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seventeen-Year Journey  
Working With a Master
Jinfang Zhu*

Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious 
Diseases, National Institutes of Health, Bethesda, MD, United States

It had been a great honor for me to work with the late Dr. William E. Paul for 17 years in 
the Laboratory of Immunology (LI) from 1998 until his passing in 2015. He was such a 
master in the immunology field. Under his outstanding guidance, my research has been 
focusing on transcriptional regulation of T helper (Th) cell differentiation, especially, on 
the role of a master transcription factor GATA3 during Th2 cell differentiation. Just as 
enormous scientific contributions of Dr. Paul (we all call him Bill) to the immunology com-
munity are far beyond his serving as the Chief of the LI, GATA3 also plays important roles 
in different lymphocytes at various developmental stages besides its critical functions 
in Th2 cells. In this special review dedicated to the memory of Bill, I will summarize the 
research that I have carried out in Bill’s lab working on GATA3 in the context of related 
studies by other groups in the field of T cell differentiation and innate lymphoid cell (ILC) 
development. These include the essential role of GATA3 in regulating Th2/ILC2 differenti-
ation/development and their functions, the critical role of GATA3 during the development 
of T cells and innate lymphoid cells, and dynamic and quantitative expression of GATA3 
in controlling lymphocyte homeostasis and functions.

Keywords: GAtA3 transcription factor, t helper cells, innate lymphoid cells, cytokines, t cell differentiation, t cell 
development

PreFAce

I joined the lab of Dr. William E. Paul (Bill) in 1998 as a postdoctoral fellow soon after I got my 
Ph.D. degree from the Shanghai Institute of Biochemistry, Chinese Academy of Sciences. Before I 
arrived in the U.S., Bill and I had already exchanged several emails regarding my potential projects. 
As a scientist who discovered interleukin (IL)-4, Bill had always been interested in IL-4 signaling 
and the structure of IL-4 receptor (IL-4R). He initially suggested me to crystallize the intracellular 
domains of the IL-4Rα chain, but I was more interested in transcriptional regulation of gene expres-
sion in lymphocytes, an area no one in Bill’s lab had explored in the past. Bill later asked several 
other postdocs, who joined his lab after me, to work on IL-4R structure demonstrating his amazing 
persistence in research and impressive flexibility in mentoring.

Since IL-4 is the critical cytokine for driving type 2 T helper (Th2) cell differentiation (1), my 
first project started with searching for IL-4-inducible transcription factor(s) during early Th2 cell 
differentiation using DNA microarray. At the same time, I was working on the cross-regulation 
of T cell receptor (TCR)- and IL-4-mediated signaling (2) together with Dr. Hua Huang, a senior 
postdoc in Bill’s lab at that time, who is now a full professor at the National Jewish Health.

My first project ended up with identifying growth factor independent-1 (Gfi-1) as an IL-4-inducible 
transcription factor, which plays an important role in promoting selective growth of committed Th2 
cells (3). Later, Gfi-1 was also reported to suppress Th1, Th17, and Treg cell differentiation and 
the expression of IL-7 receptor α chain (4–6). The reason why we focused on transcription factors 
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tAble 1 | GATA3 expression and functions in distinct lymphocytes and during T cell/innate lymphoid cell (ILC) development/differentiation.

cell type or process GAtA3 levels GAtA3 functions Genes regulated by GAtA3 reference

T helper (Th)2 High Essential for Th2 cell differentiation and Th2 cytokine  
production; suppressing the expression of  
Th1-related genes

Inducing Il4, Il5, Il13, Areg, Ccr8,  
Il1rl1, Il7r, Cd69; suppressing Ifng, 
Tbx21, Ccl5, Havcr2

(7–9, 40, 41, 
43, 44, 47, 50, 

54, 85)

ILC2 Very high Essential for ILC2 development and type 2  
cytokine production

Il5, Il13, Areg, Ccr8, Il1rl1,  
Il7r, Il2ra, Il17rb

(52–57)

Early T cell development Intermediate 
to high

Essential for early T cell development Tcr, Cd3??? (59–61)

CD4 T cell development Intermediate 
to high

Essential for CD4 but not CD8 T cell development Il7r, Cd3, Th-POK (47, 59, 62–64)

