA, *two­way ANOVA, and 
§survival log­rank test.

resUlTs

Diabetes Worsening inflammation  
and survival in sepsis
Given the high incidence of diabetes in septic patients, we 
first analyzed the effects of experimental diabetes on glycemia, 
inflammation and survival in sepsis. Diabetes was induced with 
streptozotocin, the standard and most common method for 
experimental diabetes (35, 36, 41). Treatment with streptozotocin 
increases blood glucose levels in mice by itself before the septic 
challenge (Figure 1A). By contrast, diabetes did not induce serum 
TNF levels before the septic challenge (Figure 1B). Furthermore, 
diabetes increases both hyperglycemia and serum TNF levels 
during endotoxemia (Figures 1A,B). Time course analyses show 
that diabetic and control non­diabetic animals have similar 
kinetics with glycemia and serum TNF levels peaks around 1.5 h  
and return to baseline after 3–4 h post­LPS. Next, we analyzed 
whether diabetes affects survival in different experimental models 
of sepsis including endotoxemia and polymicrobial peritonitis. 
Diabetes worsens survival in endotoxemic mice (Figure  1C). 
Diabetes also worsens the survival of mice with polymicrobial 
peritonitis induced by CLP, the standard experimental model to 
induce polymicrobial peritonitis (Figure 1D) (4, 42, 43). Unlike 
endotoxemia induced by LPS, CLP causes both polymicrobial 
infection (induced by the cecal puncture) and inflammation 
(induced by both the infection and the necrotic tissue of the cecal 
ligation) (4, 44). Diabetes decreased acute survival but the late 
deaths did not occur among control or STZ treated mice. These 
results indicate that diabetes worsens hyperglycemia, systemic 
inflammation and survival in experimental sepsis.

Diabetes enhancing splenic  
TnF Production
Next, we studied how experimental diabetes increases systemic 
inflammation in sepsis by analyzing TNF production in the organs. 
Bacterial endotoxin induces TNF production in all the organs  
but the highest TNF concentrations were found in the spleen 
(Figure 2A). Likewise, diabetic endotoxic mice have similar TNF 
levels in all the other organs but around twofold higher splenic 
TNF levels than non­diabetic endotoxic mice. These results sug­
gest that diabetes increases serum TNF levels by increasing TNF 
production in the spleen. Thus, we analyzed whether the spleen 
is essential for the higher serum TNF levels in diabetic mice 
by performing surgical splenectomy 3 days prior endotoxemia. 
Diabetic mice have around twofold higher serum TNF levels 
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FigUre 1 | Diabetes worsening systemic inflammation and survival in sepsis. (a,B) Control (non-diabetic treated with vehicle solution) or diabetic [STZ; 40 mg/kg] 
mice were challenged with LPS (10 mg/kg; i.p., n = 4; *p < 0.05 vs. control, two-way ANOVA). (a) Blood glucose or (B) serum tumor necrosis factor (TNF) levels 
were analyzed at the indicated time points post LPS. (c,D) Kaplan–Meier survival analyses of control or diabetic (STZ) mice challenged with (c) endotoxemia (LPS, 
10 mg/kg; i.p.; n = 10) or (D) polymicrobial peritonitis induced by cecal ligation and puncture (CLP; n = 15). §p < 0.05 vs. control, survival log-rank test.
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than non­diabetic sham mice, but both diabetic and non­diabetic 
endotoxemic mice have similar serum TNF levels after splenec­
tomy (Figure 2B). These results show that the higher serum TNF 
levels in diabetic mice are due to the higher TNF production 
in the spleen. Next, we analyzed whether splenectomy affects  
hyperglycemia. Splenectomy rendered diabetic and non­diabetic 
mice with similar hyperglycemia in endotoxemia (Figure  2C). 
Given that the higher serum TNF levels of diabetic mice are 
mainly due to higher splenic TNF production, we analyzed 
whether splenocytes from diabetic mice produce more TNF 
than those from non­diabetic mice. Primary culture of spleno­
cytes from diabetic or non­diabetic mice produce similar TNF 
levels when challenged with LPS (Figure 2D). Thus, we analyzed 
whether the serum from diabetic mice enhances TNF production 
in splenocytes from non­diabetic mice. We isolated primary cul­
ture of splenocytes from normal mice and incubated them with 
serum from diabetic or non­diabetic mice before the endotoxic 
challenge. Serum from diabetic mice increases TNF production 
in primary culture of splenocytes from normal non­diabetic mice 
(Figure 2E). Thus, we reasoned that higher levels of glucose in  
the serum of diabetic mice enhance TNF production in spleno­
cytes. We incubated primary culture of splenocytes from normal 
mice with different concentrations of glucose before the endo­
toxic challenge. Higher glucose concentrations enhance TNF  