PLZF+ ILC progenitor High Essential for the generation of PLZF/PD-1-expressing  
ILC progenitors

Il7r, Id2??? (54, 65)

LTi progenitor Low to 
intermediate

Required for LTi homeostasis and functions but not  
for development

Il7r, Lta??? (54, 65)

Regulatory T cell Low to high Defining Treg subsets, modulating Treg functions and stability Il7r, Foxp3, Il2ra, Il1rl1, Ccr8 (47, 66, 68–70)

Natural killer (NK)T cell Low to high Defining NKT cell subsets and maintaining homeostasis Il7r, Il4 (74, 75)

CD8 T cell Low Homeostasis and memory generation Il7r, Myc (76)

Th1, Th17, and Tfh cell Very low to low Unknown Il7r, Ifng, Il4??? N.A.

ILC3 Intermediate Essential for the development of NKp46+ ILC3s and  
modulating ILC3 function

Inducing Il7r, Il22;  
suppressing Rorc

(58, 65)

ILC1 Intermediate Homeostasis Il7r??? (26)

NK cell Low Maturation Ifng (72, 73)

??? refers to likely but not yet confirmed.
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that are induced by IL-4 at early stages of Th2 cell differentiation 
is mainly because, in 1997, Drs. Richard Flavell and Anuradha 
Ray’s groups had already independently reported that GATA3 is 
necessary and sufficient for the expression of Th2 cytokines (7, 8).

In our initial report, the effect of Gfi-1 on Th2 cell proliferation 
was demonstrated by retroviral co-expression of Gfi-1 and GATA3 
(3). To further assess whether Gfi-1 indeed plays an important 
role during Th2 responses under physiological conditions, with 
the help of Dr. Hua Gu who was a new Principle Investigator in the 
LI at that time, I started to generate Gfi-1 conditional knockout 
mice (4). At that time, GATA3 conditional knockout mice were 
not available either. While I was making Gfi-1 floxed mice, Bill 
gave me a very important suggestion—why don’t you also prepare 
GATA3 conditional knockout mice at the same time (9). He said 
“I believe Gfi-1 is an interesting molecule to further work on, 
however, GATA3 is probably more important than Gfi-1 for Th2 
cells.” Indeed, throughout the 17 years period that I worked with 
Bill, first on T helper (Th) cell differentiation as a postdoctoral 
fellow and then on innate lymphoid cell (ILC) development as an 
independent investigator, I published 15 papers with their titles 
containing GATA3, but only 5 for Gfi-1. This visionary advice 
from Bill—always focusing on the most important things—has 
had a great impact on my research career.

iNtrODUctiON

CD4 Th cells orchestrate adaptive immune responses by produc-
ing effector cytokines. In order to effectively exert their protective 
functions during infections, distinct Th subsets are developed to 
deal with a variety of pathogens (10–12). There are three major Th 
cell subsets: type 1 T helper (Th1) cells that mainly produce IFN-γ, 
Th2 cells that produce IL-4, IL-5, and IL-13, and Th17 cells that 

produce IL-17a and IL-17f (13, 14). Th1  cells are important for 
immune responses to intracellular bacteria and viruses; Th2 cells 
are mainly responsible for immunity against helminth infections; 
whereas Th17 cells are essential for dealing with infections with 
extracellular bacteria and fungi. Besides their critical roles in medi-
ating protective immunity, Th subsets are also capable of inducing 
many types of inflammatory responses. While Th2 cells are known 
to be involved in allergic diseases, Th1 and Th17 cells may cause 
autoimmunity (12, 15). All the Th effector cells are developed 
from naïve CD4 T cells when they encounter an antigen/MHCII 
complex that can be recognized by their antigen-specific TCR. 
Some naïve CD4 T cells may differentiate into regulatory T cells 
(Tregs) and they are regarded as peripheral induced Tregs (pTregs); 
together with thymic-derived Tregs, pTregs regulate the magnitude 
and duration of a particular immune response in addition to their 
essential role in maintaining immune tolerance (16–20).

In recent years, a group of non-B non-T lymphocyte-like cells 
that are capable of producing Th effector cytokines have drawn 
much attention in the field. These cells are now designated as innate 
lymphoid cells (ILCs) (21–24). Just like Th cells, there are three 
major ILC subsets: group 1 ILCs (ILC1s) that mainly produce IFN-
γ, ILC2s that produce IL-5 and IL-13, and ILC3s that mainly pro-
duce IL-22. Since ILC subsets can produce cytokines known to be 
effector cytokines of Th cells, ILC and Th subsets of the same group 
are involved in related type of immune responses in a collaborative 
manner (25–30). For example, just as Th2 cells, ILC2s are not only 
involved in immune responses against helminth infections, but 
also induce allergic inflammation (29, 31–38). Therefore, similar 
to Th cells serving as professional cytokine-producing cells, ILCs 
are considered as the innate counterparts of Th cells.

The differentiation of Th1, Th2, and Th17 cells is mainly con-
trolled by cytokine environment during their activation, which 
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induces the expression of lineage-defining transcription factors: 
T-bet for Th1; GATA3 for Th2; and RORγt for Th17 cells (39). 
These master regulators are not only essential for the differentia-
tion and functions of Th subsets, but also they are utilized by ILC 
subsets for their development and functions: T-bet for ILC1s; 
GATA3 for ILC2s; and RORγt for ILC3s. While T-bet and RORγt 
are selectively expressed by Th1/ILC1 and Th17/ILC3 subsets, 
respectively, GATA3 is actually expressed by all the Th and ILC 
subsets although its expression in Th2 cells and ILC2s is the high-
est. Furthermore, GATA3 is dynamically expressed during T cell 
and ILC development. In this mini-review, I will discuss multiple 
important functions of this master transcription factor in a vari-
ety of lymphocytes at different developmental stages (Table 1).

criticAl rOle OF GAtA3 iN th2 
DiFFereNtiAtiON AND FUNctiONs

As mentioned earlier, Drs. Flavell and Ray’s groups independently 
reported that GATA3 is a key transcription factor for inducing 
Th2 cytokine expression back in 1997 (7, 8). Soon after, Dr. Ken 
Murphy’s group further showed that enforced expression of 
retroviral GATA3 induces endogenous GATA3 expression even 
in cells that were cultured under Th1 polarization conditions 
(40, 41). However, because GATA3-deficient CD4 T  cells were 
not available at that time, direct evidence to support the essential 
role of GATA3 during Th2 differentiation particularly in vivo was 
still lacking. Nevertheless, these exciting reports inspired Bill 
and me to prepare a conditional knockout allele of Gata3 by the 
Cre-loxP system (42). By using Gata3 conditional knockout mice, 
both Dr. I-Cheng Ho’s group and ours confirmed that GATA3 
indeed is the master regulator of Th2 cells (9, 43). In the absence 
of GATA3, the production of Th2 cytokines is severely impaired, 
at the same time, IFN-γ production is induced even when the 
cells are cultured under Th2 conditions (44).

Interleukin-4-mediated STAT6 activation is sufficient to 
induce GATA3 expression during Th2 cell differentiation (45). 
Low dose of TCR stimulation can also upregulate GATA3 expres-
sion in the absence of IL-4 signaling (46). Indeed, Th2 differentia-
tion may occur in vivo in an IL-4-STAT6-independent manner 
(15). On the other hand, although GATA3 can autoregulate its 
own expression, GATA3 is not required to induce itself in the 
presence of IL-4 signaling (47). Nevertheless, IL-4-dependent 
as well as IL-4-independent Th2 cell differentiation depends on 
GATA3 both in vitro and in vivo (9).

Genome-wide analyses of GATA3 binding through ChIP-Seq 
(chromatin immune-precipitation followed by high throughput 
sequencing) show that GATA3 binds to the Th2 cytokine locus 
Il4/Il13 at multiple sites including sites in the Il4 intron 2, the 
Il13 promoter, and the locus control region within the Rad50 
gene (47). GATA3 also binds to the promoter of the Il5 genes  
(48, 49). A major mechanism for GATA3 to induce IL-4 expres-
sion is through chromatin remodeling at the Il4/Il13/Rad50 locus. 
In mature Th2 cells in which GATA3-mediated epigenetic modi-
fications within the Th2 cytokine locus have already occurred, 
GATA3 is no longer needed for IL-4 production. However, since 

the activity of the Il5 and Il13 promoters always depends on 
GATA3, GATA3 deletion at any time completely abolishes IL-5 
and IL-13 expression (9). Many other Th2-specific genes as well 
as long intergenic non-coding RNAs are also directly regulated by 
GATA3 (50). For example, T1/ST2, the IL-33 receptor encoded by 
the Il1rl1 gene, is highly expressed in the most mature Th2 cells 
and GATA3 binds to the Il1rl1 gene (47, 50).