production in normal splenocytes (Figure 2F). These results indi­
cate that higher glucose concentrations in the serum of diabetic 
mice enhance the cytokine production in splenocytes and thereby 
worsens the prognosis of sepsis.

Dopaminergic Type-1 agonist inhibiting 
TnF Production at high glucose 
concentrations
Given that hyperglycemia increases inflammation and worsens 
the prognosis of septic patients (17–24), we reasoned that it may 
interfere with the efficacy of anti­inflammatory strategies for 
sepsis. We previously reported that electrical stimulation of the 
vagus nerve attenuates serum TNF levels in endotoxemia by acti­
vating the adrenal medulla to produce dopamine (38). Thus, we 
analyzed the potential of dopamine to inhibit TNF production in 
splenocytes. Dopamine inhibits TNF production in splenocytes 
in a concentration­dependent manner with a half maximal effec­
tive concentration (EC50) of 0.12 ± 0.3 µM (Figure 3A). Then, we 
analyzed whether extracellular glucose levels interfere with the 
potential of dopamine to inhibit TNF production in splenocytes. 
Low concentration of dopamine (0.1 µM) inhibits TNF produc­
tion in splenocytes by around 55% and 70% at 100 and 300 mg/dL  
of glucose, respectively (Figure  3B). High concentration of 
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FigUre 2 | Diabetes increasing splenic tumor necrosis factor (TNF) production in sepsis. (a) Control or diabetic (STZ) mice were challenged with LPS  
(10 mg/kg; i.p., n = 4) and organ TNF concentrations were analyzed at 1.5 h post-LPS. (B,c) Mice underwent sham or surgical splenectomy (SPX) 3 days before 
LPS. (B) Serum TNF or (c) glucose levels were analyzed at 1.5 h post-LPS. #p < 0.05 vs. control (n = 4/group, one-way ANOVA). (D) Primary culture of splenocytes 
from control or diabetic mice were challenged with LPS. (e) Primary cultures of splenocytes from untreated mice were incubated with serum from control or diabetic 
mice for 3 h, and then challenged with LPS. (F) Primary culture of splenocytes from untreated mice were incubated with different concentrations of glucose and 
challenged with LPS. (D–F) TNF levels in the conditioned culture media were analyzed at 3 h post-LPS. *p < 0.05 vs. control (n = 4, two-way ANOVA).
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FigUre 3 | Glucose enhancing the dopaminergic anti-inflammatory pathway. (a) Primary culture of splenocytes were incubated with a concentration range of 
dopamine for 1 h prior LPS (100 ng/mL). Tumor necrosis factor (TNF) levels were analyzed in the conditioned culture media at 3 h post-LPS. (B) Primary culture of 
splenocytes were incubated with glucose [(G0) 0, (G100) 100 or (G300) 300 mg/dL] for 12 h and a concentration range of (B) dopamine, (c) pergolide,  
or (D) fenoldopam for 1 h prior LPS (100 ng/mL). TNF levels in the conditioned culture media were analyzed at 3 h post-LPS. *p < 0.05 of G100 or G300 vs.  
G0 (n = 4/group, two-way ANOVA). (e) Primary culture of splenocytes were incubated with glucose (0, 100, or 300 mg/dL) for 12 h. Then, treated with  
fenoldopam (1 µM) for 1 h prior LPS (100 ng/mL). Cells were harvested at 3 h post-LPS and dopaminergic receptors D1 and D5 were analyzed by Western blots. 
β-Actin was used to normalize protein loading.
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dopamine (1  µM) inhibits TNF production in splenocytes by 
around 70% regardless of the concentration of glucose. Given 
that dopamine has multiple side effects as a pleiotropic factor 
signaling through multiple receptors, we used specific agonists to 
identify the receptors modulating cytokine production in sple­
nocytes. According to IUPHAR nomenclature, dopamine signals 
through D1­ and D2­like dopamine receptors. D1­like receptors 
include D1 and D5 dopaminergic receptors (42, 43, 45). D2­like 
receptors include D2, D3, and D4 dopaminergic receptors (46).  
Fenoldopam is a well­characterized D1­like agonist, whereas 
pergolide is the canonical D2­like agonist (42, 43, 45). D2­like 
agonist, pergolide fails to inhibit TNF production in splenocytes 
(Figure  3C). By contrast, D1­like agonist, fenoldopam inhibits 
LPS­induced TNF production in splenocytes even at high glucose 
concentrations (Figure 3D). Low concentration of fenoldopam  