criticAl rOle OF GAtA3 iN ilc2 
DevelOPMeNt AND FUNctiON

When I started my own research group, it had been known 
that there are a group of non-T non-B innate-like lymphocytes 
capable of producing type 2 cytokines and that type 2 cytokines 
produced by CD4 T  cells are not essential for host defense  
(29, 33). Thus, I was very interested in what these cells were and 
how they developed. We hypothesized that GATA3, the critical 
factor for type 2 immune responses, may also be functionally 
important for the generation of type 2 cytokine-producing 
innate-like lymphocytes. Thus, we started to generate mice with 
GATA3 deficiency in the hematopoietic system and mice allow-
ing inducible GATA3 deletion.

These innate-like cells are now known as type 2 innate 
lymphoid cells (ILC2s). Indeed, ILC2s express very high levels 
of GATA3 and they are highly enriched in the lung, skin, gut, 
and adipose tissues (21, 31, 35). Strikingly, ILC2s and Th2 
cells generated during helminth infection are identical in their 
transcriptomes (51). Just as its critical function for Th2 cell 
differentiation, GATA3 is presumably also important for ILC2 
development. However, due to its essential role during ILC 
development in the progenitor stage, which I will discuss later, 
definitive evidence showing the importance of GATA3 expres-
sion for ILC2 development is still lacking. Nevertheless, even in 
mature ILC2s, deletion of GATA3 results in loss of ILC2 func-
tions (i.e., diminished IL-5 and IL-13 production) and reduced 
survival of ILC2s (52–57). Genome-wide analysis comparing 
transcriptomes between wild type ILC2s and GATA3-deficient 
“ILC2s” indicates that several important genes involved in type 
2 immune responses, such as Il5, Il13, Il1rl1, and Ccr8, etc., are 
regulated by GATA3 (54). These genes are also regulated by 
GATA3 in mature Th2 cells, which may explain similar func-
tionalities between ILC2s and Th2 cells.

GATA3 also directly binds to the Il4/Il13 loci in ILC2s; the 
pattern of GATA3 binding to the Th2 cytokine locus in ILC2s is 
very similar to that in Th2 cells (47, 58). It has been reported that 
GATA3 regulates chromatin remodeling at several Th2-specific 
gene loci in Th2 cells (47), however, whether GATA3 play a 
similar role in epigenetic modifications in ILC2s is unknown. 
GATA3 also regulated the expression of the IL-33 receptor 
subunit T1/ST2 and IL-25R in ILC2s (47, 54, 58). Therefore, 
because of the downregulation of IL-33R and IL-25R expression 
in GATA3-deficient “ILC2s,” these cells fail to respond to either 
IL-33 or IL-25. GATA3-deficient “ILC2s” also express lower levels 
of CD25 and IL-7R. Thus, there is a general defect of GATA3-
deficient ILC2s in response to multiple cytokines.
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criticAl rOle OF GAtA3 iN  
t cell AND ilc DevelOPMeNt

Besides its essential function in Th2 cells and ILC2s, GATA3 is 
also critical for T  cell and ILC development at multiple stages  
(59, 60). GATA3 is important for the generation of T cell progeni-
tors (59, 61). GATA3 is also required for CD4 but not for CD8 
T cell development (47, 59, 62–64). Similarly, GATA3 is critical 
for the development of T helper-like ILCs that express IL-7Rα, 
but not of NK cells (54). In fact, high levels of GATA3 expression 
are required for the generation of PLZF/PD-1-expressing non-
LTi progenitors but low levels of GATA3 expression are necessary 
for the function of LTi cells (65). Therefore, helper-like ILCs are 
considered as the innate counterpart of CD4 Th cells, whereas 
NK cells resemble innate CD8-like cells, and GATA3 is a master 
regulator for the development of both innate (ILC) and adaptive 
(Th) lymphocytes.