(0.1  µM) inhibits TNF production by 35 and 50% at 100 and 
300  mg/dL of glucose, respectively. High concentration of fen­
oldopam (1 µM) inhibits TNF production in splenocytes by 60 
and 75% at 100 and 300  mg/dL of glucose, respectively. These 
differences were not due to changes in the expression of the recep­
tors, and glucose did not affect the expression of dopaminergic 
receptor­1 or ­5 (D1R, D5R) (Figure 3E). These results indicate 
that dopaminergic type­1 agonists such as fenoldopam can 
inhibit TNF production in splenocytes both at normal and high 
concentrations of glucose.

Dopaminergic control of the nF-kB 
Pathway in sepsis
Next, we analyzed how fenoldopam inhibits TNF production in 
macrophages. Given the heterogeneity of cell types in primary  
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culture of splenocytes, we focused on homogeneous cultures 
of RAW264.7 macrophage cells similar as we previously des­
cribed (37). Bacterial endotoxin induces TNF production in a 
concentration­dependent manner, and high concentrations of 
glucose enhance TNF production in RAW264.7 cells similar 
to that described in splenocytes (Figure 4A). Fenoldopam also 
inhibits TNF production in RAW264.7 cells in a concentration­
dependent manner similar to that described in splenocytes 
(Figure 4B). Given that NF­kB proteins are key transcriptional 
factors regulating inflammatory cytokines in macrophages, we 
analyzed whether glucose affects the potential of fenoldopam to 
regulate their binding to DNA (47). Fenoldopam (1 µM) inhibits 
LPS­induced p65RelA activation and binding to DNA with higher 
efficacy at high glucose concentrations (Figure  4C). Likewise, 
fenoldopam (1  µM) also inhibits p50NF­kB1 activation and 
binding to DNA at high glucose concentrations (Figure 4D). We 
also analyzed the specificity of this inhibition and their potential 
to regulate the non­canonical NF­kB proteins. Neither extracel­
lular glucose levels nor fenoldopam affects the DNA­binding of 
the non­canonical NF­kB proteins RelB, p52NF­kB2 and c­Rel 
(Figures  4E–G). These results indicate that D1­like dopamine 
receptor agonists can inhibit the canonical NF­kB pathway by 
inhibiting both p65RelA and p50NF­kB1 activation and DNA­
binding even at high glucose concentrations.

Dopaminergic control of sepsis  
With Diabetes
We next reasoned that dopaminergic agonists may have clinical 
implications for treating sepsis. Previous studies on sepsis are 
performed in experimental models of sepsis with “healthy” mice 
that do not mimic the preexisting conditions of septic patients 
(48). Given that around 1/3 of septic patients are diabetic and 
hyperglycemia increases 90­day mortality in septic patients 
(17–24), we analyzed whether fenoldopam attenuates systemic 
inflammation in experimental sepsis with diabetes. Treatment 
with fenoldopam attenuates serum TNF levels in endotoxemic 
mice with diabetes (Figure  5A). Then, we analyzed different 
organs to find that the most significant effects of fenoldopam 
were in the spleen by inhibiting TNF production by around 
50% (Figure  5A). Given that NF­kB proteins are regulated by 
phosphorylation, we also analyzed p65NF­kB phosphorylation 
in the organs of septic mice with diabetes (Figure  5B). Again, 
the most significant effects were found in the spleen where endo­
toxin increases p65NF­kB phosphorylation at serine 536 by over 
fourfold, and fenoldopam inhibits this phosphorylation by over  
threefold in the spleen without affecting the lung or liver. 
Fenoldopam also attenuates hyperglycemia in both diabetic 
and non­diabetic mice (Figure 5C). Thus, we analyzed whether 
fenoldopam can improve survival in septic mice with diabetes. 
Treatment with fenoldopam at 6 and 2 h prior the LPS challenge 
improves survival in endotoxemic mice with diabetes (Figure 5D). 
Next, we analyzed whether fenoldopam can improve survival 
in diabetic mice with polymicrobial peritonitis induced by CLP,  
the standard experimental model to induce polymicrobial infec­
tion peritonitis (4, 44). Treatment with fenoldopam, started 15 h 
after the CLP, improves survival of diabetic mice with established 