criticAl FUNctiONs OF GAtA3 iN tregs

GATA3 is also expressed by Tregs, and under certain circum-
stances, GATA3 expression may reach high levels, especially 
when cells receive IL-4 and/or TCR stimulation (66). The expres-
sion of some “Th2-related” genes, including Il1rl1 and Ccr8, in 
Tregs depends on GATA3 (47). GATA3 binds to the Foxp3 locus 
at the CNS2 region (67) and such binding may be important for 
maintaining optimal Foxp3 expression in Tregs (66, 68). Deletion 
of GATA3 specifically in Treg cells results in uncontrolled sys-
temic Th2 responses in one study (68), however, other studies 
reported that these GATA3 conditional knockout mice were 
grossly normal although the GATA3-deficient Tregs showed 
some abnormal phenotype (66, 69, 70). Interestingly, GATA3 
is dynamically expressed by Treg cells (70). Because persistent 
expression of GATA3 in Tregs at high levels may convert Tregs 
into Th2 cells (71), dynamic expression of GATA3 may be critical 
for maintaining Treg phenotype. Together with T-bet, GATA3 
also suppresses RORγt expression in Tregs. Therefore, balanced 
expression of T-bet, GATA3, and RORγt in Foxp3-expressing is 
critical for Treg-mediated immune regulation (70).

iMPOrtANt FUNctiONs OF GAtA3  
iN OtHer lYMPHOcYtes

GATA3 is expressed by ILC3s at intermediate levels (58). 
Interestingly, intermediate levels of GATA3 expression are 
required for regulating the balance between T-bet and RORγt, 
and thus the development of NKp46+ ILC3s (58). GATA3 also 
regulates IL-22 expression in ILC3s (58). Whether GATA3 
regulates the balance between T-bet and RORγt and/or IL-22 pro-
duction in Th cells requires further investigation. GATA3 is also 
expression by ILC1s at intermediate levels and GATA3 is required 
for maintaining ILC1 homeostasis (26, 58). GATA3 is also  
expressed by NK cells but at low levels. Although GATA3 is not 
required for the development of conventional NK cells, it affects 
their maturation and cytokine production (54, 72, 73). GATA3 
also affects NKT cell development and functions (74, 75) as well as 

CD8 T cell homeostasis partly through regulating IL-7Rα expres-
sion (76). Furthermore, GATA3 expression is found at low levels 
in Th1 and Th17 cells; however, its functions in these cells require 
further investigation.

relAtiONsHiP betWeeN GAtA3 AND 
OtHer iMPOrtANt trANscriPtiON 
FActOrs

During Th2 differentiation, GATA3 can be upregulated by IL-4/
STAT6 and/or TCR-mediated signaling (15). However, ILC2 
development does not require IL-4/STAT6 signaling. It is possible 
that Notch signaling plays an important role in GATA3 induction 
in ILCs. Consistent with this notion, TCF7, a transcription factor 
induced by Notch signaling, can upregulate GATA3 expression in 
ILC progenitors (56, 77). What induces/maintains high GATA3 
expression in ILC2s is not known.

Although GATA3 plays an essential role in the development 
and functions of ILC and Th cell subsets, many other transcrip-
tion factors, including Id2, TCF7, Tox, and Th-POK may form a 
network with GATA3 in determining cell lineage fates (26, 63, 77, 
78). Just as GATA3, Bcl11b is important for the development of 
T cells and ILC2s (79–84). We have recently reported that GATA3 
and Bcl11b form a complex and they co-localized in many 
enhancer regions within the Th1- and Th2-related genes (85). 
Interestingly, the GATA3/Bcl11b complex not only suppresses 
the expression of many Th1-related genes, but it also controls 
the magnitude of Th2 responses. GATA3 and Bcl11b may have 
common targets in ILC2s, which requires further investigation.