polymicrobial peritonitis (Figure  5E). These results show that 
dopaminergic agonists can control systemic inflammation and 
improves the survival of diabetic mice in polymicrobial peritonitis.

DiscUssiOn

Sepsis is a major clinical and scientific challenge in modern 
medicine with over 100 unsuccessful clinical trials (15). Many 
preclinical strategies improved survival in experimental animal 
models of sepsis but failed in clinical trials (7, 10). One explana­
tion is that most experimental models of sepsis are performed 
on healthy animals that do not mimic the preexisting conditions 
of septic patients. Indeed, over 72% of the septic patients had 
chronic diseases requiring frequent medical care or required 
hospital services within 30  days before sepsis admission (27). 
This combination is associated with the highest mortality rates 
over 40% (32). Diabetes is a leading comorbidity in sepsis, around 
1/3 of septic patient are diabetic, and hyperglycemia increases 
90­day mortality in septic patients (17–30). Thus, experimental 
models of sepsis using “healthy” animals with “normal” blood 
glucose levels and physiological functions may not mimic the 
actual responses observed in septic patients. In our study, experi­
mental diabetes was induced with streptozotocin, the standard 
method for experimental diabetes described in the literature  
(35, 36, 41). Streptozotocin induces both type­1 and type­2  
insulin­resistant diabetes, causes DNA alkylation and activates 
poly ADP­ribosylation, leading to cellular NAD  +  and ATP  
depletion and the formation of superoxide radicals (49). Strep­
tozotocin is a more specific, stable and reliable experimental 
model of diabetes that is neither diet dependent nor causes renal 
toxicity like alloxan (49). Our results show that diabetes incre­
ases serum glucose levels and induces hyperglycemia, but not 
detectable serum TNF levels by itself before the septic challenge.  
The effects of diabetes in sepsis are controversial. Some studies 
indicate that diabetic patients have functional immune deficiency 
and, they are less efficient in bacterial clearance (50–52). Likewise, 
experimental studies indicated that alloxan­diabetic mice are 
highly susceptible to polymicrobial sepsis due to downregulation 
of CXCR2 in neutrophils, preventing their migration to the focus 
of infection (53). However, despite the use of new generations of 
antibiotics, diabetic patients have a higher mortality rate in sepsis 
suggesting pathogenic effects regardless of their susceptibility to 
infection. Regardless of the infection, our results indicate that 
diabetes exacerbates both hyperglycemic and TNF responses to 
bacterial endotoxin. These results concur with previous studies 
indicating that diabetes exacerbates systemic inflammation and 
induces a persistent systemic inflammation in experimental 
sepsis (54–57). All these studies show that both type­1 and type­2 
diabetic animals have exacerbated hyperglycemia, and produc­
tion of both pro­ (TNF, IL1, IL6, MCP1) and anti­inflammatory 
(IL10) cytokines in experimental sepsis. Our results also indicate 
that these exacerbated glycemic and inflammatory responses 
of diabetic mice worsen their survival in sepsis. Similar studies 
reported that alloxan­induced diabetes also worsens mice survival 
in polymicrobial peritonitis by preventing neutrophil migration 
to the focus of the infection (53). Regardless of the susceptibility 
to infection, our results indicate that diabetes increases mortality 
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FigUre 4 | Glucose increasing dopaminergic control of the canonical NF-kB pathway. (a) RAW264.7 macrophage cells were incubated with glucose (0, 100,  
or 300 mg/dL) for 12 h, prior LPS (100 ng/mL). (B) RAW264.7 macrophage cells were incubated with fenoldopam for 1 h prior LPS, and tumor necrosis factor (TNF) 
levels were analyzed in the conditioned culture media at 3 h post-LPS. (c–g) RAW264.7 macrophage cells were incubated with glucose (0, 100, or 300 mg/dL)  
for 12 h. Then, treated with fenoldopam (1 µM) for 1 h before the LPS challenge (100 ng/mL). Cells were collected 30 min post-LPS, samples were normalized to 
protein concentration and DNA-binding of NF-kB (c) p65RelA, (D) p50, (e) RelB, (F) p52, or (g) c-Rel was analyzed by TransAM ELISA. *p < 0.05 vs. control 
(n = 3, one-way ANOVA).
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FigUre 5 | Dopaminergic agonist improving systemic inflammation and survival in sepsis with diabetes. (a,B) Diabetic mice were treated with vehicle or 
fenoldopam at 6 and 2 h prior LPS (10 mg/kg; i.p., n = 4) and (a) serum and organ tumor necrosis factor (TNF) concentrations, (B) p65RelA phosphorylation,  
and (c) blood glucose levels were analyzed at 1.5 h post-LPS. (D,e) Kaplan–Meier survival analyses of diabetic mice treated with vehicle (control) or fenoldopam 
(Fen, 10 mg/kg/dose; i.p., n = 15). (D) Mice were treated with fenoldopam 6 and 2 h prior LPS (LPS, 10 mg/kg; i.p.; n = 15). (e) Mice underwent cecal ligation  
and puncture and were treated with vehicle (control) or fenoldopam (Fen; 10 mg/kg/dose; i.p.). Arrows represent the treatments with fenoldopam (10 mg/kg/dose; 
i.p.) started 15 h after the CLP, and given every 12 h for 3 days. §p < 0.05 vs. control (n = 13, survival log-rank test).
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in endotoxemia but also in polymicrobial peritonitis induced by 
CLP even when the mice were treated with antibiotics to mimic 
clinical standards. Likewise, clinical studies show that diabetes 
and hyperglycemia increase morbidity and mortality in sepsis 
even using antibiotics (17–29). These results are not only relevant 
to sepsis, but an important clinical consideration as diabetic 
patients have exacerbated glycemia and inflammatory responses 
in critical conditions such as hemorrhage, ischemia and trauma.

Our results show that diabetes exacerbates the inflammatory 
responses to bacterial endotoxin by increasing TNF production 
in the spleen. Diabetic mice have around twofold higher splenic 
TNF levels than non­diabetic mice. However, both diabetic 
and non­diabetic mice have similar serum TNF levels after 
splenectomy. Of note, splenectomy increases hyperglycemia in 

non­diabetic but not in diabetic mice, rendering diabetic and 
non­diabetic mice with similar hyperglycemia in endotoxemia. 
Given that diabetes worsens systemic inflammation due to higher 
TNF production in the spleen, we analyzed the effects of diabetes 
at the cellular level in primary culture of splenocytes. Primary 
culture of splenocytes from either diabetic or non­diabetic mice 
produce similar TNF levels when challenged with bacterial endo­
toxin. These results suggest that acute diabetes does not produce 
a defect in the response of splenocytes to endotoxin. It remains 
to be determined if chronic diabetes, which is more clinically 
relevant, affects this response. However, serum from diabetic 
mice increases TNF production in primary culture of normal 
splenocytes. Our results indicate that glucose increases TNF 
production in splenocytes showing that hyperglycemia directly 
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affects the inflammatory responses to bacterial endotoxin and 
contributes to systemic inflammation in sepsis.

Previous studies have focused on whether preexisting condi­
tions such as diabetes increase susceptibility to infections and 
sepsis. Here, we analyzed whether diabetes affects the effectivity 
of potential treatments for sepsis. We previously reported that 
electrical vagal stimulation attenuates serum TNF levels in endo­
toxemia by activating the adrenal medulla to produce dopamine 
(38). The present study shows that dopamine (0.1 µM) inhibits 
TNF production in splenocytes even when cultured at high 
glucose concentration. Thus, dopamine may provide therapeutic 
advantages for treating diabetic patients with sepsis or other cri­ 
tical conditions. Both dopamine and norepinephrine are com­
monly used in critically ill patients to restore tissue perfusion 
(58, 59). Although dopamine is more effective in improving renal 
hemodynamics (60), it has significant side effects, increases the 
risk of tachyarrhythmia (58, 59), and worsens survival in septic 
animals (61). We reasoned that these effects can be mediated by 
different dopaminergic receptors, and thus specific dopaminergic 
agonists may avoid the unspecific side effects. Given that dopamine 
signals through D1­ and D2­like dopamine receptors (62–65). 
D1­like receptors include D1 and D5 dopaminergic receptors. 
D2­like receptors include D2, D3, and D4 dopaminergic recep­
tors (46). D2­like agonist, pergolide did not affect TNF produ­
ction. By contrast, D1­like agonist, fenoldopam inhibits TNF 
production in splenocytes similar to that reported by dopamine. 
Low concentration of fenoldopam (0.1  µM) inhibits TNF pro­
duction in splenocytes cultured at high glucose concentration.  
At the cellular level, fenoldopam inhibits the activation of the 
canonical NF­kB pathway by preventing both p65RelA and 
p50NF­kB1 activation and binding to DNA. These effects are  
specific as neither extracellular glucose levels nor fenoldopam 
affects the activation of the non­canonical NF­kB proteins RelB, 