Several other transcription factors can also interact with 
GATA3. T-bet interacts with GATA3 and suppresses its function 
(86, 87). Consequently, T-bet and GATA3 co-bind to many Th1- 
or Th2-related genes (88–90). T-bet overexpression suppresses 
GATA3 expression at the transcription level (87). Endogenous 
expression of T-bet may also inhibit a GATA3-mediated “default” 
Th2 program during Th1 cell differentiation (90). Interestingly, 
T-bet is detected in GATA3-expressing cells during helminth 
infection to limit Th2 responses (91). On the other hand, GATA3 
may silence the Tbx21 gene during Th2 cell differentiation (47). 
GATA3 may also inhibit Th1 differentiation by suppressing the 
expression of STAT4 expression as well as Runx3-mediated 
induction of IFN-γ expression (44, 92), and GATA3 can bind to 
Runx3 at the protein level.

cONclUsiON AND FUtUre DirectiONs

Bill was the master of the Laboratory of Immunology at the 
NIAID, NIH. I had learned tremendously from him through 
weekly one-on-one meetings throughout the 17-year period 
working with him. In the earlier era, Bill had also trained many 
world renowned immunologists, including Drs. Charles Janeway, 
Mark Davis, Laurie Glimcher, and Ronald Schwartz. Not only 
Bill had trained many incredible scientists in his lab, but also he 
had a great impact on our immunology community at the NIH 
and around the world. Thus, Bill is a true master of immunology. 
Without him, the NIH immunology interest group has been 
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suffering from a “knockout” phenotype in the past 2 years. We 
sincerely hope that a master(s) with his/her knowledge and abil-
ity equivalent to Bill’s will inspire our community again in the 
near future.

The master regulator for Th2 cells is GATA3. Just like Bill who 
contributed to the immunology field in many aspects, GATA3 
also plays an essential role during early T  cell development, 
CD4 T cell development as well as ILC development. In mature 
lymphocytes, ILC2s followed by Th2 cells express the highest 
levels of GATA3, which is consistent with its critical function 
in maintaining the functionalities of these type 2 lymphocytes. 
In other lymphocytes, including Tregs, NKT cells, CD8 T cells, 
ILC1s, ILC3s, NK cells, and possibly Th1 and Th17 cells, GATA3 
may also regulate their homeostasis and functions (Table  1). 
GATA3-mediated IL-7Rα induction may be a common mecha-
nism through which GATA3 regulates lymphocyte homeostasis; 
however, this may not fully explain the multifunctions of GATA3 
during T cell and ILC development (58, 76).

Because GATA3 is expressed by all T  cell and ILC subsets, 
and its expression varies from cell type to cell type and from 
stage-to-stage, the functions of GATA3 in different lymphocytes 
at various developmental and activation stages may be controlled 
by its expression levels and its interacting partners. Quantitative 
expression of GATA3 may result in a qualitative effect. To study 
GATA3 dose effect, a model with a titratable GATA3 expres-
sion may be needed to separate the differential roles of GATA3 
expressed at high or low levels during the development of T cells 
and ILCs. Distinct complexes containing GATA3 in different cell 
types may offer cell-type-specific gene regulation. Thus, identify-
ing GATA3-interacting proteins in different lymphocytes will 
help us understand the mechanisms of GATA3-mediated gene 

regulation, which will guide us to obtain deeper insights into the 
biology of the immune responses in allergic, infectious, autoim-
mune, and other inflammatory diseases.

We have recently generated a new GATA3 reporter mouse 
strain through the CRISPR/Cas9 technology by inserting a 
ZsGreen-T2A cassette into the Gata3 conditional allele flanked 
by two LoxP sites. This novel reporter works beautifully: vari-
able GATA3 expression ranging for several logs in GFP intensity 
is observed in distinct lymphocytes at different developmental 
stages. We are using this mouse strain in combination with dif-
ferent Cre transgenic lines to study the function of this master 
regulator in a variety of lymphocytes particularly in vivo. We will 
be happy to share this valuable mouse strain with other labs that 
are interested in using it, even before its publication, as Bill had 
taught us the right way to promote science. Although Bill is no 
longer with us, and I cannot discuss our new exciting results with 
him anymore, my fascination in studying “master regulators” 
inspired by Bill will continue endlessly and I believe that is what 
Bill had hoped for the new generation(s) of immunologists.
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