p52NF­kB2 and c­Rel. Thus, fenoldopam can inhibit TNF pro­
duction in splenocytes at high glucose concentrations, and can 
provide therapeutic advantages for treating diabetic patients with 
sepsis.

In vivo, treatment with fenoldopam attenuates serum TNF 
levels in diabetic mice with sepsis by inhibiting splenic TNF 
production. Given that NF­kB proteins are regulated by phos­
phorylation, we also analyzed p65NF­kB phosphorylation in 
the organs of the septic mice. Again, the most significant effects 
were found in the spleen where endotoxin increases p65NF­kB 
phosphorylation at serine 536 by over fourfold, and fenoldopam 
inhibits this phosphorylation by over threefold in the spleen 
without affecting the lung or liver. This specific inhibition of the 
canonical NF­kB pathway in the spleen can have clinical implica­
tions because NF­kB modulates cytokine production the spleen, 
and it protects parenchyma cells from cytotoxicity in other organs 
(66–68). The most characteristic example is that p65RelA (69–71) 
and IKKβ (72–74) knockout mice exhibit massive fetal hepato­
cyte apoptosis and embryonic death. These studies indicate that 
p65RelA can prevent hepatocyte apoptosis (73, 74), and thus 
ubiquitous NF­kB inhibition may not generate an overall benefi­
cial effect especially in the liver, unless the therapy targets specific 
organs or immune cells (75). Therefore, fenoldopam may provide 
therapeutic advantages for diabetic patients with sepsis due to  

its potential to specifically inhibit NF­kB in the spleen. Fur­
thermore, fenoldopam also attenuates hyperglycemia. These 
results have significant clinical implications because although 
hyperglycemia is especially relevant in diabetic patients, sepsis 
and other critical conditions such as hemorrhage, ischemia and 
trauma induce insulin resistant hyperglycemia in both diabetic 
and non­diabetic patients (76, 77). Sepsis is a complex process, 
and successful therapeutic treatments for sepsis may require 
controlling both immune and metabolic alterations. Given that 
hyperglycemia worsens systemic inflammation, organ function 
and mortality in sepsis (17–29), dopaminergic agonists such as 
fenoldopam may provide therapeutic advantages for both meta­
bolic and immune alterations in sepsis and other critical condi­
tions that induces insulin resistant hyperglycemia. Treatment 
with fenoldopam, started 15 h after the CLP, improves survival 
of diabetic mice with established polymicrobial peritonitis. By 
comparison with other strategies, administration of anti­TNF 
antibodies increased the mortality when administered after 
cecal perforation (78). Anti­macrophage MIF antibodies (79) or 
lysophosphatidylcholine (80) are ineffective if administered more 
than 8 or 10 h after the induction of peritonitis (79, 81). Our stu­
dies indicate that diabetes and glycemia affect the pathogenesis 
of sepsis and the efficacy of anti­inflammatory strategies. These 
results warrant further studies in other experimental models 
of diabetes and in other experimental groups including aging 
population Together, these results suggest that dopaminergic 
agonist type 1 can control systemic inflammation and provide 
therapeutic advantages for treating diabetic patients with sepsis 
in a clinically relevant time frame.
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